Added Devide and Conqour approach

This commit is contained in:
har0ke 2020-07-03 15:13:40 +02:00
parent a9a3fbbd11
commit 520407e45d
9 changed files with 768 additions and 192 deletions

View File

@ -4,7 +4,7 @@ project(smid_matrix CXX)
include(CheckCXXCompilerFlag)
set(CMAKE_CXX_STANDARD 17)
option(OPTIMIZE_FOR_NATIVE "Build with -march=native" ON)
option(USE_CLANG "Build with clang instead of gcc" OFF)
option(USE_CLANG "Build with clang instead of gcc" ON)
set(DEFAULT_TEST_FUNCTION_NAME "native_reordered" CACHE STRING "default function to run")
add_compile_definitions(DEFAULT_TEST_FUNCTION_NAME="${DEFAULT_TEST_FUNCTION_NAME}")
@ -15,6 +15,8 @@ else()
set(CMAKE_CXX_COMPILER "g++")
endif()
set(CMAKE_CXX_FLAGS_RELEASE "-O3")
if(OPTIMIZE_FOR_NATIVE)
CHECK_CXX_COMPILER_FLAG("-march=native" COMPILER_SUPPORTS_MARCH_NATIVE)
if(COMPILER_SUPPORTS_MARCH_NATIVE)
@ -31,12 +33,20 @@ else()
endif()
endif()
set(BLA_VENDER OpenBLAS)
find_package(BLAS REQUIRED)
if(BLAS_FOUND)
include_directories(${BLAS_INCLUDE_DIRS})
ELSE()
message("OpenBLAS NOT found.")
endif(BLAS_FOUND)
find_package(Boost REQUIRED COMPONENTS filesystem program_options)
include_directories("${Boost_INCLUDE_DIRS}")
add_library(simple_matrix src/Matrix.cpp)
target_link_libraries(simple_matrix ${Boost_LIBRARIES})
target_link_libraries(simple_matrix ${Boost_LIBRARIES} ${BLAS_LIBRARIES})
add_executable(simd_multiply src/main.cpp)
target_link_libraries(simd_multiply simple_matrix)

46
plot.py Normal file
View File

@ -0,0 +1,46 @@
import matplotlib.pyplot as plt
import numpy as np
a = [
[1e6, '0.000', '0.000', '0.000', '0.300', '0.200', '0.250', '0.000', '0.000'],
[5e6, '0.200', '0.100', '0.200', '2.000', '1.800', '4.300', '0.200', '3.400'],
[1e7, '1.400', '1.350', '1.500', '4.000', '3.500', '4.750', '0.600', '7.750'],
[5e7, '7.450', '6.700', '8.100', '13.900', '11.950', '37.550', '2.350', '38.200'],
[1e8, '13.900', '13.150', '13.600', '15.300', '13.600', '100.200', '2.900', '75.300'],
[5e8, '81.100', '76.600', '74.350', '82.200', '75.150', '385.000', '14.600', '377.600'],
[1e9, '172.500', '166.250', '163.900', '127.100', '117.100', '686.450', '35.100', '808.800'],
[5e9, '1228.550', '1208.650', '1048.350', '532.850', '508.050', '2317.350', '127.750', '3998.350'],
[1e10,'2577.050', '2533.500', '2415.700', '922.000', '892.750', '3702.750', '298.550', '8060.550'],
[5e10, '15281.650', '15105.350', '12339.050', '4593.650', '4418.700', '16350.150', '1266.350', '40414.250'],
[1e11, '32127.000', '31768.100', '24630.650', '8223.350', '8152.700', '32005.850', '2425.700', '81039.750'],
[5e11, '249427.000', '248249.333', '124935.833', '39844.500', '39466.167', '138008.000', '11864.500', '402842.250']
]
def get_i(x):
return np.array([(i[0], float(i[x + 1])) for i in a if len(i) > x + 1])
functions = ["block_wise_256_f", "block_wise_256_f2", "boost_axpy_mul",
"divide_and_conquer_block1", "divide_and_conquer_block2", "divide_and_conquer_naive_r3",
"blas", "naive_reordered"]
for i, f in list(enumerate(functions)):
xy = get_i(i)
plt.plot(xy[:,0], xy[:,1] / 1000., label=f)
print(xy)
plt.legend()
plt.xscale("log")
plt.xlim((5e9, 1e12))
plt.show()
for i, f in list(enumerate(functions)):
xy = get_i(i)
xy_l = get_i(len(functions) - 1)
plt.plot(xy[:,0], xy[:,1] / xy[:, 1], label=f)
print(xy)
plt.legend()
plt.xscale("log")
plt.xlim((5e9, 1e12))
plt.show()

