836 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			836 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * IMC compatible decoder
 | |
|  * Copyright (c) 2002-2004 Maxim Poliakovski
 | |
|  * Copyright (c) 2006 Benjamin Larsson
 | |
|  * Copyright (c) 2006 Konstantin Shishkov
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  *  @file
 | |
|  *  IMC - Intel Music Coder
 | |
|  *  A mdct based codec using a 256 points large transform
 | |
|  *  divied into 32 bands with some mix of scale factors.
 | |
|  *  Only mono is supported.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #define ALT_BITSTREAM_READER
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| #include "fft.h"
 | |
| #include "libavutil/audioconvert.h"
 | |
| #include "sinewin.h"
 | |
| 
 | |
| #include "imcdata.h"
 | |
| 
 | |
| #define IMC_BLOCK_SIZE 64
 | |
| #define IMC_FRAME_ID 0x21
 | |
| #define BANDS 32
 | |
| #define COEFFS 256
 | |
| 
 | |
| typedef struct {
 | |
|     float old_floor[BANDS];
 | |
|     float flcoeffs1[BANDS];
 | |
|     float flcoeffs2[BANDS];
 | |
|     float flcoeffs3[BANDS];
 | |
|     float flcoeffs4[BANDS];
 | |
|     float flcoeffs5[BANDS];
 | |
|     float flcoeffs6[BANDS];
 | |
|     float CWdecoded[COEFFS];
 | |
| 
 | |
|     /** MDCT tables */
 | |
|     //@{
 | |
|     float mdct_sine_window[COEFFS];
 | |
|     float post_cos[COEFFS];
 | |
|     float post_sin[COEFFS];
 | |
|     float pre_coef1[COEFFS];
 | |
|     float pre_coef2[COEFFS];
 | |
|     float last_fft_im[COEFFS];
 | |
|     //@}
 | |
| 
 | |
|     int bandWidthT[BANDS];     ///< codewords per band
 | |
|     int bitsBandT[BANDS];      ///< how many bits per codeword in band
 | |
|     int CWlengthT[COEFFS];     ///< how many bits in each codeword
 | |
|     int levlCoeffBuf[BANDS];
 | |
|     int bandFlagsBuf[BANDS];   ///< flags for each band
 | |
|     int sumLenArr[BANDS];      ///< bits for all coeffs in band
 | |
|     int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
 | |
|     int skipFlagBits[BANDS];   ///< bits used to code skip flags
 | |
|     int skipFlagCount[BANDS];  ///< skipped coeffients per band
 | |
|     int skipFlags[COEFFS];     ///< skip coefficient decoding or not
 | |
|     int codewords[COEFFS];     ///< raw codewords read from bitstream
 | |
|     float sqrt_tab[30];
 | |
|     GetBitContext gb;
 | |
|     int decoder_reset;
 | |
|     float one_div_log2;
 | |
| 
 | |
|     DSPContext dsp;
 | |
|     FFTContext fft;
 | |
|     DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS/2];
 | |
|     float *out_samples;
 | |
| } IMCContext;
 | |
| 
 | |
| static VLC huffman_vlc[4][4];
 | |
| 
 | |
| #define VLC_TABLES_SIZE 9512
 | |
| 
 | |
| static const int vlc_offsets[17] = {
 | |
|     0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
 | |
|     4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
 | |
| 
 | |
| static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
 | |
| 
 | |
| static av_cold int imc_decode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     int i, j;
 | |
|     IMCContext *q = avctx->priv_data;
 | |
|     double r1, r2;
 | |
| 
 | |
|     q->decoder_reset = 1;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++)
 | |
|         q->old_floor[i] = 1.0;
 | |
| 
 | |
|     /* Build mdct window, a simple sine window normalized with sqrt(2) */
 | |
|     ff_sine_window_init(q->mdct_sine_window, COEFFS);
 | |
|     for(i = 0; i < COEFFS; i++)
 | |
|         q->mdct_sine_window[i] *= sqrt(2.0);
 | |
|     for(i = 0; i < COEFFS/2; i++){
 | |
|         q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
 | |
|         q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
 | |
| 
 | |
|         r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
 | |
|         r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
 | |
| 
 | |
|         if (i & 0x1)
 | |
|         {
 | |
|             q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
 | |
|             q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
 | |
|             q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
 | |
|         }
 | |
| 
 | |
|         q->last_fft_im[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* Generate a square root table */
 | |
| 
 | |
|     for(i = 0; i < 30; i++) {
 | |
|         q->sqrt_tab[i] = sqrt(i);
 | |
|     }
 | |
| 
 | |
|     /* initialize the VLC tables */
 | |
|     for(i = 0; i < 4 ; i++) {
 | |
|         for(j = 0; j < 4; j++) {
 | |
|             huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
 | |
