Makes it robust against adding fields before it, which will be useful in
following commits.
Majority of the patch generated by the following Coccinelle script:
@@
typedef AVOption;
identifier arr_name;
initializer list il;
initializer list[8] il1;
expression tail;
@@
AVOption arr_name[] = { il, { il1,
- tail
+ .unit = tail
}, ...  };
with some manual changes, as the script:
* has trouble with options defined inside macros
* sometimes does not handle options under an #else branch
* sometimes swallows whitespace
		
	
			
		
			
				
	
	
		
			1769 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1769 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FLAC audio encoder
 | |
|  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/crc.h"
 | |
| #include "libavutil/intmath.h"
 | |
| #include "libavutil/md5.h"
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "bswapdsp.h"
 | |
| #include "codec_internal.h"
 | |
| #include "encode.h"
 | |
| #include "put_bits.h"
 | |
| #include "lpc.h"
 | |
| #include "flac.h"
 | |
| #include "flacdata.h"
 | |
| #include "flacencdsp.h"
 | |
| 
 | |
| #define FLAC_SUBFRAME_CONSTANT  0
 | |
| #define FLAC_SUBFRAME_VERBATIM  1
 | |
| #define FLAC_SUBFRAME_FIXED     8
 | |
| #define FLAC_SUBFRAME_LPC      32
 | |
| 
 | |
| #define MAX_FIXED_ORDER     4
 | |
| #define MAX_PARTITION_ORDER 8
 | |
| #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | |
| #define MAX_LPC_PRECISION  15
 | |
| #define MIN_LPC_SHIFT       0
 | |
| #define MAX_LPC_SHIFT      15
 | |
| 
 | |
| enum CodingMode {
 | |
|     CODING_MODE_RICE  = 4,
 | |
|     CODING_MODE_RICE2 = 5,
 | |
| };
 | |
| 
 | |
| typedef struct CompressionOptions {
 | |
|     int compression_level;
 | |
|     int block_time_ms;
 | |
|     enum FFLPCType lpc_type;
 | |
|     int lpc_passes;
 | |
|     int lpc_coeff_precision;
 | |
|     int min_prediction_order;
 | |
|     int max_prediction_order;
 | |
|     int prediction_order_method;
 | |
|     int min_partition_order;
 | |
|     int max_partition_order;
 | |
|     int ch_mode;
 | |
|     int exact_rice_parameters;
 | |
|     int multi_dim_quant;
 | |
| } CompressionOptions;
 | |
| 
 | |
| typedef struct RiceContext {
 | |
|     enum CodingMode coding_mode;
 | |
|     int porder;
 | |
|     int params[MAX_PARTITIONS];
 | |
| } RiceContext;
 | |
| 
 | |
| typedef struct FlacSubframe {
 | |
|     int type;
 | |
|     int type_code;
 | |
|     int obits;
 | |
|     int wasted;
 | |
|     int order;
 | |
|     int32_t coefs[MAX_LPC_ORDER];
 | |
|     int shift;
 | |
| 
 | |
|     RiceContext rc;
 | |
|     uint32_t rc_udata[FLAC_MAX_BLOCKSIZE];
 | |
|     uint64_t rc_sums[32][MAX_PARTITIONS];
 | |
| 
 | |
|     int32_t samples[FLAC_MAX_BLOCKSIZE];
 | |
|     int32_t residual[FLAC_MAX_BLOCKSIZE+11];
 | |
| } FlacSubframe;
 | |
| 
 | |
| typedef struct FlacFrame {
 | |
|     FlacSubframe subframes[FLAC_MAX_CHANNELS];
 | |
|     int64_t samples_33bps[FLAC_MAX_BLOCKSIZE];
 | |
|     int blocksize;
 | |
|     int bs_code[2];
 | |
|     uint8_t crc8;
 | |
|     int ch_mode;
 | |
|     int verbatim_only;
 | |
| } FlacFrame;
 | |
| 
 | |
| typedef struct FlacEncodeContext {
 | |
|     AVClass *class;
 | |
|     PutBitContext pb;
 | |
|     int channels;
 | |
|     int samplerate;
 | |
|     int sr_code[2];
 | |
|     int bps_code;
 | |
|     int max_blocksize;
 | |
|     int min_framesize;
 | |
|     int max_framesize;
 | |
|     int max_encoded_framesize;
 | |
|     uint32_t frame_count;
 | |
|     uint64_t sample_count;
 | |
|     uint8_t md5sum[16];
 | |
|     FlacFrame frame;
 | |
|     CompressionOptions options;
 | |
|     AVCodecContext *avctx;
 | |
|     LPCContext lpc_ctx;
 | |
|     struct AVMD5 *md5ctx;
 | |
|     uint8_t *md5_buffer;
 | |
|     unsigned int md5_buffer_size;
 | |
|     BswapDSPContext bdsp;
 | |
|     FLACEncDSPContext flac_dsp;
 | |
| 
 | |
|     int flushed;
 | |
|     int64_t next_pts;
 | |
| } FlacEncodeContext;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Write streaminfo metadata block to byte array.
 | |
|  */
 | |
| static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | |
| {
 | |
|     PutBitContext pb;
 | |
| 
 | |
|     memset(header, 0, FLAC_STREAMINFO_SIZE);
 | |
|     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
 | |
| 
 | |
|     /* streaminfo metadata block */
 | |
|     put_bits(&pb, 16, s->max_blocksize);
 | |
|     put_bits(&pb, 16, s->max_blocksize);
 | |
|     put_bits(&pb, 24, s->min_framesize);
 | |
|     put_bits(&pb, 24, s->max_framesize);
 | |
|     put_bits(&pb, 20, s->samplerate);
 | |
|     put_bits(&pb, 3, s->channels-1);
 | |
|     put_bits(&pb,  5, s->avctx->bits_per_raw_sample - 1);
 | |
|     /* write 36-bit sample count in 2 put_bits() calls */
 | |
|     put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
 | |
|     put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
 | |
|     flush_put_bits(&pb);
 | |
|     memcpy(&header[18], s->md5sum, 16);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Calculate an estimate for the maximum frame size based on verbatim mode.
 | |
|  * @param blocksize block size, in samples
 | |
|  * @param ch number of channels
 | |
|  * @param bps bits-per-sample
 | |
|  */
 | |
| static int flac_get_max_frame_size(int blocksize, int ch, int bps)
 | |
| {
 | |
|     /* Technically, there is no limit to FLAC frame size, but an encoder
 | |
|        should not write a frame that is larger than if verbatim encoding mode
 | |
|        were to be used. */
 | |
| 
 | |
|     int count;
 | |
| 
 | |
|     count = 16;                  /* frame header */
 | |
|     count += ch * ((7+bps+7)/8); /* subframe headers */
 | |
|     if (ch == 2) {
 | |
|         /* for stereo, need to account for using decorrelation */
 | |
|         count += (( 2*bps+1) * blocksize + 7) / 8;
 | |
|     } else {
 | |
|         count += ( ch*bps    * blocksize + 7) / 8;
 | |
|     }
 | |
|     count += 2; /* frame footer */
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Set blocksize based on samplerate.