View File

@ -1,6 +1,13 @@
#!/usr/bin/python
import json
import os
import shutil
import subprocess
import sys
from datetime import datetime
from pprint import pprint
import numpy
def check_call_quiet(*args, **kwargs):
@ -8,7 +15,7 @@ def check_call_quiet(*args, **kwargs):
output, err = p.communicate()
rc = p.returncode
if rc != 0:
print(output)
print(output.decode())
print(err)
exit(0)
@ -16,7 +23,7 @@ def check_call_quiet(*args, **kwargs):
def compile_and_run(source_path, build_path_prefix, target, native, use_clang, args):
flags = [
"-DOPTIMIZE_FOR_NATIVE=" + ("ON" if native else "OFF"),
"-DCMAKE_BUILD_TYPE=Release",
"-DCMAKE_BUILD_TYPE=RelWithDebInfo",
"-DUSE_CLANG=" + ("ON" if use_clang else "OFF"),
"-DNDEBUG=ON", "-DBOOST_UBLAS_NDEBUG=ON"
]
@ -29,7 +36,9 @@ def compile_and_run(source_path, build_path_prefix, target, native, use_clang, a
+ [os.path.join(build_path, target)] + args)
else:
print(" ".join([os.path.join(build_path, target)] + args))
subprocess.check_call([os.path.join(build_path, target)] + args)
output = subprocess.check_output([os.path.join(build_path, target)] + args)
return output
if __name__ == '__main__':
@ -37,16 +46,51 @@ if __name__ == '__main__':
os.makedirs("data", exist_ok=True)
os.chdir("data")
with_double = False
extra_args = ["--validate"]
extra_args = []#["--validate"]
total = float(sys.argv[1] if len(sys.argv) > 1 else 1e8)
sss= []
i = pow(total, 1. / 3.)
for _ in range(20):
a = round(max(0.01 * i + 1, numpy.random.normal(i, i / 2)))
b = round(max(0.01 * i + 1, numpy.random.normal(i, i / 2)))
c = round(total / a / b)
sss.append([str(a), str(b), str(c)])
functions = ["block_wise_256_f", "block_wise_256_f2", "boost_axpy_mul",
"divide_and_conquer_block1", "divide_and_conquer_block2", "divide_and_conquer_naive_r3",
"blas"]
if total < 1e10:
functions.append("naive_reordered")
times = [[] for f in functions]
output_file = datetime.now().strftime("%Y.%m.%d_%H-%M-%S.json")
for clang in [True]:
for sizes in [["2048", "2048", "999"]]: # [["873", "1456", "999"]]:
for sizes in sss:
args = list(sizes)
if with_double:
args.append("--double")
compile_and_run("..", "builds", "generate_random", True, True, args)
folder = "x".join(sizes)
for function in ["block_wise_256_f", "boost_axpy_mul"]: # ["naive_reordered", "block_wise_256_f", "boost_blocked_mul_64", "boost_blocked_mul_256", "boost_mul", "boost_axpy_mul"]:
for fidx, function in enumerate(functions):
arguments = [folder, "--algorithm", function]
if with_double:
arguments.append("--double")
compile_and_run("..", "builds", "simd_multiply", True, clang, arguments + extra_args)
output = compile_and_run("..", "builds", "simd_multiply", True, clang, arguments + extra_args)
ms = output.decode()[output.decode().find("multiply:") + 10:]
if "ms\n" in ms:
ms = float(ms.split("ms\n")[0])
else:
ms = float(ms.split("s\n")[0]) * 1000
times[fidx].append(ms)
shutil.rmtree(folder)
print(["%.3f" % numpy.mean(ts) for ts in times])
with open(output_file + ".cache", "w") as f:
json.dump({
"times": times,
"sizes": sss,
"functions": functions,
"means": ["%.3f" % numpy.mean(ts) for ts in times]
}, f)
os.rename(output_file + ".cache", output_file)

41
src/BLASMul.h Normal file
View File

@ -0,0 +1,41 @@
//
// Created by oke on 02.07.20.
//
#ifndef SMID_MATRIX_BLASMUL_H
#define SMID_MATRIX_BLASMUL_H
#include <cblas/cblas.h>
#include "Matrix.h"
template<typename T>
struct blas_functor;
template<>
struct blas_functor<float> {
static void multiply(Matrix<float> &C, const Matrix<float> &A, const Matrix<float> &B) {
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, C.size1(), C.size2(), A.size2(), 1.,
&A(0, 0), A.size2(), &B(0, 0), B.size2(), 1, &C(0, 0), C.size2());
}
};
template<>
struct blas_functor<double> {
static void multiply(Matrix<double> &C, const Matrix<double> &A, const Matrix<double> &B) {
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, C.size1(), C.size2(), A.size2(), 1,
&A(0, 0), A.size2(), &B(0, 0), B.size2(), 1, &C(0, 0), C.size2());
}
};
template<typename T>
Matrix<T> blas(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
blas_functor<T>::multiply(C, A, B);
return C;
}
#endif //SMID_MATRIX_BLASMUL_H