|             huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
 | |
|             init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
 | |
|                      imc_huffman_lens[i][j], 1, 1,
 | |
|                      imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | |
|         }
 | |
|     }
 | |
|     q->one_div_log2 = 1/log(2);
 | |
| 
 | |
|     ff_fft_init(&q->fft, 7, 1);
 | |
|     dsputil_init(&q->dsp, avctx);
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 | |
|     avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
 | |
|                                 float* flcoeffs3, float* flcoeffs5)
 | |
| {
 | |
|     float   workT1[BANDS];
 | |
|     float   workT2[BANDS];
 | |
|     float   workT3[BANDS];
 | |
|     float   snr_limit = 1.e-30;
 | |
|     float   accum = 0.0;
 | |
|     int i, cnt2;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         flcoeffs5[i] = workT2[i] = 0.0;
 | |
|         if (bandWidthT[i]){
 | |
|             workT1[i] = flcoeffs1[i] * flcoeffs1[i];
 | |
|             flcoeffs3[i] = 2.0 * flcoeffs2[i];
 | |
|         } else {
 | |
|             workT1[i] = 0.0;
 | |
|             flcoeffs3[i] = -30000.0;
 | |
|         }
 | |
|         workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
 | |
|         if (workT3[i] <= snr_limit)
 | |
|             workT3[i] = 0.0;
 | |
|     }
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
 | |
|             flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
 | |
|         workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
 | |
|     }
 | |
| 
 | |
|     for(i = 1; i < BANDS; i++) {
 | |
|         accum = (workT2[i-1] + accum) * imc_weights1[i-1];
 | |
|         flcoeffs5[i] += accum;
 | |
|     }
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++)
 | |
|         workT2[i] = 0.0;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
 | |
|             flcoeffs5[cnt2] += workT3[i];
 | |
|         workT2[cnt2+1] += workT3[i];
 | |
|     }
 | |
| 
 | |
|     accum = 0.0;
 | |
| 
 | |
|     for(i = BANDS-2; i >= 0; i--) {
 | |
|         accum = (workT2[i+1] + accum) * imc_weights2[i];
 | |
|         flcoeffs5[i] += accum;
 | |
|         //there is missing code here, but it seems to never be triggered
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
 | |
| {
 | |
|     int i;
 | |
|     VLC *hufftab[4];
 | |
|     int start = 0;
 | |
|     const uint8_t *cb_sel;
 | |
|     int s;
 | |
| 
 | |
|     s = stream_format_code >> 1;
 | |
|     hufftab[0] = &huffman_vlc[s][0];
 | |
|     hufftab[1] = &huffman_vlc[s][1];
 | |
|     hufftab[2] = &huffman_vlc[s][2];
 | |
|     hufftab[3] = &huffman_vlc[s][3];
 | |
|     cb_sel = imc_cb_select[s];
 | |
| 
 | |
|     if(stream_format_code & 4)
 | |
|         start = 1;
 | |
|     if(start)
 | |
|         levlCoeffs[0] = get_bits(&q->gb, 7);
 | |
|     for(i = start; i < BANDS; i++){
 | |
|         levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
 | |
|         if(levlCoeffs[i] == 17)
 | |
|             levlCoeffs[i] += get_bits(&q->gb, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
 | |
|                                          float* flcoeffs2)
 | |
| {
 | |
|     int i, level;
 | |
|     float tmp, tmp2;
 | |
|     //maybe some frequency division thingy
 | |
| 
 | |
|     flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
 | |
|     flcoeffs2[0] = log(flcoeffs1[0])/log(2);
 | |
|     tmp = flcoeffs1[0];
 | |
|     tmp2 = flcoeffs2[0];
 | |
| 
 | |
|     for(i = 1; i < BANDS; i++) {
 | |
|         level = levlCoeffBuf[i];
 | |
|         if (level == 16) {
 | |
|             flcoeffs1[i] = 1.0;
 | |
|             flcoeffs2[i] = 0.0;
 | |
|         } else {
 | |
|             if (level < 17)
 | |
|                 level -=7;
 | |
|             else if (level <= 24)
 | |
|                 level -=32;
 | |
|             else
 | |
|                 level -=16;
 | |
| 
 | |
|             tmp  *= imc_exp_tab[15 + level];
 | |
|             tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
 | |
|             flcoeffs1[i] = tmp;
 | |
|             flcoeffs2[i] = tmp2;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
 | |
|                                           float* flcoeffs2) {
 | |
|     int i;
 | |
|         //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
 | |
|         //      and flcoeffs2 old scale factors
 | |
|         //      might be incomplete due to a missing table that is in the binary code
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         flcoeffs1[i] = 0;
 | |
|         if(levlCoeffBuf[i] < 16) {
 | |