 | |
|  * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
 | |
|  */
 | |
| static int select_blocksize(int samplerate, int block_time_ms)
 | |
| {
 | |
|     int i;
 | |
|     int target;
 | |
|     int blocksize;
 | |
| 
 | |
|     av_assert0(samplerate > 0);
 | |
|     blocksize = ff_flac_blocksize_table[1];
 | |
|     target    = (samplerate * block_time_ms) / 1000;
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         if (target >= ff_flac_blocksize_table[i] &&
 | |
|             ff_flac_blocksize_table[i] > blocksize) {
 | |
|             blocksize = ff_flac_blocksize_table[i];
 | |
|         }
 | |
|     }
 | |
|     return blocksize;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold void dprint_compression_options(FlacEncodeContext *s)
 | |
| {
 | |
|     AVCodecContext     *avctx = s->avctx;
 | |
|     CompressionOptions *opt   = &s->options;
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
 | |
| 
 | |
|     switch (opt->lpc_type) {
 | |
|     case FF_LPC_TYPE_NONE:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_FIXED:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_LEVINSON:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
 | |
|         break;
 | |
|     case FF_LPC_TYPE_CHOLESKY:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
 | |
|                opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | |
|            opt->min_prediction_order, opt->max_prediction_order);
 | |
| 
 | |
|     switch (opt->prediction_order_method) {
 | |
|     case ORDER_METHOD_EST:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
 | |
|         break;
 | |
|     case ORDER_METHOD_2LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_4LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_8LEVEL:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
 | |
|         break;
 | |
|     case ORDER_METHOD_SEARCH:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
 | |
|         break;
 | |
|     case ORDER_METHOD_LOG:
 | |
|         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | |
|            opt->min_partition_order, opt->max_partition_order);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
 | |
| 
 | |
|     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | |
|            opt->lpc_coeff_precision);
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int flac_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int freq = avctx->sample_rate;
 | |
|     int channels = avctx->ch_layout.nb_channels;
 | |
|     FlacEncodeContext *s = avctx->priv_data;
 | |
|     int i, level, ret;
 | |
|     uint8_t *streaminfo;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     switch (avctx->sample_fmt) {
 | |
|     case AV_SAMPLE_FMT_S16:
 | |
|         avctx->bits_per_raw_sample = 16;
 | |
|         s->bps_code                = 4;
 | |
|         break;
 | |
|     case AV_SAMPLE_FMT_S32:
 | |
|         if (avctx->bits_per_raw_sample <= 24) {
 | |
|             if (avctx->bits_per_raw_sample < 24)
 | |
|                 av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
 | |
|             avctx->bits_per_raw_sample = 24;
 | |
|             s->bps_code                = 6;
 | |
|         } else if (avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "encoding as 24 bits-per-sample, more is considered "
 | |
|                    "experimental. Add -strict experimental if you want "
 | |
|                    "to encode more than 24 bits-per-sample\n");
 | |
|             avctx->bits_per_raw_sample = 24;
 | |
|             s->bps_code                = 6;
 | |
|         } else {
 | |
|             avctx->bits_per_raw_sample = 32;
 | |
|             s->bps_code = 7;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (channels < 1 || channels > FLAC_MAX_CHANNELS) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n",
 | |
|                channels, FLAC_MAX_CHANNELS);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     s->channels = channels;
 | |
| 
 | |
|     /* find samplerate in table */
 | |
|     if (freq < 1)
 | |
|         return AVERROR(EINVAL);
 | |
|     for (i = 1; i < 12; i++) {
 | |
|         if (freq == ff_flac_sample_rate_table[i]) {
 | |
|             s->samplerate = ff_flac_sample_rate_table[i];
 | |
|             s->sr_code[0] = i;
 | |
|             s->sr_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     /* if not in table, samplerate is non-standard */
 | |
|     if (i == 12) {
 | |
|         if (freq % 1000 == 0 && freq < 255000) {
 | |
|             s->sr_code[0] = 12;
 | |
|             s->sr_code[1] = freq / 1000;
 | |
|         } else if (freq % 10 == 0 && freq < 655350) {
 | |
|             s->sr_code[0] = 14;
 | |
|             s->sr_code[1] = freq / 10;
 | |
|         } else if (freq < 65535) {
 | |
|             s->sr_code[0] = 13;
 | |
|             s->sr_code[1] = freq;
 | |
|         } else if (freq < 1048576) {
 | |
|             s->sr_code[0] = 0;
 | |
|             s->sr_code[1] = 0;
 | |
|         } else {
 | |
|             av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
|         s->samplerate = freq;
 | |
|     }
 | |
| 
 | |
|     /* set compression option defaults based on avctx->compression_level */
 | |
|     if (avctx->compression_level < 0)
 | |
|         s->options.compression_level = 5;
 | |
|     else
 | |
|         s->options.compression_level = avctx->compression_level;
 | |
| 
 | |
|     level = s->options.compression_level;
 | |
|     if (level > 12) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | |
|                s->options.compression_level);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
 | |
| 
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
 | |
|         s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | |
|                                          FF_LPC_TYPE_LEVINSON})[level];
 | |
| 
 | |
|     if (s->options.min_prediction_order < 0)
 | |
|         s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | |
|     if (s->options.max_prediction_order < 0)
 | |
|         s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
 | |
| 
 | |
|     if (s->options.prediction_order_method < 0)
 | |
|         s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                        ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | |
|                                                        ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
 | |
|                                                        ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
 | |
|                                                        ORDER_METHOD_SEARCH})[level];
 | |
| 
 | |
|     if (s->options.min_partition_order > s->options.max_partition_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | |
|                s->options.min_partition_order, s->options.max_partition_order);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
|     if (s->options.min_partition_order < 0)
 | |
|         s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
 | |
|     if (s->options.max_partition_order < 0)
 | |
|         s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
 | |
| 
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
 | |
|         s->options.min_prediction_order = 0;
 | |
|         s->options.max_prediction_order = 0;
 | |
|     } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
 | |
|         if (s->options.min_prediction_order > MAX_FIXED_ORDER) {
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "invalid min prediction order %d, clamped to %d\n",
 | |
|                    s->options.min_prediction_order, MAX_FIXED_ORDER);
 | |