31
src/Boost.h Normal file
View File

@ -0,0 +1,31 @@
//
// Created by oke on 01.07.20.
//
#ifndef SMID_MATRIX_BOOST_H
#define SMID_MATRIX_BOOST_H
#include <boost/numeric/ublas/operation_blocked.hpp>
#include <boost/numeric/ublas/operation.hpp>
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_axpy_mul(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
boost::numeric::ublas::axpy_prod(A, B, C);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_blocked_mul_64(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::block_prod<Matrix<T>, 64>(A, B);
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_blocked_mul_256(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::block_prod<Matrix<T>, 256>(A, B);
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_mul(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::prod(A, B);
}
#endif //SMID_MATRIX_BOOST_H

226
src/DevideAndConquer.h Normal file
View File

@ -0,0 +1,226 @@
//
// Created by oke on 01.07.20.
//
#ifndef SMID_MATRIX_DEVIDEANDCONQUER_H
#define SMID_MATRIX_DEVIDEANDCONQUER_H
#include "Boost.h"
#include "Naive.h"
enum SplitAction {
SplitA, SplitB, SplitBoth, DoNotSplit
};
size_t splitByMultiple(size_t value, size_t multiple) {
auto result = (value / (multiple * 2)) * multiple;
return result == 0 ? 1 : result;
}
template<typename Multiplier, typename M1, typename M2, typename M3>
void _divide_and_conquer(M1 &C, const M2 &A, const M3 &B) {
assert(C.size1() == A.size1() && C.size2() == B.size2());
assert(A.size2() == B.size1());
size_t n = A.size1();
size_t p = A.size2();
size_t m = B.size2();
switch (Multiplier::action(n, p, m)) {
case DoNotSplit:
constexpr Multiplier multiplier;
multiplier(C, A, B);
break;
case SplitA:
{
size_t split_index = splitByMultiple(n, Multiplier::SplitMultipleM);
if (split_index == 0) split_index = 1;
const auto A1 = boost::numeric::ublas::project(A, {0, split_index}, {0, A.size2()});
const auto A2 = boost::numeric::ublas::project(A, {split_index, A.size1()}, {0, A.size2()});
auto C1 = boost::numeric::ublas::project(C, {0, split_index}, {0, C.size2()});
auto C2 = boost::numeric::ublas::project(C, {split_index, C.size1()}, {0, C.size2()});
_divide_and_conquer<Multiplier>(C1, A1, B);
_divide_and_conquer<Multiplier>(C2, A2, B);
}
break;
case SplitB:
{
size_t split_index = splitByMultiple(m, Multiplier::SplitMultipleN);
if (split_index == 0) split_index = 1;
auto B1 = boost::numeric::ublas::project(B, {0, B.size1()}, {0, split_index});
auto B2 = boost::numeric::ublas::project(B, {0, B.size1()}, {split_index, B.size2()});
auto C1 = boost::numeric::ublas::project(C, {0, C.size1()}, {0, split_index});
auto C2 = boost::numeric::ublas::project(C, {0, C.size1()}, {split_index, C.size2()});
_divide_and_conquer<Multiplier>(C1, A, B1);
_divide_and_conquer<Multiplier>(C2, A, B2);
}
break;
case SplitBoth:
{
size_t split_index = splitByMultiple(p, Multiplier::SplitMultipleP);
auto B1 = boost::numeric::ublas::project(B, {0, split_index}, {0, B.size2()});
auto B2 = boost::numeric::ublas::project(B, {split_index, B.size1()}, {0, B.size2()});
auto A1 = boost::numeric::ublas::project(A, {0, A.size1()}, {0, split_index});
auto A2 = boost::numeric::ublas::project(A, {0, A.size1()}, {split_index, A.size2()});
_divide_and_conquer<Multiplier>(C, A1, B1);
_divide_and_conquer<Multiplier>(C, A2, B2);
}
break;
default:
std::cerr << "Invalid split action" << std::endl;
}
}
template<unsigned NumRows, unsigned NumColumns>
struct multiplier_naive_functor {
static constexpr unsigned SplitMultipleN = NumRows;
static constexpr unsigned SplitMultipleP = 1;
static constexpr unsigned SplitMultipleM = NumColumns;