|             flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
 | |
|             flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
 | |
|         } else {
 | |
|             flcoeffs1[i] = old_floor[i];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform bit allocation depending on bits available
 | |
|  */
 | |
| static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
 | |
|     int i, j;
 | |
|     const float limit = -1.e20;
 | |
|     float highest = 0.0;
 | |
|     int indx;
 | |
|     int t1 = 0;
 | |
|     int t2 = 1;
 | |
|     float summa = 0.0;
 | |
|     int iacc = 0;
 | |
|     int summer = 0;
 | |
|     int rres, cwlen;
 | |
|     float lowest = 1.e10;
 | |
|     int low_indx = 0;
 | |
|     float workT[32];
 | |
|     int flg;
 | |
|     int found_indx = 0;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++)
 | |
|         highest = FFMAX(highest, q->flcoeffs1[i]);
 | |
| 
 | |
|     for(i = 0; i < BANDS-1; i++) {
 | |
|         q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
 | |
|     }
 | |
|     q->flcoeffs4[BANDS - 1] = limit;
 | |
| 
 | |
|     highest = highest * 0.25;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         indx = -1;
 | |
|         if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
 | |
|             indx = 0;
 | |
| 
 | |
|         if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
 | |
|             indx = 1;
 | |
| 
 | |
|         if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
 | |
|             indx = 2;
 | |
| 
 | |
|         if (indx == -1)
 | |
|             return -1;
 | |
| 
 | |
|         q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
 | |
|     }
 | |
| 
 | |
|     if (stream_format_code & 0x2) {
 | |
|         q->flcoeffs4[0] = limit;
 | |
|         q->flcoeffs4[1] = limit;
 | |
|         q->flcoeffs4[2] = limit;
 | |
|         q->flcoeffs4[3] = limit;
 | |
|     }
 | |
| 
 | |
|     for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
 | |
|         iacc += q->bandWidthT[i];
 | |
|         summa += q->bandWidthT[i] * q->flcoeffs4[i];
 | |
|     }
 | |
|     q->bandWidthT[BANDS-1] = 0;
 | |
|     summa = (summa * 0.5 - freebits) / iacc;
 | |
| 
 | |
| 
 | |
|     for(i = 0; i < BANDS/2; i++) {
 | |
|         rres = summer - freebits;
 | |
|         if((rres >= -8) && (rres <= 8)) break;
 | |
| 
 | |
|         summer = 0;
 | |
|         iacc = 0;
 | |
| 
 | |
|         for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
 | |
|             cwlen = av_clipf(((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
 | |
| 
 | |
|             q->bitsBandT[j] = cwlen;
 | |
|             summer += q->bandWidthT[j] * cwlen;
 | |
| 
 | |
|             if (cwlen > 0)
 | |
|                 iacc += q->bandWidthT[j];
 | |
|         }
 | |
| 
 | |
|         flg = t2;
 | |
|         t2 = 1;
 | |
|         if (freebits < summer)
 | |
|             t2 = -1;
 | |
|         if (i == 0)
 | |
|             flg = t2;
 | |
|         if(flg != t2)
 | |
|             t1++;
 | |
| 
 | |
|         summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
 | |
|     }
 | |
| 
 | |
|     for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
 | |
|         for(j = band_tab[i]; j < band_tab[i+1]; j++)
 | |
|             q->CWlengthT[j] = q->bitsBandT[i];
 | |
|     }
 | |
| 
 | |
|     if (freebits > summer) {
 | |
|         for(i = 0; i < BANDS; i++) {
 | |
|             workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
 | |
|         }
 | |
| 
 | |
|         highest = 0.0;
 | |
| 
 | |
|         do{
 | |
|             if (highest <= -1.e20)
 | |
|                 break;
 | |
| 
 | |
|             found_indx = 0;
 | |
|             highest = -1.e20;
 | |
| 
 | |
|             for(i = 0; i < BANDS; i++) {
 | |
|                 if (workT[i] > highest) {
 | |
|                     highest = workT[i];
 | |
|                     found_indx = i;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (highest > -1.e20) {
 | |
|                 workT[found_indx] -= 2.0;
 | |
|                 if (++(q->bitsBandT[found_indx]) == 6)
 | |
|                     workT[found_indx] = -1.e20;
 | |
| 
 | |
|                 for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
 | |
|                     q->CWlengthT[j]++;
 | |
|                     summer++;
 | |
|                 }
 | |
|             }
 | |
|         }while (freebits > summer);
 | |
|     }
 | |
|     if (freebits < summer) {
 | |
|         for(i = 0; i < BANDS; i++) {
 | |
|             workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
 | |
|         }
 | |