|             s->options.min_prediction_order = MAX_FIXED_ORDER;
 | |
|         }
 | |
|         if (s->options.max_prediction_order > MAX_FIXED_ORDER) {
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "invalid max prediction order %d, clamped to %d\n",
 | |
|                    s->options.max_prediction_order, MAX_FIXED_ORDER);
 | |
|             s->options.max_prediction_order = MAX_FIXED_ORDER;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->options.max_prediction_order < s->options.min_prediction_order) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | |
|                s->options.min_prediction_order, s->options.max_prediction_order);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (avctx->frame_size > 0) {
 | |
|         if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | |
|                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | |
|                    avctx->frame_size);
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
|     } else {
 | |
|         s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
 | |
|     }
 | |
|     s->max_blocksize = s->avctx->frame_size;
 | |
| 
 | |
|     /* set maximum encoded frame size in verbatim mode */
 | |
|     s->max_framesize = flac_get_max_frame_size(s->avctx->frame_size,
 | |
|                                                s->channels,
 | |
|                                                s->avctx->bits_per_raw_sample);
 | |
| 
 | |
|     /* initialize MD5 context */
 | |
|     s->md5ctx = av_md5_alloc();
 | |
|     if (!s->md5ctx)
 | |
|         return AVERROR(ENOMEM);
 | |
|     av_md5_init(s->md5ctx);
 | |
| 
 | |
|     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
 | |
|     if (!streaminfo)
 | |
|         return AVERROR(ENOMEM);
 | |
|     write_streaminfo(s, streaminfo);
 | |
|     avctx->extradata = streaminfo;
 | |
|     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
 | |
| 
 | |
|     s->frame_count   = 0;
 | |
|     s->min_framesize = s->max_framesize;
 | |
| 
 | |
|     if ((channels == 3 &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_SURROUND)) ||
 | |
|         (channels == 4 &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2) &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_QUAD)) ||
 | |
|         (channels == 5 &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0) &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0_BACK)) ||
 | |
|         (channels == 6 &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1) &&
 | |
|          av_channel_layout_compare(&avctx->ch_layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1_BACK))) {
 | |
|         if (avctx->ch_layout.order != AV_CHANNEL_ORDER_UNSPEC) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, "
 | |
|                                              "output stream will have incorrect "
 | |
|                                              "channel layout.\n");
 | |
|         } else {
 | |
|             av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder "
 | |
|                                                "will use Flac channel layout for "
 | |
|                                                "%d channels.\n", channels);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
 | |
|                       s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
 | |
| 
 | |
|     ff_bswapdsp_init(&s->bdsp);
 | |
|     ff_flacencdsp_init(&s->flac_dsp);
 | |
| 
 | |
|     dprint_compression_options(s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void init_frame(FlacEncodeContext *s, int nb_samples)
 | |
| {
 | |
|     int i, ch;
 | |
|     FlacFrame *frame;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         if (nb_samples == ff_flac_blocksize_table[i]) {
 | |
|             frame->blocksize  = ff_flac_blocksize_table[i];
 | |
|             frame->bs_code[0] = i;
 | |
|             frame->bs_code[1] = 0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (i == 16) {
 | |
|         frame->blocksize = nb_samples;
 | |
|         if (frame->blocksize <= 256) {
 | |
|             frame->bs_code[0] = 6;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         } else {
 | |
|             frame->bs_code[0] = 7;
 | |
|             frame->bs_code[1] = frame->blocksize-1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &frame->subframes[ch];
 | |
| 
 | |
|         sub->wasted = 0;
 | |
|         sub->obits  = s->avctx->bits_per_raw_sample;
 | |
| 
 | |
|         if (sub->obits > 16)
 | |
|             sub->rc.coding_mode = CODING_MODE_RICE2;
 | |
|         else
 | |
|             sub->rc.coding_mode = CODING_MODE_RICE;
 | |
|     }
 | |
| 
 | |
|     frame->verbatim_only = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Copy channel-interleaved input samples into separate subframes.
 | |
|  */
 | |
| static void copy_samples(FlacEncodeContext *s, const void *samples)
 | |
| {
 | |
|     int i, j, ch;
 | |
|     FlacFrame *frame;
 | |
|     int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
 | |
|                 s->avctx->bits_per_raw_sample;
 | |
| 
 | |
| #define COPY_SAMPLES(bits) do {                                     \
 | |
|     const int ## bits ## _t *samples0 = samples;                    \
 | |
|     frame = &s->frame;                                              \
 | |
|     for (i = 0, j = 0; i < frame->blocksize; i++)                   \
 | |
|         for (ch = 0; ch < s->channels; ch++, j++)                   \
 | |
|             frame->subframes[ch].samples[i] = samples0[j] >> shift; \
 | |
| } while (0)
 | |
| 
 | |
|     if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16)
 | |
|         COPY_SAMPLES(16);
 | |
|     else
 | |
|         COPY_SAMPLES(32);
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t rice_count_exact(const int32_t *res, int n, int k)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t count = 0;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         unsigned v = ((unsigned)(res[i]) << 1) ^ (res[i] >> 31);
 | |
|         count += (v >> k) + 1 + k;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
 | |
|                                      int pred_order)
 | |
| {
 | |
|     int p, porder, psize;
 | |
|     int i, part_end;
 | |
|     uint64_t count = 0;
 | |
| 
 | |
|     /* subframe header */
 | |
|     count += 8;
 | |
| 
 | |
|     if (sub->wasted)
 | |
|         count += sub->wasted;
 | |
| 
 | |
|     /* subframe */
 | |
|     if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | |
|         count += sub->obits;
 | |
|     } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | |
|         count += s->frame.blocksize * sub->obits;
 | |
|     } else {
 | |
|         /* warm-up samples */
 | |
|         count += pred_order * sub->obits;
 | |
| 
 | |
|         /* LPC coefficients */
 | |
|         if (sub->type == FLAC_SUBFRAME_LPC)
 | |
|             count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | |
| 
 | |
|         /* rice-encoded block */
 | |
|         count += 2;
 | |
| 
 | |
|         /* partition order */
 | |
|         porder = sub->rc.porder;
 | |
|         psize  = s->frame.blocksize >> porder;
 | |
|         count += 4;
 | |
| 
 | |
|         /* residual */
 | |
|         i        = pred_order;
 | |
|         part_end = psize;
 | |
|         for (p = 0; p < 1 << porder; p++) {
 | |
|             int k = sub->rc.params[p];
 | |
|             count += sub->rc.coding_mode;
 | |
|             count += rice_count_exact(&sub->residual[i], part_end - i, k);
 | |
|             i = part_end;
 | |
|             part_end = FFMIN(s->frame.blocksize, part_end + psize);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