static SplitAction action(unsigned m, unsigned p, unsigned n) {
size_t max_dim = std::max(std::max(m, n), p);
if (m <= NumRows && n <= NumColumns) {
return DoNotSplit;
} else if (max_dim == m) {
return SplitA;
} else if (max_dim == n) {
return SplitB;
} else {
return SplitBoth;
}
}
template<typename M1, typename M2, typename M3>
void operator()(M1 &C, const M2 &A, const M3 &B) const {
if(C.size1() == NumRows && C.size2() == NumColumns) {
for (int i = 0; i < NumRows; i++) {
for (int p = 0; p < B.size1(); p++) {
for (int j = 0; j < NumColumns; j++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
return;
}
_naive_reordered(C, A, B);
}
};
template<typename FloatType>
struct multiplier_block_wise_256 : block_wise_256<FloatType> {
static constexpr unsigned SplitMultipleM = 5 * block_wise_256<FloatType>::NumRows;
static constexpr unsigned SplitMultipleP = 20;
static constexpr unsigned SplitMultipleN = block_wise_256<FloatType>::NumColumns;
static SplitAction action(unsigned m, unsigned p, unsigned n) {
size_t m_p = m / SplitMultipleM;
size_t p_p = p / SplitMultipleP;
size_t n_p = n / SplitMultipleN;
unsigned _SplitMultipleM = SplitMultipleM;
unsigned _SplitMultipleP = 1;
unsigned _SplitMultipleN = SplitMultipleN;
auto max_dim = std::max(m_p, std::max(p_p, n_p));
if (m <= SplitMultipleM && n <= SplitMultipleN) {
return DoNotSplit;
} else if (max_dim == m_p) {
return SplitA;
} else if (max_dim == n_p) {
return SplitB;
} else if (p > SplitMultipleP){
return SplitBoth;
} else {
return DoNotSplit;
}
}
};
template<typename FloatType>
struct multiplier_block_wise_256_alternative : block_wise_256_alternative<FloatType> {
static constexpr unsigned SplitMultipleM = 5 * block_wise_256<FloatType>::NumRows;
static constexpr unsigned SplitMultipleP = 20;
static constexpr unsigned SplitMultipleN = block_wise_256<FloatType>::NumColumns;
static SplitAction action(unsigned m, unsigned p, unsigned n) {
size_t m_p = m / SplitMultipleM;
size_t p_p = p / SplitMultipleP;
size_t n_p = n / SplitMultipleN;
unsigned _SplitMultipleM = SplitMultipleM;
unsigned _SplitMultipleP = 1;
unsigned _SplitMultipleN = SplitMultipleN;
auto max_dim = std::max(m_p, std::max(p_p, n_p));
if (m <= SplitMultipleM && n <= SplitMultipleN) {
return DoNotSplit;
} else if (max_dim == m_p) {
return SplitA;
} else if (max_dim == n_p) {
return SplitB;
} else if (p > SplitMultipleP){
return SplitBoth;
} else {
return DoNotSplit;
}
}
};
template<>
struct block_wise_256<float>;
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_naive_r1(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_naive_functor<5, 5>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_naive_r2(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_naive_functor<50, 50>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_naive_r3(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_naive_functor<200, 200>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_naive_r4(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_naive_functor<500, 500>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_naive_r5(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_naive_functor<1000, 1000>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_block1(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
auto nr = block_wise_256<T>::NumRows;
auto nc = block_wise_256<T>::NumColumns;
_divide_and_conquer<multiplier_block_wise_256<T>>(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) divide_and_conquer_block2(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_divide_and_conquer<multiplier_block_wise_256_alternative<T>>(C, A, B);
return C;
}
#endif //SMID_MATRIX_DEVIDEANDCONQUER_H