|         if (stream_format_code & 0x2) {
 | |
|             workT[0] = 1.e20;
 | |
|             workT[1] = 1.e20;
 | |
|             workT[2] = 1.e20;
 | |
|             workT[3] = 1.e20;
 | |
|         }
 | |
|         while (freebits < summer){
 | |
|             lowest = 1.e10;
 | |
|             low_indx = 0;
 | |
|             for(i = 0; i < BANDS; i++) {
 | |
|                 if (workT[i] < lowest) {
 | |
|                     lowest = workT[i];
 | |
|                     low_indx = i;
 | |
|                 }
 | |
|             }
 | |
|             //if(lowest >= 1.e10) break;
 | |
|             workT[low_indx] = lowest + 2.0;
 | |
| 
 | |
|             if (!(--q->bitsBandT[low_indx]))
 | |
|                 workT[low_indx] = 1.e20;
 | |
| 
 | |
|             for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
 | |
|                 if(q->CWlengthT[j] > 0){
 | |
|                     q->CWlengthT[j]--;
 | |
|                     summer--;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void imc_get_skip_coeff(IMCContext* q) {
 | |
|     int i, j;
 | |
| 
 | |
|     memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
 | |
|     memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
 | |
|             continue;
 | |
| 
 | |
|         if (!q->skipFlagRaw[i]) {
 | |
|             q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
 | |
| 
 | |
|             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
 | |
|                 if ((q->skipFlags[j] = get_bits1(&q->gb)))
 | |
|                     q->skipFlagCount[i]++;
 | |
|             }
 | |
|         } else {
 | |
|             for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
 | |
|                 if(!get_bits1(&q->gb)){//0
 | |
|                     q->skipFlagBits[i]++;
 | |
|                     q->skipFlags[j]=1;
 | |
|                     q->skipFlags[j+1]=1;
 | |
|                     q->skipFlagCount[i] += 2;
 | |
|                 }else{
 | |
|                     if(get_bits1(&q->gb)){//11
 | |
|                         q->skipFlagBits[i] +=2;
 | |
|                         q->skipFlags[j]=0;
 | |
|                         q->skipFlags[j+1]=1;
 | |
|                         q->skipFlagCount[i]++;
 | |
|                     }else{
 | |
|                         q->skipFlagBits[i] +=3;
 | |
|                         q->skipFlags[j+1]=0;
 | |
|                         if(!get_bits1(&q->gb)){//100
 | |
|                             q->skipFlags[j]=1;
 | |
|                             q->skipFlagCount[i]++;
 | |
|                         }else{//101
 | |
|                             q->skipFlags[j]=0;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (j < band_tab[i+1]) {
 | |
|                 q->skipFlagBits[i]++;
 | |
|                 if ((q->skipFlags[j] = get_bits1(&q->gb)))
 | |
|                     q->skipFlagCount[i]++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Increase highest' band coefficient sizes as some bits won't be used
 | |
|  */
 | |
| static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
 | |
|     float workT[32];
 | |
|     int corrected = 0;
 | |
|     int i, j;
 | |
|     float highest = 0;
 | |
|     int found_indx=0;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
 | |
|     }
 | |
| 
 | |
|     while (corrected < summer) {
 | |
|         if(highest <= -1.e20)
 | |
|             break;
 | |
| 
 | |
|         highest = -1.e20;
 | |
| 
 | |
|         for(i = 0; i < BANDS; i++) {
 | |
|             if (workT[i] > highest) {
 | |
|                 highest = workT[i];
 | |
|                 found_indx = i;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (highest > -1.e20) {
 | |
|             workT[found_indx] -= 2.0;
 | |
|             if (++(q->bitsBandT[found_indx]) == 6)
 | |
|                 workT[found_indx] = -1.e20;
 | |
| 
 | |
|             for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
 | |
|                 if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
 | |
|                     q->CWlengthT[j]++;
 | |
|                     corrected++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void imc_imdct256(IMCContext *q) {
 | |
|     int i;
 | |
|     float re, im;
 | |
| 
 | |
|     /* prerotation */
 | |
|     for(i=0; i < COEFFS/2; i++){
 | |
|         q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
 | |
|                            (q->pre_coef2[i] * q->CWdecoded[i*2]);
 | |
|         q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
 | |
|                            (q->pre_coef1[i] * q->CWdecoded[i*2]);
 | |
|     }
 | |
| 