 | |
| 
 | |
| /**
 | |
|  * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
 | |
|  */
 | |
| static int find_optimal_param(uint64_t sum, int n, int max_param)
 | |
| {
 | |
|     int k;
 | |
|     uint64_t sum2;
 | |
| 
 | |
|     if (sum <= n >> 1)
 | |
|         return 0;
 | |
|     sum2 = sum - (n >> 1);
 | |
|     k    = av_log2(av_clipl_int32(sum2 / n));
 | |
|     return FFMIN(k, max_param);
 | |
| }
 | |
| 
 | |
| static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
 | |
| {
 | |
|     int bestk = 0;
 | |
|     int64_t bestbits = INT64_MAX;
 | |
|     int k;
 | |
| 
 | |
|     for (k = 0; k <= max_param; k++) {
 | |
|         int64_t bits = sums[k][i];
 | |
|         if (bits < bestbits) {
 | |
|             bestbits = bits;
 | |
|             bestk = k;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return bestk;
 | |
| }
 | |
| 
 | |
| static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | |
|                                          uint64_t sums[32][MAX_PARTITIONS],
 | |
|                                          int n, int pred_order, int max_param, int exact)
 | |
| {
 | |
|     int i;
 | |
|     int k, cnt, part;
 | |
|     uint64_t all_bits;
 | |
| 
 | |
|     part     = (1 << porder);
 | |
|     all_bits = 4 * part;
 | |
| 
 | |
|     cnt = (n >> porder) - pred_order;
 | |
|     for (i = 0; i < part; i++) {
 | |
|         if (exact) {
 | |
|             k = find_optimal_param_exact(sums, i, max_param);
 | |
|             all_bits += sums[k][i];
 | |
|         } else {
 | |
|             k = find_optimal_param(sums[0][i], cnt, max_param);
 | |
|             all_bits += rice_encode_count(sums[0][i], cnt, k);
 | |
|         }
 | |
|         rc->params[i] = k;
 | |
|         cnt = n >> porder;
 | |
|     }
 | |
| 
 | |
|     rc->porder = porder;
 | |
| 
 | |
|     return all_bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order,
 | |
|                          uint64_t sums[32][MAX_PARTITIONS])
 | |
| {
 | |
|     int i, k;
 | |
|     int parts;
 | |
|     const uint32_t *res, *res_end;
 | |
| 
 | |
|     /* sums for highest level */
 | |
|     parts   = (1 << pmax);
 | |
| 
 | |
|     for (k = 0; k <= kmax; k++) {
 | |
|         res     = &data[pred_order];
 | |
|         res_end = &data[n >> pmax];
 | |
|         for (i = 0; i < parts; i++) {
 | |
|             if (kmax) {
 | |
|                 uint64_t sum = (1LL + k) * (res_end - res);
 | |
|                 while (res < res_end)
 | |
|                     sum += *(res++) >> k;
 | |
|                 sums[k][i] = sum;
 | |
|             } else {
 | |
|                 uint64_t sum = 0;
 | |
|                 while (res < res_end)
 | |
|                     sum += *(res++);
 | |
|                 sums[k][i] = sum;
 | |
|             }
 | |
|             res_end += n >> pmax;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
 | |
| {
 | |
|     int i, k;
 | |
|     int parts = (1 << level);
 | |
|     for (i = 0; i < parts; i++) {
 | |
|         for (k=0; k<=kmax; k++)
 | |
|             sums[k][i] = sums[k][2*i] + sums[k][2*i+1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t calc_rice_params(RiceContext *rc,
 | |
|                                  uint32_t udata[FLAC_MAX_BLOCKSIZE],
 | |
|                                  uint64_t sums[32][MAX_PARTITIONS],
 | |
|                                  int pmin, int pmax,
 | |
|                                  const int32_t *data, int n, int pred_order, int exact)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t bits[MAX_PARTITION_ORDER+1];
 | |
|     int opt_porder;
 | |
|     RiceContext tmp_rc;
 | |
|     int kmax = (1 << rc->coding_mode) - 2;
 | |
| 
 | |
|     av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | |
|     av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | |
|     av_assert1(pmin <= pmax);
 | |
| 
 | |
|     tmp_rc.coding_mode = rc->coding_mode;
 | |
| 
 | |
|     for (i = pred_order; i < n; i++)
 | |
|         udata[i] = ((unsigned)(data[i]) << 1) ^ (data[i] >> 31);
 | |
| 
 | |
|     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
 | |
| 
 | |
|     opt_porder = pmin;
 | |
|     bits[pmin] = UINT32_MAX;
 | |
|     for (i = pmax; ; ) {
 | |
|         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact);
 | |
|         if (bits[i] < bits[opt_porder] || pmax == pmin) {
 | |
|             opt_porder = i;
 | |
|             *rc = tmp_rc;
 | |
|         }
 | |
|         if (i == pmin)
 | |
|             break;
 | |
|         calc_sum_next(--i, sums, exact ? kmax : 0);
 | |
|     }
 | |
| 
 | |
|     return bits[opt_porder];
 | |
| }
 | |
| 
 | |
| 
 | |
| static int get_max_p_order(int max_porder, int n, int order)
 | |
| {
 | |
|     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
 | |
|     if (order > 0)
 | |
|         porder = FFMIN(porder, av_log2(n/order));
 | |
|     return porder;
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint64_t find_subframe_rice_params(FlacEncodeContext *s,
 | |
|                                           FlacSubframe *sub, int pred_order)
 | |
| {
 | |
|     int pmin = get_max_p_order(s->options.min_partition_order,
 | |
|                                s->frame.blocksize, pred_order);
 | |
|     int pmax = get_max_p_order(s->options.max_partition_order,
 | |
|                                s->frame.blocksize, pred_order);
 | |
| 
 | |
|     uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
 | |
|     if (sub->type == FLAC_SUBFRAME_LPC)
 | |
|         bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | |
|     bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual,
 | |
|                              s->frame.blocksize, pred_order, s->options.exact_rice_parameters);
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | |
|                                   int order)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < order; i++)
 | |
|         res[i] = smp[i];
 | |
| 
 | |
|     if (order == 0) {
 | |
|         for (i = order; i < n; i++)
 | |
|             res[i] = smp[i];
 | |
|     } else if (order == 1) {
 | |
|         for (i = order; i < n; i++)
 | |
|             res[i] = smp[i] - smp[i-1];
 | |
|     } else if (order == 2) {
 | |
|         int a = smp[order-1] - smp[order-2];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             res[i]   = b - a;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             res[i+1] = a - b;
 | |
|         }
 | |
|     } else if (order == 3) {
 | |
|         int a = smp[order-1] -   smp[order-2];
 | |
|         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             int d    = b - a;
 | |
|             res[i]   = d - c;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             c        = a - b;
 | |
|             res[i+1] = c - d;
 | |
|         }
 | |
|     } else {
 | |
|         int a = smp[order-1] -   smp[order-2];
 | |
|         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 | |
|         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 | |
|         for (i = order; i < n; i += 2) {
 | |
|             int b    = smp[i  ] - smp[i-1];
 | |
|             int d    = b - a;
 | |
|             int f    = d - c;
 | |
|             res[i  ] = f - e;
 | |
|             a        = smp[i+1] - smp[i  ];
 | |
|             c        = a - b;
 | |
|             e        = c - d;
 | |
|             res[i+1] = e - f;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* These four functions check for every residual whether it can be
 | |
|  * contained in <INT32_MIN,INT32_MAX]. In case it doesn't, the
 | |
|  * function that called this function has to try something else.