41
src/Naive.h Normal file
View File

@ -0,0 +1,41 @@
//
// Created by oke on 01.07.20.
//
#ifndef SMID_MATRIX_NAIVE_H
#define SMID_MATRIX_NAIVE_H
template<typename T>
Matrix<T> __attribute__ ((noinline)) naive(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
assert(A.size2() == B.size1());
for (int i = 0; i < A.size1(); i++) {
for (int j = 0; j < B.size2(); j++) {
for (int p = 0; p < B.size1(); p++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
return C;
}
template<typename M1, typename M2, typename M3>
void __attribute__ ((noinline)) _naive_reordered(M1 &C, const M2 &A, const M3 &B) {
assert(A.size2() == B.size1());
for (int i = 0; i < A.size1(); i++) {
for (int p = 0; p < B.size1(); p++) {
for (int j = 0; j < B.size2(); j++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
}
template<typename T>
Matrix<T> naive_reordered(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
_naive_reordered(C, A, B);
return C;
}
#endif //SMID_MATRIX_NAIVE_H

290
src/RegisterBlocking.h Normal file
View File

@ -0,0 +1,290 @@
//
// Created by oke on 01.07.20.
//
#ifndef SMID_MATRIX_REGISTERBLOCKING_H
#define SMID_MATRIX_REGISTERBLOCKING_H
#include "Matrix.h"
#include <immintrin.h>
struct __m256_block_wise_config {
using FloatType = float;
using VectorType = __m256;
static constexpr auto LoadVector = _mm256_loadu_ps;
static constexpr auto StoreVector = _mm256_storeu_ps;
static constexpr auto BroadcastToVector = _mm256_broadcast_ss;
};
struct __m256d_block_wise_config {
using FloatType = double;
using VectorType = __m256d;
static constexpr auto LoadVector = _mm256_loadu_pd;
static constexpr auto StoreVector = _mm256_storeu_pd;
static constexpr auto BroadcastToVector = _mm256_broadcast_sd;
};
template<typename BlockWiseConfig>
struct ExtendedBlockWiseConfig {
typedef typename BlockWiseConfig::FloatType FloatType;
using VectorType = typename BlockWiseConfig::VectorType;
static constexpr auto LoadVector = BlockWiseConfig::LoadVector;
static constexpr auto StoreVector = BlockWiseConfig::StoreVector;
static constexpr auto BroadcastToVector = BlockWiseConfig::BroadcastToVector;
static constexpr size_t VectorWidth = sizeof(VectorType) / sizeof(FloatType);
static constexpr auto AddAndStore = [](FloatType *memory, VectorType vector) { StoreVector(memory, LoadVector(memory) + vector); };
};
template<
// template parameter as struct: otherwise some warning about losing alignment information warning
typename BitWiseConfig,
unsigned _NumRows, unsigned _NumColumnVectors
>
struct RegisterBlocking {
typedef ExtendedBlockWiseConfig<BitWiseConfig> bwc;
static constexpr auto AddAndStore = [](typename bwc::FloatType *memory, typename bwc::VectorType vector) {
bwc::StoreVector(memory, bwc::LoadVector(memory) + vector); };
static constexpr auto NumRows = _NumRows;
static constexpr auto NumColumns = _NumColumnVectors * bwc::VectorWidth;
template<typename M1, typename M2, typename M3>
static void __attribute__ ((noinline)) handle_block(int k, M1 &C, const M2 &A, int aRowOffset, const M3 &B, int bColOffset) {
// AVX2 has 16 registers
// should be compiled as registers (total: regA * regB)
typename bwc::VectorType CReg[_NumRows][_NumColumnVectors] = {{0.0}};
// iterate over dot-product terms
for (int p = 0; p < k; p++) { // row index in B and column index in A (handling all rows/columns)
// Perform the DOT product
for (int bi = 0; bi < _NumColumnVectors; bi++) { // column index in B (handling regsB * 'VectorWidth' columns)
typename bwc::VectorType bb = bwc::LoadVector(&B(p, bColOffset + bi * bwc::VectorWidth));
for (int ai = 0; ai < _NumRows; ai++) { // row index in A (handling regsA rows)
typename bwc::VectorType aa = bwc::BroadcastToVector(&A(aRowOffset + ai, p));
CReg[ai][bi] += aa * bb;
}
}
}
// total regA * regB + regB registers
// Accumulate the results into C.
for (int ai = 0; ai < _NumRows; ai++) {
for (int bi = 0; bi < _NumColumnVectors; bi++) {
AddAndStore(&C(aRowOffset + ai, bColOffset + bi * bwc::VectorWidth), CReg[ai][bi]);
}
}
}
};
template<typename BitWiseConfig, unsigned Rows>
struct BestRowRegisterBlocking;
template<typename BitWiseConfig>
struct BestRowRegisterBlocking<BitWiseConfig, 1> : public RegisterBlocking<BitWiseConfig, 1, 15> {};
template<typename BitWiseConfig>
struct BestRowRegisterBlocking<BitWiseConfig, 2> : public RegisterBlocking<BitWiseConfig, 2, 7> {};
template<typename BitWiseConfig>
struct BestRowRegisterBlocking<BitWiseConfig, 3> : public RegisterBlocking<BitWiseConfig, 3, 4> {};
// maximize = (R * C) / (R + C) for R + R * C < 16 => any fixed r -> largest C with < 16
// C = floor ((16 - R) / R)
template<
// template parameter as struct: otherwise some warning about losing alignment information warning
typename BlockWiseConfig = __m256_block_wise_config,
unsigned InitialNumRows = 3, unsigned InitialNumColumnVectors = 4
>
struct block_wise {
typedef ExtendedBlockWiseConfig<BlockWiseConfig> bwc;
static constexpr unsigned NumRows = InitialNumRows;
static constexpr unsigned NumColumns = InitialNumColumnVectors * bwc::VectorWidth;
static constexpr auto AddAndStore = [](typename bwc::FloatType *memory, typename bwc::VectorType vector) {
bwc::StoreVector(memory, bwc::LoadVector(memory) + vector); };
template<typename M1, typename M2, typename M3>
static void multiply(M1 &C, const M2 &A, const M3 &B) {
