import matplotlib.pyplot as plt import numpy as np import os import json from pprint import pprint folder = os.path.join(os.path.dirname(__file__), "data") files = list(reversed(sorted([os.path.join(folder, fn) for fn in os.listdir(folder) if fn.endswith(".json")]))) each_size = { } functions = set() for fn in files: with open(fn) as f: data =json.load(f) if data["total_size"] not in each_size: each_size[data["total_size"]] = {v: k for k, v in zip(data["means"], data["functions"])} functions = functions.union(set(data["functions"])) pprint(each_size) pprint(functions) for function in functions: #if function.startswith("divide") and "naive" in function and not (function.endswith("r2") or function.endswith("r3")): # continue #if not function.startswith("divide_and_conquer_naive"): # continue if function.startswith("block_wise"): continue x = [] y = [] for size in sorted(each_size.keys()): values = each_size[size] if function in values: x.append(pow(size, 1.)) y.append(float(values[function]) / 1000.) print(x, y) plt.plot(x, y, label=function) from matplotlib import rc plt.legend() plt.xscale("log") plt.grid() plt.xlim((1e10, 5.3e11)) plt.ylim((0, 160)) plt.savefig("test.pdf") plt.xlabel("n * p * m") plt.ylabel("seconds") plt.show() exit(0) a = [ [1e6, '0.000', '0.000', '0.000', '0.300', '0.200', '0.250', '0.000', '0.000'], [5e6, '0.200', '0.100', '0.200', '2.000', '1.800', '4.300', '0.200', '3.400'], [1e7, '1.400', '1.350', '1.500', '4.000', '3.500', '4.750', '0.600', '7.750'], [5e7, '7.450', '6.700', '8.100', '13.900', '11.950', '37.550', '2.350', '38.200'], [1e8, '13.900', '13.150', '13.600', '15.300', '13.600', '100.200', '2.900', '75.300'], [5e8, '81.100', '76.600', '74.350', '82.200', '75.150', '385.000', '14.600', '377.600'], [1e9, '172.500', '166.250', '163.900', '127.100', '117.100', '686.450', '35.100', '808.800'], [5e9, '1228.550', '1208.650', '1048.350', '532.850', '508.050', '2317.350', '127.750', '3998.350'], [1e10,'2577.050', '2533.500', '2415.700', '922.000', '892.750', '3702.750', '298.550', '8060.550'], [5e10, '15281.650', '15105.350', '12339.050', '4593.650', '4418.700', '16350.150', '1266.350', '40414.250'], [1e11, '32127.000', '31768.100', '24630.650', '8223.350', '8152.700', '32005.850', '2425.700', '81039.750'], [5e11, '249427.000', '248249.333', '124935.833', '39844.500', '39466.167', '138008.000', '11864.500', '402842.250'] ] def get_i(x): return np.array([(i[0], float(i[x + 1])) for i in a if len(i) > x + 1]) [1e9, '172.500', '166.250', '163.900', '127.100', '117.100', '686.450', '35.100', '808.800'], functions = ["block_wise_256_f", "block_wise_256_f2", "boost_axpy_mul", "divide_and_conquer_block1", "divide_and_conquer_block2", "divide_and_conquer_naive_r3", "blas", "naive_reordered"] for i, f in list(enumerate(functions)): xy = get_i(i) plt.plot(xy[:,0], xy[:,1] / 1000., label=f) print(xy) plt.legend() plt.xscale("log") plt.xlim((5e9, 1e12)) plt.show() for i, f in list(enumerate(functions)): xy = get_i(i) xy_l = get_i(len(functions) - 1) plt.plot(xy[:,0], xy[:,1] / xy[:, 1], label=f) print(xy) plt.legend() plt.xscale("log") plt.xlim((5e9, 1e12)) plt.show()