 | |
|  * Each function is duplicated, once for int32_t input, once for
 | |
|  * int64_t input */
 | |
| #define ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT()                   \
 | |
| {                                                                     \
 | |
|     for (int i = 0; i < order; i++)                                   \
 | |
|         res[i] = smp[i];                                              \
 | |
|     if (order == 0) {                                                 \
 | |
|         for (int i = order; i < n; i++) {                             \
 | |
|             if (smp[i] == INT32_MIN)                                  \
 | |
|                 return 1;                                             \
 | |
|             res[i] = smp[i];                                          \
 | |
|         }                                                             \
 | |
|     } else if (order == 1) {                                          \
 | |
|         for (int i = order; i < n; i++) {                             \
 | |
|             int64_t res64 = (int64_t)smp[i] - smp[i-1];               \
 | |
|             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \
 | |
|                 return 1;                                             \
 | |
|             res[i] = res64;                                           \
 | |
|         }                                                             \
 | |
|     } else if (order == 2) {                                          \
 | |
|         for (int i = order; i < n; i++) {                             \
 | |
|             int64_t res64 = (int64_t)smp[i] - 2*(int64_t)smp[i-1] + smp[i-2]; \
 | |
|             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \
 | |
|                 return 1;                                             \
 | |
|             res[i] = res64;                                           \
 | |
|         }                                                             \
 | |
|     } else if (order == 3) {                                          \
 | |
|         for (int i = order; i < n; i++) {                             \
 | |
|             int64_t res64 = (int64_t)smp[i] - 3*(int64_t)smp[i-1] + 3*(int64_t)smp[i-2] - smp[i-3];  \
 | |
|             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \
 | |
|                 return 1;                                             \
 | |
|             res[i] = res64;                                           \
 | |
|         }                                                             \
 | |
|     } else {                                                          \
 | |
|         for (int i = order; i < n; i++) {                             \
 | |
|             int64_t res64 = (int64_t)smp[i] - 4*(int64_t)smp[i-1] + 6*(int64_t)smp[i-2] - 4*(int64_t)smp[i-3] + smp[i-4];   \
 | |
|             if (res64 <= INT32_MIN || res64 > INT32_MAX)              \
 | |
|                 return 1;                                             \
 | |
|             res[i] = res64;                                           \
 | |
|         }                                                             \
 | |
|     }                                                                 \
 | |
|     return 0;                                                         \
 | |
| }
 | |
| 
 | |
| static int encode_residual_fixed_with_residual_limit(int32_t *res, const int32_t *smp,
 | |
|                                                       int n, int order)
 | |
| {
 | |
|     ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT();
 | |
| }
 | |
| 
 | |
| 
 | |
| static int encode_residual_fixed_with_residual_limit_33bps(int32_t *res, const int64_t *smp,
 | |
|                                                            int n, int order)
 | |
| {
 | |
|     ENCODE_RESIDUAL_FIXED_WITH_RESIDUAL_LIMIT();
 | |
| }
 | |
| 
 | |
| #define LPC_ENCODE_WITH_RESIDUAL_LIMIT()                 \
 | |
| {                                                        \
 | |
|    for (int i = 0; i < order; i++)                       \
 | |
|         res[i] = smp[i];                                 \
 | |
|     for (int i = order; i < len; i++) {                  \
 | |
|         int64_t p = 0, tmp;                              \
 | |
|         for (int j = 0; j < order; j++)                  \
 | |
|             p += (int64_t)coefs[j]*smp[(i-1)-j];         \
 | |
|         p >>= shift;                                     \
 | |
|         tmp = smp[i] - p;                                \
 | |
|         if (tmp <= INT32_MIN || tmp > INT32_MAX)         \
 | |
|             return 1;                                    \
 | |
|         res[i] = tmp;                                    \
 | |
|     }                                                    \
 | |
|     return 0;                                            \
 | |
| }
 | |
| 
 | |
| static int lpc_encode_with_residual_limit(int32_t *res, const int32_t *smp, int len,
 | |
|                                                int order, int32_t *coefs, int shift)
 | |
| {
 | |
|     LPC_ENCODE_WITH_RESIDUAL_LIMIT();
 | |
| }
 | |
| 
 | |
| static int lpc_encode_with_residual_limit_33bps(int32_t *res, const int64_t *smp, int len,
 | |
|                                                int order, int32_t *coefs, int shift)
 | |
| {
 | |
|     LPC_ENCODE_WITH_RESIDUAL_LIMIT();
 | |
| }
 | |
| 
 | |
| static int lpc_encode_choose_datapath(FlacEncodeContext *s, int32_t bps,
 | |
|                                       int32_t *res, const int32_t *smp,
 | |
|                                       const int64_t *smp_33bps, int len,
 | |
|                                       int order, int32_t *coefs, int shift)
 | |
| {
 | |
|     uint64_t max_residual_value = 0;
 | |
|     int64_t max_sample_value = ((int64_t)(1) << (bps-1));
 | |
|     /* This calculates the max size of any residual with the current
 | |
|      * predictor, so we know whether we need to check the residual */
 | |
|     for (int i = 0; i < order; i++)
 | |
|         max_residual_value += FFABS(max_sample_value * coefs[i]);
 | |
|     max_residual_value >>= shift;
 | |
|     max_residual_value += max_sample_value;
 | |
|     if (bps > 32) {
 | |
|         if (lpc_encode_with_residual_limit_33bps(res, smp_33bps, len, order, coefs, shift))
 | |
|             return 1;
 | |
|     } else if (max_residual_value > INT32_MAX) {
 | |
|         if (lpc_encode_with_residual_limit(res, smp, len, order, coefs, shift))
 | |
|             return 1;
 | |
|     } else if (bps + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
 | |
|         s->flac_dsp.lpc16_encode(res, smp, len, order, coefs, shift);
 | |
|     } else {
 | |
|         s->flac_dsp.lpc32_encode(res, smp, len, order, coefs, shift);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define DEFAULT_TO_VERBATIM()                               \
 | |
| {                                                           \
 | |
|     sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;    \
 | |
|     if (sub->obits <= 32)                                   \
 | |
|         memcpy(res, smp, n * sizeof(int32_t));              \
 | |
|     return subframe_count_exact(s, sub, 0);                 \
 | |
| }
 | |
| 
 | |
| static int encode_residual_ch(FlacEncodeContext *s, int ch)
 | |