assert(C.size1() == A.size1() && C.size2() == B.size2());
int m = A.size1();
int k = A.size2();
int n = B.size2();
int m_i = 0;
for(; m_i + InitialNumRows <= m; m_i += InitialNumRows) { // row
int n_i = 0;
for(; n_i + InitialNumColumnVectors * bwc::VectorWidth <= n; n_i += InitialNumColumnVectors * bwc::VectorWidth) {
RegisterBlocking<BlockWiseConfig, InitialNumRows, InitialNumColumnVectors>::handle_block(k, C, A, m_i, B, n_i);
}
// calculate remaining columns (like naive_reordered)
if(n_i < n) {
for (auto m_i_o = 0; m_i_o < InitialNumRows; ++m_i_o) {
for (int p = 0; p < k; ++p) {
for (auto n_i_rest = n_i; n_i_rest < n; ++n_i_rest) {
C(m_i + m_i_o, n_i_rest) += A(m_i + m_i_o, p) * B(p, n_i_rest);
}
}
}
}
}
// calculate remaining rows (like naive_reordered)
for (; m_i < m; ++m_i) {
for (int p = 0; p < k; p++) {
for (int n_i = 0; n_i < n; ++n_i) {
C(m_i, n_i) += A(m_i, p) * B(p, n_i);
}
}
}
}
template<unsigned CurrentNumRows, unsigned CurrentNumColumnVectors>
class iterate_columns {
/**
* consume all n_i's possible
*/
template<typename M1, typename M2, typename M3>
static void consume(size_t k, size_t m_i, size_t &n_i, size_t n, M1 &C, const M2 &A, const M3 &B) {
for (; n_i + CurrentNumColumnVectors * bwc::VectorWidth <= n;
n_i += CurrentNumColumnVectors * bwc::VectorWidth) {
RegisterBlocking<BlockWiseConfig, CurrentNumRows, CurrentNumColumnVectors>
::handle_block(k, C, A, m_i, B, n_i);
}
}
public:
template<typename M1, typename M2, typename M3>
static void iterate(size_t k, size_t m_i, size_t &n_i, size_t n, M1 &C, const M2 &A, const M3 &B) {
consume(k, m_i, n_i, n, C, A, B);
if(CurrentNumColumnVectors > 1) {
// try with less column vectors
iterate_columns<CurrentNumRows, CurrentNumColumnVectors - 1>::iterate(k, m_i, n_i, n, C, A, B);
} else {
// do rest of columns manually
if(n_i < n) {
for (auto m_i_o = 0; m_i_o < CurrentNumRows; ++m_i_o) {
for (int p = 0; p < k; ++p) {
for (auto n_i_rest = n_i; n_i_rest < n; ++n_i_rest) {
C(m_i + m_i_o, n_i_rest) += A(m_i + m_i_o, p) * B(p, n_i_rest);
}
}
}
}
n_i = n;
}
assert(n_i == n);
}
};
template<unsigned CurrentNumRows>
class iterate_columns<CurrentNumRows, 0> {
public:
template<typename M1, typename M2, typename M3>
static void iterate(size_t k, size_t m_i, size_t &n_i, size_t n, M1 &C, const M2 &A, const M3 &B) {
throw std::runtime_error("should not be called, this is a bug.");
}
};
template<unsigned CurrentNumRows, unsigned CurrentNumColumnVectors>
class iterate_rows {
template<typename M1, typename M2, typename M3>
static void consume(size_t k, size_t &m_i, size_t m, size_t n, M1 &C, const M2 &A, const M3 &B) {
for (; m_i + CurrentNumRows <= m; m_i += CurrentNumRows) {
size_t n_i = 0;
iterate_columns<CurrentNumRows, CurrentNumColumnVectors>::iterate(k, m_i, n_i, n, C, A, B);
assert(n_i == n);
}
}
public:
template<typename M1, typename M2, typename M3>
static void iterate(size_t k, size_t &m_i, size_t m, size_t n, M1 &C, const M2 &A, const M3 &B) {
consume(k, m_i, m, n, C, A, B);
if(CurrentNumRows > 1) {
// try with less num rows vectors
iterate_rows<CurrentNumRows - 1, CurrentNumColumnVectors>::iterate(k, m_i, m, n, C, A, B);
}
assert(m_i == m);
}
};
template<unsigned CurrentNumColumnVectors>
class iterate_rows<0, CurrentNumColumnVectors> {
public:
template<typename M1, typename M2, typename M3>
static void iterate(size_t k, size_t &m_i, size_t m, size_t n, M1 &C, const M2 &A, const M3 &B) {
throw std::runtime_error("should not be called, this is a bug.");
}
};
template<typename M1, typename M2, typename M3>
static void multiply2(M1 &C, const M2 &A, const M3 &B) {
assert(C.size1() == A.size1() && C.size2() == B.size2());
int m = A.size1();
int k = A.size2();
int n = B.size2();
size_t m_i = 0;
iterate_rows<InitialNumRows, InitialNumColumnVectors>::iterate(k, m_i, m, n, C, A, B);
assert(m_i == m);
}
};
template<typename FloatType>
struct block_wise_256;
template<>
struct block_wise_256<float> : public block_wise<__m256_block_wise_config> {
template<typename M1, typename M2, typename M3>
void operator()(M1 &C, const M2 &A, const M3 &B) const {
return multiply(C, A, B);
}
};
template<>
struct block_wise_256<double> : public block_wise<__m256d_block_wise_config> {
template<typename M1, typename M2, typename M3>
void operator()(M1 &C, const M2 &A, const M3 &B) const {
return multiply(C, A, B);
}
};
template<typename FloatType>
struct block_wise_256_alternative;
template<>
struct block_wise_256_alternative<float> : public block_wise<__m256_block_wise_config> {
template<typename M1, typename M2, typename M3>
void operator()(M1 &C, const M2 &A, const M3 &B) const {
return multiply2(C, A, B);
}
};
template<>
struct block_wise_256_alternative<double> : public block_wise<__m256d_block_wise_config> {
template<typename M1, typename M2, typename M3>
void operator()(M1 &C, const M2 &A, const M3 &B) const {
return multiply(C, A, B);
}
};
template<typename T>
Matrix<T> __attribute__ ((noinline)) block_wise_256_f(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
block_wise_256<T>::multiply(C, A, B);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) block_wise_256_f2(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2(), 0);
block_wise_256<T>::multiply2(C, A, B);
return C;
}
#endif //SMID_MATRIX_REGISTERBLOCKING_H