 | |
|     /* FFT */
 | |
|     q->fft.fft_permute(&q->fft, q->samples);
 | |
|     q->fft.fft_calc   (&q->fft, q->samples);
 | |
| 
 | |
|     /* postrotation, window and reorder */
 | |
|     for(i = 0; i < COEFFS/2; i++){
 | |
|         re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
 | |
|         im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
 | |
|         q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
 | |
|         q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
 | |
|         q->last_fft_im[i] = im;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
 | |
|     int i, j;
 | |
|     int middle_value, cw_len, max_size;
 | |
|     const float* quantizer;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         for(j = band_tab[i]; j < band_tab[i+1]; j++) {
 | |
|             q->CWdecoded[j] = 0;
 | |
|             cw_len = q->CWlengthT[j];
 | |
| 
 | |
|             if (cw_len <= 0 || q->skipFlags[j])
 | |
|                 continue;
 | |
| 
 | |
|             max_size = 1 << cw_len;
 | |
|             middle_value = max_size >> 1;
 | |
| 
 | |
|             if (q->codewords[j] >= max_size || q->codewords[j] < 0)
 | |
|                 return -1;
 | |
| 
 | |
|             if (cw_len >= 4){
 | |
|                 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
 | |
|                 if (q->codewords[j] >= middle_value)
 | |
|                     q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
 | |
|                 else
 | |
|                     q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
 | |
|             }else{
 | |
|                 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
 | |
|                 if (q->codewords[j] >= middle_value)
 | |
|                     q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
 | |
|                 else
 | |
|                     q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int imc_get_coeffs (IMCContext* q) {
 | |
|     int i, j, cw_len, cw;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         if(!q->sumLenArr[i]) continue;
 | |
|         if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
 | |
|             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
 | |
|                 cw_len = q->CWlengthT[j];
 | |
|                 cw = 0;
 | |
| 
 | |
|                 if (get_bits_count(&q->gb) + cw_len > 512){
 | |
| //av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
 | |
|                     return -1;
 | |
|                 }
 | |
| 
 | |
|                 if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
 | |
|                     cw = get_bits(&q->gb, cw_len);
 | |
| 
 | |
|                 q->codewords[j] = cw;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int imc_decode_frame(AVCodecContext * avctx,
 | |
|                             void *data, int *data_size,
 | |
|                             AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
| 
 | |
|     IMCContext *q = avctx->priv_data;
 | |
| 
 | |
|     int stream_format_code;
 | |
|     int imc_hdr, i, j;
 | |
|     int flag;
 | |
|     int bits, summer;
 | |
|     int counter, bitscount;
 | |
|     uint16_t buf16[IMC_BLOCK_SIZE / 2];
 | |
| 
 | |
|     if (buf_size < IMC_BLOCK_SIZE) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
 | |
|         return -1;
 | |
|     }
 | |
|     for(i = 0; i < IMC_BLOCK_SIZE / 2; i++)
 | |
|         buf16[i] = av_bswap16(((const uint16_t*)buf)[i]);
 | |
| 
 | |
|     q->out_samples = data;
 | |
|     init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
 | |
| 
 | |
|     /* Check the frame header */
 | |
|     imc_hdr = get_bits(&q->gb, 9);
 | |
|     if (imc_hdr != IMC_FRAME_ID) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
 | |
|         av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
 | |
|         return -1;
 | |
|     }
 | |
|     stream_format_code = get_bits(&q->gb, 3);
 | |
| 
 | |
|     if(stream_format_code & 1){
 | |
|         av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| //    av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
 | |
| 
 | |
|     if (stream_format_code & 0x04)
 | |
|         q->decoder_reset = 1;
 | |
| 
 | |
|     if(q->decoder_reset) {
 | |
|         memset(q->out_samples, 0, sizeof(q->out_samples));
 | |
|         for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
 | |
|         for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
 | |
|         q->decoder_reset = 0;
 | |
|     }
 | |
| 
 | |
|     flag = get_bits1(&q->gb);
 | |
|     imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