| {
 | |
|     int i, n;
 | |
|     int min_order, max_order, opt_order, omethod;
 | |
|     FlacFrame *frame;
 | |
|     FlacSubframe *sub;
 | |
|     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int shift[MAX_LPC_ORDER];
 | |
|     int32_t *res, *smp;
 | |
|     int64_t *smp_33bps;
 | |
| 
 | |
|     frame     = &s->frame;
 | |
|     sub       = &frame->subframes[ch];
 | |
|     res       = sub->residual;
 | |
|     smp       = sub->samples;
 | |
|     smp_33bps = frame->samples_33bps;
 | |
|     n         = frame->blocksize;
 | |
| 
 | |
|     /* CONSTANT */
 | |
|     if (sub->obits > 32) {
 | |
|         for (i = 1; i < n; i++)
 | |
|             if(smp_33bps[i] != smp_33bps[0])
 | |
|                 break;
 | |
|         if (i == n) {
 | |
|             sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | |
|             return subframe_count_exact(s, sub, 0);
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 1; i < n; i++)
 | |
|             if(smp[i] != smp[0])
 | |
|                 break;
 | |
|         if (i == n) {
 | |
|             sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | |
|             res[0] = smp[0];
 | |
|             return subframe_count_exact(s, sub, 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* VERBATIM */
 | |
|     if (frame->verbatim_only || n < 5) {
 | |
|         DEFAULT_TO_VERBATIM();
 | |
|     }
 | |
| 
 | |
|     min_order  = s->options.min_prediction_order;
 | |
|     max_order  = s->options.max_prediction_order;
 | |
|     omethod    = s->options.prediction_order_method;
 | |
| 
 | |
|     /* FIXED */
 | |
|     sub->type = FLAC_SUBFRAME_FIXED;
 | |
|     if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
 | |
|         s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
 | |
|         uint64_t bits[MAX_FIXED_ORDER+1];
 | |
|         if (max_order > MAX_FIXED_ORDER)
 | |
|             max_order = MAX_FIXED_ORDER;
 | |
|         opt_order = 0;
 | |
|         bits[0]   = UINT32_MAX;
 | |
|         for (i = min_order; i <= max_order; i++) {
 | |
|             if (sub->obits == 33) {
 | |
|                 if (encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, i))
 | |
|                     continue;
 | |
|             } else if (sub->obits + i >= 32) {
 | |
|                 if (encode_residual_fixed_with_residual_limit(res, smp, n, i))
 | |
|                     continue;
 | |
|             } else
 | |
|                 encode_residual_fixed(res, smp, n, i);
 | |
|             bits[i] = find_subframe_rice_params(s, sub, i);
 | |
|             if (bits[i] < bits[opt_order])
 | |
|                 opt_order = i;
 | |
|         }
 | |
|         if (opt_order == 0 && bits[0] == UINT32_MAX) {
 | |
|             /* No predictor found with residuals within <INT32_MIN,INT32_MAX],
 | |
|              * so encode a verbatim subframe instead */
 | |
|             DEFAULT_TO_VERBATIM();
 | |
|         }
 | |
|         sub->order     = opt_order;
 | |
|         sub->type_code = sub->type | sub->order;
 | |
|         if (sub->order != max_order) {
 | |
|             if (sub->obits == 33)
 | |
|                 encode_residual_fixed_with_residual_limit_33bps(res, smp_33bps, n, sub->order);
 | |
|             else if (sub->obits + i >= 32)
 | |
|                 encode_residual_fixed_with_residual_limit(res, smp, n, sub->order);
 | |
|             else
 | |
|                 encode_residual_fixed(res, smp, n, sub->order);
 | |
|             find_subframe_rice_params(s, sub, sub->order);
 | |
|         }
 | |
|         return subframe_count_exact(s, sub, sub->order);
 | |
|     }
 | |
| 
 | |
|     /* LPC */
 | |
|     sub->type = FLAC_SUBFRAME_LPC;
 | |
|     if (sub->obits == 33)
 | |
|         /* As ff_lpc_calc_coefs is shared with other codecs and the LSB
 | |
|          * probably isn't predictable anyway, throw away LSB for analysis
 | |
|          * so it fits 32 bit int and existing function can be used
 | |
|          * unmodified */
 | |
|         for (i = 0; i < n; i++)
 | |
|             smp[i] = smp_33bps[i] >> 1;
 | |
| 
 | |
|     opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
 | |
|                                   s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
 | |
|                                   s->options.lpc_passes, omethod,
 | |
|                                   MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0);
 | |
| 
 | |
|     if (omethod == ORDER_METHOD_2LEVEL ||
 | |
|         omethod == ORDER_METHOD_4LEVEL ||
 | |
|         omethod == ORDER_METHOD_8LEVEL) {
 | |
|         int levels = 1 << omethod;
 | |
|         uint64_t bits[1 << ORDER_METHOD_8LEVEL];
 | |
|         int order       = -1;
 | |
|         int opt_index   = levels-1;
 | |
|         opt_order       = max_order-1;
 | |
|         bits[opt_index] = UINT32_MAX;
 | |
|         for (i = levels-1; i >= 0; i--) {
 | |
|             int last_order = order;
 | |
|             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
 | |
|             order = av_clip(order, min_order - 1, max_order - 1);
 | |
|             if (order == last_order)
 | |
|                 continue;
 | |
|             if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, order+1, coefs[order], shift[order]))
 | |
|                 continue;
 | |
|             bits[i] = find_subframe_rice_params(s, sub, order+1);
 | |
|             if (bits[i] < bits[opt_index]) {
 | |
|                 opt_index = i;
 | |
|                 opt_order = order;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if (omethod == ORDER_METHOD_SEARCH) {
 | |
|         // brute-force optimal order search
 | |
|         uint64_t bits[MAX_LPC_ORDER];
 | |
|         opt_order = 0;
 | |
|         bits[0]   = UINT32_MAX;
 | |
|         for (i = min_order-1; i < max_order; i++) {
 | |
|             if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i]))
 | |
|                 continue;
 | |
|             bits[i] = find_subframe_rice_params(s, sub, i+1);
 | |
|             if (bits[i] < bits[opt_order])
 | |
|                 opt_order = i;
 | |
|         }
 | |
|         opt_order++;
 | |
|     } else if (omethod == ORDER_METHOD_LOG) {
 | |
|         uint64_t bits[MAX_LPC_ORDER];
 | |
|         int step;
 | |
| 
 | |
|         opt_order = min_order - 1 + (max_order-min_order)/3;
 | |
|         memset(bits, -1, sizeof(bits));
 | |
| 
 | |
|         for (step = 16; step; step >>= 1) {
 | |
|             int last = opt_order;
 | |
|             for (i = last-step; i <= last+step; i += step) {
 | |
|                 if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
 | |
|                     continue;
 | |
|                 if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, i+1, coefs[i], shift[i]))
 | |
|                     continue;
 | |
|                 bits[i] = find_subframe_rice_params(s, sub, i+1);
 | |
|                 if (bits[i] < bits[opt_order])
 | |
|                     opt_order = i;
 | |
|             }
 | |
|         }
 | |
|         opt_order++;
 | |
|     }
 | |
| 
 | |
|     if (s->options.multi_dim_quant) {
 | |
|         int allsteps = 1;
 | |
|         int i, step, improved;
 | |
|         int64_t best_score = INT64_MAX;
 | |
|         int32_t qmax;
 | |
| 
 | |
|         qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1;
 | |
| 
 | |
|         for (i=0; i<opt_order; i++)