View File

@ -2,60 +2,15 @@
#include <chrono>
#include <iostream>
#include <cassert>
#include <boost/numeric/ublas/operation_blocked.hpp>
#include <boost/numeric/ublas/operation.hpp>
#include <boost/program_options.hpp>
#include <immintrin.h>
#include "RegisterBlocking.h"
#include "Boost.h"
#include "Naive.h"
#include "DevideAndConquer.h"
#include "BLASMul.h"
using namespace std::chrono;
namespace po = boost::program_options;
template<typename T>
Matrix<T> __attribute__ ((noinline)) naive(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2());
assert(A.size2() == B.size1());
for (int i = 0; i < A.size1(); i++) {
for (int j = 0; j < B.size2(); j++) {
for (int p = 0; p < B.size1(); p++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) naive_reordered(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2());
assert(A.size2() == B.size1());
for (int i = 0; i < A.size1(); i++) {
for (int p = 0; p < B.size1(); p++) {
for (int j = 0; j < B.size2(); j++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) register_blocking(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2());
assert(A.size2() == B.size1());
for (int i = 0; i < A.size1(); i++) {
for (int p = 0; p < B.size1(); p++) {
for (int j = 0; j < B.size2(); j++) {
C(i, j) += A(i, p) * B(p, j);
}
}
}
return C;
}
template<typename T>
using BinaryMatrixOp = Matrix<T> (*)(const Matrix<T> &A, const Matrix<T> &B);
@ -64,137 +19,15 @@ Matrix<T> run_function(BinaryMatrixOp<T> f, const Matrix<T> &A, const Matrix<T>
auto a = steady_clock::now();
auto C = f(A, B);
auto b = steady_clock::now();
std::cout << "multiply: " << std::chrono::duration_cast<std::chrono::milliseconds>(b - a).count() << "ms" << std::endl;
return C;
}
struct __m256_block_wise_config {
using FloatType = float;
using VectorType = __m256;
static constexpr auto LoadVector = _mm256_loadu_ps;
static constexpr auto StoreVector = _mm256_storeu_ps;
static constexpr auto BroadcastToVector = _mm256_broadcast_ss;
};
struct __m256d_block_wise_config {
using FloatType = double;
using VectorType = __m256d;
static constexpr auto LoadVector = _mm256_loadu_pd;
static constexpr auto StoreVector = _mm256_storeu_pd;
static constexpr auto BroadcastToVector = _mm256_broadcast_sd;
};
template<
// template parameter as struct: otherwise some warning about losing alignment information warning
typename BlockWiseConfig = __m256_block_wise_config,
unsigned numRows = 3, unsigned numColumns_width = 4
>
struct block_wise {
using FloatType = typename BlockWiseConfig::FloatType;
using VectorType = typename BlockWiseConfig::VectorType;
static constexpr auto LoadVector = BlockWiseConfig::LoadVector;
static constexpr auto StoreVector = BlockWiseConfig::StoreVector;
static constexpr auto BroadcastToVector = BlockWiseConfig::BroadcastToVector;
static constexpr size_t VectorWidth = sizeof(VectorType) / sizeof(FloatType);
static constexpr auto AddAndStore = [](FloatType *memory, VectorType vector) { StoreVector(memory, LoadVector(memory) + vector); };
Matrix<FloatType> operator()(const Matrix<FloatType> &A, const Matrix<FloatType> &B) {
Matrix<FloatType> C(A.size1(), B.size2());
int m = A.size1();
int k = A.size2();
int n = B.size2();
int m_i = 0;
for(; m_i + numRows <= m; m_i += numRows) { // row
int n_i = 0;
for(; n_i + numColumns_width * VectorWidth <= n; n_i += numColumns_width * VectorWidth) {
handle_block(k, C, A, m_i, B, n_i);
}
// calculate remaining columns (like naive_reordered)
if(n_i < n) {
for (auto m_i_o = 0; m_i_o < numRows; ++m_i_o) {
for (int p = 0; p < k; ++p) {
for (auto n_i_rest = n_i; n_i_rest < n; ++n_i_rest) {
C(m_i + m_i_o, n_i_rest) += A(m_i + m_i_o, p) * B(p, n_i_rest);
}
}
}
}
}
// calculate remaining rows (like naive_reordered)
for (; m_i < m; ++m_i) {
for (int p = 0; p < k; p++) {
for (int n_i = 0; n_i < n; ++n_i) {
C(m_i, n_i) += A(m_i, p) * B(p, n_i);
}
}
}
return C;
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(b - a).count();
if (ms > 1000) {
std::cout << "multiply: " << ms / 1000. << "s" << std::endl;
} else {
std::cout << "multiply: " << ms << "ms" << std::endl;
}
void __attribute__ ((noinline)) handle_block(int k, Matrix<FloatType> &C, const Matrix<FloatType> &A, int aRowOffset, const Matrix<FloatType> &B, int bColOffset) {