 | |
| 
 | |
|     if (stream_format_code & 0x4)
 | |
|         imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
 | |
|     else
 | |
|         imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
 | |
| 
 | |
|     memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
 | |
| 
 | |
|     counter = 0;
 | |
|     for (i=0 ; i<BANDS ; i++) {
 | |
|         if (q->levlCoeffBuf[i] == 16) {
 | |
|             q->bandWidthT[i] = 0;
 | |
|             counter++;
 | |
|         } else
 | |
|             q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
 | |
|     }
 | |
|     memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
 | |
|     for(i = 0; i < BANDS-1; i++) {
 | |
|         if (q->bandWidthT[i])
 | |
|             q->bandFlagsBuf[i] = get_bits1(&q->gb);
 | |
|     }
 | |
| 
 | |
|     imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
 | |
| 
 | |
|     bitscount = 0;
 | |
|     /* first 4 bands will be assigned 5 bits per coefficient */
 | |
|     if (stream_format_code & 0x2) {
 | |
|         bitscount += 15;
 | |
| 
 | |
|         q->bitsBandT[0] = 5;
 | |
|         q->CWlengthT[0] = 5;
 | |
|         q->CWlengthT[1] = 5;
 | |
|         q->CWlengthT[2] = 5;
 | |
|         for(i = 1; i < 4; i++){
 | |
|             bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
 | |
|             q->bitsBandT[i] = bits;
 | |
|             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
 | |
|                 q->CWlengthT[j] = bits;
 | |
|                 bitscount += bits;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
 | |
|         q->decoder_reset = 1;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         q->sumLenArr[i] = 0;
 | |
|         q->skipFlagRaw[i] = 0;
 | |
|         for(j = band_tab[i]; j < band_tab[i+1]; j++)
 | |
|             q->sumLenArr[i] += q->CWlengthT[j];
 | |
|         if (q->bandFlagsBuf[i])
 | |
|             if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
 | |
|                 q->skipFlagRaw[i] = 1;
 | |
|     }
 | |
| 
 | |
|     imc_get_skip_coeff(q);
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         q->flcoeffs6[i] = q->flcoeffs1[i];
 | |
|         /* band has flag set and at least one coded coefficient */
 | |
|         if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
 | |
|                 q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
 | |
|                                    q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* calculate bits left, bits needed and adjust bit allocation */
 | |
|     bits = summer = 0;
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         if (q->bandFlagsBuf[i]) {
 | |
|             for(j = band_tab[i]; j < band_tab[i+1]; j++) {
 | |
|                 if(q->skipFlags[j]) {
 | |
|                     summer += q->CWlengthT[j];
 | |
|                     q->CWlengthT[j] = 0;
 | |
|                 }
 | |
|             }
 | |
|             bits += q->skipFlagBits[i];
 | |
|             summer -= q->skipFlagBits[i];
 | |
|         }
 | |
|     }
 | |
|     imc_adjust_bit_allocation(q, summer);
 | |
| 
 | |
|     for(i = 0; i < BANDS; i++) {
 | |
|         q->sumLenArr[i] = 0;
 | |
| 
 | |
|         for(j = band_tab[i]; j < band_tab[i+1]; j++)
 | |
|             if (!q->skipFlags[j])
 | |
|                 q->sumLenArr[i] += q->CWlengthT[j];
 | |
|     }
 | |
| 
 | |
|     memset(q->codewords, 0, sizeof(q->codewords));
 | |
| 
 | |
|     if(imc_get_coeffs(q) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
 | |
|         q->decoder_reset = 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if(inverse_quant_coeff(q, stream_format_code) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
 | |
|         q->decoder_reset = 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     memset(q->skipFlags, 0, sizeof(q->skipFlags));
 | |
| 
 | |
|     imc_imdct256(q);
 | |
| 
 | |
|     *data_size = COEFFS * sizeof(float);
 | |
| 
 | |
|     return IMC_BLOCK_SIZE;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int imc_decode_close(AVCodecContext * avctx)
 | |
| {
 | |
|     IMCContext *q = avctx->priv_data;
 | |
| 
 | |
|     ff_fft_end(&q->fft);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec ff_imc_decoder = {
 | |
|     .name = "imc",
 | |
|     .type = AVMEDIA_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_IMC,
 | |
|     .priv_data_size = sizeof(IMCContext),
 | |
|     .init = imc_decode_init,
 | |
|     .close = imc_decode_close,
 | |
|     .decode = imc_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
 | |
| };
 |