 | |
|             allsteps *= 3;
 | |
| 
 | |
|         do {
 | |
|             improved = 0;
 | |
|             for (step = 0; step < allsteps; step++) {
 | |
|                 int tmp = step;
 | |
|                 int32_t lpc_try[MAX_LPC_ORDER];
 | |
|                 int64_t score = 0;
 | |
|                 int diffsum = 0;
 | |
| 
 | |
|                 for (i=0; i<opt_order; i++) {
 | |
|                     int diff = ((tmp + 1) % 3) - 1;
 | |
|                     lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax);
 | |
|                     tmp /= 3;
 | |
|                     diffsum += !!diff;
 | |
|                 }
 | |
|                 if (diffsum >8)
 | |
|                     continue;
 | |
| 
 | |
|                 if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, opt_order, lpc_try, shift[opt_order-1]))
 | |
|                     continue;
 | |
|                 score = find_subframe_rice_params(s, sub, opt_order);
 | |
|                 if (score < best_score) {
 | |
|                     best_score = score;
 | |
|                     memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs));
 | |
|                     improved=1;
 | |
|                 }
 | |
|             }
 | |
|         } while(improved);
 | |
|     }
 | |
| 
 | |
|     sub->order     = opt_order;
 | |
|     sub->type_code = sub->type | (sub->order-1);
 | |
|     sub->shift     = shift[sub->order-1];
 | |
|     for (i = 0; i < sub->order; i++)
 | |
|         sub->coefs[i] = coefs[sub->order-1][i];
 | |
| 
 | |
|     if(lpc_encode_choose_datapath(s, sub->obits, res, smp, smp_33bps, n, sub->order, sub->coefs, sub->shift)) {
 | |
|         /* No predictor found with residuals within <INT32_MIN,INT32_MAX],
 | |
|          * so encode a verbatim subframe instead */
 | |
|         DEFAULT_TO_VERBATIM();
 | |
|     }
 | |
| 
 | |
|     find_subframe_rice_params(s, sub, sub->order);
 | |
| 
 | |
|     return subframe_count_exact(s, sub, sub->order);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int count_frame_header(FlacEncodeContext *s)
 | |
| {
 | |
|     uint8_t av_unused tmp;
 | |
|     int count;
 | |
| 
 | |
|     /*
 | |
|     <14> Sync code
 | |
|     <1>  Reserved
 | |
|     <1>  Blocking strategy
 | |
|     <4>  Block size in inter-channel samples
 | |
|     <4>  Sample rate
 | |
|     <4>  Channel assignment
 | |
|     <3>  Sample size in bits
 | |
|     <1>  Reserved
 | |
|     */
 | |
|     count = 32;
 | |
| 
 | |
|     /* coded frame number */
 | |
|     PUT_UTF8(s->frame_count, tmp, count += 8;)
 | |
| 
 | |
|     /* explicit block size */
 | |
|     if (s->frame.bs_code[0] == 6)
 | |
|         count += 8;
 | |
|     else if (s->frame.bs_code[0] == 7)
 | |
|         count += 16;
 | |
| 
 | |
|     /* explicit sample rate */
 | |
|     count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8;
 | |
| 
 | |
|     /* frame header CRC-8 */
 | |
|     count += 8;
 | |
| 
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int encode_frame(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
|     uint64_t count;
 | |
| 
 | |
|     count = count_frame_header(s);
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++)
 | |
|         count += encode_residual_ch(s, ch);
 | |
| 
 | |
|     count += (8 - (count & 7)) & 7; // byte alignment
 | |
|     count += 16;                    // CRC-16
 | |
| 
 | |
|     count >>= 3;
 | |
|     if (count > INT_MAX)
 | |
|         return AVERROR_BUG;
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void remove_wasted_bits(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch, i, wasted_bits;
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &s->frame.subframes[ch];
 | |
| 
 | |
|         if (sub->obits > 32) {
 | |
|             int64_t v = 0;
 | |
|             for (i = 0; i < s->frame.blocksize; i++) {
 | |
|                 v |= s->frame.samples_33bps[i];
 | |
|                 if (v & 1)
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             if (!v || (v & 1))
 | |
|                 return;
 | |
| 
 | |
|             v = ff_ctzll(v);
 | |
| 
 | |
|             /* If any wasted bits are found, samples are moved
 | |
|              * from frame.samples_33bps to frame.subframes[ch] */
 | |
|             for (i = 0; i < s->frame.blocksize; i++)
 | |
|                 sub->samples[i] = s->frame.samples_33bps[i] >> v;
 | |
|             wasted_bits = v;
 | |
|         } else {
 | |
|             int32_t v = 0;
 | |
|             for (i = 0; i < s->frame.blocksize; i++) {
 | |
|                 v |= sub->samples[i];
 | |
|                 if (v & 1)
 | |
|                     break;
 | |
|             }
 | |
| 
 | |
|             if (!v || (v & 1))
 | |
|                 return;
 | |
| 
 | |
|             v = ff_ctz(v);
 | |
| 
 | |
|             for (i = 0; i < s->frame.blocksize; i++)
 | |
|                 sub->samples[i] >>= v;
 | |
|             wasted_bits = v;
 | |
|         }
 | |
| 
 | |
|         sub->wasted = wasted_bits;
 | |
|         sub->obits -= wasted_bits;
 | |
| 
 | |
|         /* for 24-bit, check if removing wasted bits makes the range better
 | |
|          * suited for using RICE instead of RICE2 for entropy coding */
 | |
|         if (sub->obits <= 17)
 | |
|             sub->rc.coding_mode = CODING_MODE_RICE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
 | |
|                                 int max_rice_param, int bps)
 | |
| {
 | |
|     int best;
 | |
|     uint64_t sum[4];
 | |
|     uint64_t score[4];
 | |
|     int k;
 | |
| 
 | |
|     /* calculate sum of 2nd order residual for each channel */
 | |
|     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | |
|     if(bps < 30) {
 | |
|         int32_t lt, rt;
 | |
|         for (int i = 2; i < n; i++) {
 | |
|             lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
 | |
|             rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | |
|             sum[2] += FFABS((lt + rt) >> 1);
 | |
|             sum[3] += FFABS(lt - rt);
 | |
|             sum[0] += FFABS(lt);
 | |
|             sum[1] += FFABS(rt);
 | |
|         }
 | |
|     } else {
 | |
|         int64_t lt, rt;
 | |
|         for (int i = 2; i < n; i++) {
 | |
|             lt = (int64_t)left_ch[i]  - 2*(int64_t)left_ch[i-1]  + left_ch[i-2];
 | |
|             rt = (int64_t)right_ch[i] - 2*(int64_t)right_ch[i-1] + right_ch[i-2];
 | |
|             sum[2] += FFABS((lt + rt) >> 1);
 | |
|             sum[3] += FFABS(lt - rt);
 | |
|             sum[0] += FFABS(lt);
 | |
|             sum[1] += FFABS(rt);
 | |
|         }
 | |
|     }
 | |
|     /* estimate bit counts */
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         k      = find_optimal_param(2 * sum[i], n, max_rice_param);
 | |
|         sum[i] = rice_encode_count( 2 * sum[i], n, k);
 | |
|     }
 | |
| 
 | |
|     /* calculate score for each mode */
 | |
|     score[0] = sum[0] + sum[1];
 | |
|     score[1] = sum[0] + sum[3];
 | |
|     score[2] = sum[1] + sum[3];
 | |
|     score[3] = sum[2] + sum[3];
 | |
| 
 | |
|     /* return mode with lowest score */
 | |
|     best = 0;
 | |
|     for (int i = 1; i < 4; i++)
 | |
|         if (score[i] < score[best])
 | |
|             best = i;
 | |
| 
 | |
|     return best;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Perform stereo channel decorrelation.