// AVX2 has 16 registers
// should be compiled as registers (total: regA * regB)
VectorType CReg[numRows][numColumns_width] = {{0.0}};
// iterate over dot-product terms
for (int p = 0; p < k; p++) { // row index in B and column index in A (handling all rows/columns)
// Perform the DOT product
for (int bi = 0; bi < numColumns_width; bi++) { // column index in B (handling regsB * 'VectorWidth' columns)
VectorType bb = LoadVector(&B(p, bColOffset + bi * VectorWidth));
for (int ai = 0; ai < numRows; ai++) { // row index in A (handling regsA rows)
VectorType aa = BroadcastToVector(&A(aRowOffset + ai, p));
CReg[ai][bi] += aa * bb;
}
}
}
// total regA * regB + regB registers
// Accumulate the results into C.
for (int ai = 0; ai < numRows; ai++) {
for (int bi = 0; bi < numColumns_width; bi++) {
AddAndStore(&C(aRowOffset + ai, bColOffset + bi * VectorWidth), CReg[ai][bi]);
}
}
}
};
template<typename FloatType>
struct block_wise_256;
template<>
struct block_wise_256<float> :
public block_wise<__m256_block_wise_config> {};
template<>
struct block_wise_256<double> :
public block_wise<__m256d_block_wise_config> {};
template<typename T>
Matrix<T> __attribute__ ((noinline)) block_wise_256_f(const Matrix<T> &A, const Matrix<T> &B) {
return block_wise_256<T>()(A, B);
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_axpy_mul(const Matrix<T> &A, const Matrix<T> &B) {
Matrix<T> C(A.size1(), B.size2());
boost::numeric::ublas::axpy_prod(A, B, C);
return C;
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_blocked_mul_64(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::block_prod<Matrix<T>, 64>(A, B);
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_blocked_mul_256(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::block_prod<Matrix<T>, 256>(A, B);
}
template<typename T>
Matrix<T> __attribute__ ((noinline)) boost_mul(const Matrix<T> &A, const Matrix<T> &B) {
return boost::numeric::ublas::prod(A, B);
}
#define TEST_IF(test_function_name, function, A, B) {\
if(test_function_name == #function) {\
C = run_function(function, A, B);\
@ -216,13 +49,23 @@ int main_work(const std::string &test_function_name, const std::string &input_fo
// use the result to prevent compiler to optimize...
double use_result = 0;
TEST_IF(test_function_name, naive, A, B)
TEST_IF(test_function_name, naive_reordered, A, B)
TEST_IF(test_function_name, block_wise_256_f, A, B)
TEST_IF(test_function_name, boost_axpy_mul, A, B)
/*TEST_IF(test_function_name, naive, A, B)
TEST_IF(test_function_name, boost_blocked_mul_64, A, B)
TEST_IF(test_function_name, boost_blocked_mul_256, A, B)
TEST_IF(test_function_name, boost_mul, A, B)
TEST_IF(test_function_name, divide_and_conquer_naive_r1, A, B)
TEST_IF(test_function_name, divide_and_conquer_naive_r2, A, B)
TEST_IF(test_function_name, divide_and_conquer_naive_r4, A, B)
TEST_IF(test_function_name, divide_and_conquer_naive_r5, A, B)*/
TEST_IF(test_function_name, naive_reordered, A, B)
TEST_IF(test_function_name, block_wise_256_f, A, B)
TEST_IF(test_function_name, block_wise_256_f2, A, B)
TEST_IF(test_function_name, boost_axpy_mul, A, B)
TEST_IF(test_function_name, divide_and_conquer_block1, A, B)
TEST_IF(test_function_name, divide_and_conquer_block2, A, B)
TEST_IF(test_function_name, divide_and_conquer_naive_r3, A, B)
TEST_IF(test_function_name, blas, A, B)
if(validate) {
std::cout << "Validating matrix" << std::endl;
@ -231,8 +74,10 @@ int main_work(const std::string &test_function_name, const std::string &input_fo
throw std::runtime_error("Result matrix has invalid size.");
for(auto i = 0; i < C2.size1(); ++i) {
for(auto j = 0; j < C2.size2(); ++j) {
if(abs(C(i, j) - C2(i, j)) > 1e-3)
throw std::runtime_error("Result matrix is invalid.");
if(abs(C(i, j) - C2(i, j)) > 1e-1) {
std::cerr << i << ", " << j << " is wrong with values " << C(i, j) << ", " << C2(i, j) << std::endl;
exit(-1);
}
}
}
std::cout << "Matrix seems fine" << std::endl;
@ -241,6 +86,8 @@ int main_work(const std::string &test_function_name, const std::string &input_fo
return use_result == 0 ? -1 : 0;
}
int main(int argc, char* argv[]) {
po::options_description desc("Multiply two matrices");
desc.add_options()