 | |
|  */
 | |
| static void channel_decorrelation(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int32_t *left, *right;
 | |
|     int64_t *side_33bps;
 | |
|     int n;
 | |
| 
 | |
|     frame      = &s->frame;
 | |
|     n          = frame->blocksize;
 | |
|     left       = frame->subframes[0].samples;
 | |
|     right      = frame->subframes[1].samples;
 | |
|     side_33bps = frame->samples_33bps;
 | |
| 
 | |
|     if (s->channels != 2) {
 | |
|         frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->options.ch_mode < 0) {
 | |
|         int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
 | |
|         frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param, s->avctx->bits_per_raw_sample);
 | |
|     } else
 | |
|         frame->ch_mode = s->options.ch_mode;
 | |
| 
 | |
|     /* perform decorrelation and adjust bits-per-sample */
 | |
|     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | |
|         return;
 | |
|     if(s->avctx->bits_per_raw_sample == 32) {
 | |
|         if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | |
|             int64_t tmp;
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 tmp           = left[i];
 | |
|                 left[i]       = (tmp + right[i]) >> 1;
 | |
|                 side_33bps[i] =  tmp - right[i];
 | |
|             }
 | |
|             frame->subframes[1].obits++;
 | |
|         } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | |
|             for (int i = 0; i < n; i++)
 | |
|                 side_33bps[i] = (int64_t)left[i] - right[i];
 | |
|             frame->subframes[1].obits++;
 | |
|         } else {
 | |
|             for (int i = 0; i < n; i++)
 | |
|                 side_33bps[i] = (int64_t)left[i] - right[i];
 | |
|             frame->subframes[0].obits++;
 | |
|         }
 | |
|     } else {
 | |
|         if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | |
|             int32_t tmp;
 | |
|             for (int i = 0; i < n; i++) {
 | |
|                 tmp      = left[i];
 | |
|                 left[i]  = (tmp + right[i]) >> 1;
 | |
|                 right[i] =  tmp - right[i];
 | |
|             }
 | |
|             frame->subframes[1].obits++;
 | |
|         } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | |
|             for (int i = 0; i < n; i++)
 | |
|                 right[i] = left[i] - right[i];
 | |
|             frame->subframes[1].obits++;
 | |
|         } else {
 | |
|             for (int i = 0; i < n; i++)
 | |
|                 left[i] -= right[i];
 | |
|             frame->subframes[0].obits++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_utf8(PutBitContext *pb, uint32_t val)
 | |
| {
 | |
|     uint8_t tmp;
 | |
|     PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_frame_header(FlacEncodeContext *s)
 | |
| {
 | |
|     FlacFrame *frame;
 | |
|     int crc;
 | |
| 
 | |
|     frame = &s->frame;
 | |
| 
 | |
|     put_bits(&s->pb, 16, 0xFFF8);
 | |
|     put_bits(&s->pb, 4, frame->bs_code[0]);
 | |
|     put_bits(&s->pb, 4, s->sr_code[0]);
 | |
| 
 | |
|     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | |
|         put_bits(&s->pb, 4, s->channels-1);
 | |
|     else
 | |
|         put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
 | |
| 
 | |
|     put_bits(&s->pb, 3, s->bps_code);
 | |
|     put_bits(&s->pb, 1, 0);
 | |
|     write_utf8(&s->pb, s->frame_count);
 | |
| 
 | |
|     if (frame->bs_code[0] == 6)
 | |
|         put_bits(&s->pb, 8, frame->bs_code[1]);
 | |
|     else if (frame->bs_code[0] == 7)
 | |
|         put_bits(&s->pb, 16, frame->bs_code[1]);
 | |
| 
 | |
|     if (s->sr_code[0] == 12)
 | |
|         put_bits(&s->pb, 8, s->sr_code[1]);
 | |
|     else if (s->sr_code[0] > 12)
 | |
|         put_bits(&s->pb, 16, s->sr_code[1]);
 | |
| 
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
 | |
|                  put_bytes_output(&s->pb));
 | |
|     put_bits(&s->pb, 8, crc);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_sr_golomb_flac(PutBitContext *pb, int i, int k)
 | |
| {
 | |
|     unsigned v, e;
 | |
| 
 | |
|     v = ((unsigned)(i) << 1) ^ (i >> 31);
 | |
| 
 | |
|     e = (v >> k) + 1;
 | |
|     while (e > 31) {
 | |
|         put_bits(pb, 31, 0);
 | |
|         e -= 31;
 | |
|     }
 | |
|     put_bits(pb, e, 1);
 | |
|     if (k) {
 | |
|         unsigned mask = UINT32_MAX >> (32-k);
 | |
|         put_bits(pb, k, v & mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_subframes(FlacEncodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
| 
 | |
|     for (ch = 0; ch < s->channels; ch++) {
 | |
|         FlacSubframe *sub = &s->frame.subframes[ch];
 | |
|         int p, porder, psize;
 | |
|         int32_t *part_end;
 | |
|         int32_t *res       =  sub->residual;
 | |
|         int32_t *frame_end = &sub->residual[s->frame.blocksize];
 | |
| 
 | |
|         /* subframe header */
 | |
|         put_bits(&s->pb, 1, 0);
 | |
|         put_bits(&s->pb, 6, sub->type_code);
 | |
|         put_bits(&s->pb, 1, !!sub->wasted);
 | |
|         if (sub->wasted)
 | |
|             put_bits(&s->pb, sub->wasted, 1);
 | |
| 
 | |
|         /* subframe */
 | |
|         if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | |
|             if(sub->obits == 33)
 | |
|                 put_sbits63(&s->pb, 33, s->frame.samples_33bps[0]);
 | |
|             else if(sub->obits == 32)
 | |
|                 put_bits32(&s->pb, res[0]);
 | |
|             else
 | |
|                 put_sbits(&s->pb, sub->obits, res[0]);
 | |
|         } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | |
|             if (sub->obits == 33) {
 | |
|                 int64_t *res64 = s->frame.samples_33bps;
 | |
|                 int64_t *frame_end64 = &s->frame.samples_33bps[s->frame.blocksize];
 | |
|                 while (res64 < frame_end64)
 | |
|                     put_sbits63(&s->pb, 33, (*res64++));
 | |
|             } else if (sub->obits == 32) {
 | |
|                 while (res < frame_end)
 | |
|                     put_bits32(&s->pb, *res++);
 | |
|             } else {
 | |
|                 while (res < frame_end)
 | |
|                     put_sbits(&s->pb, sub->obits, *res++);
 | |
|             }
 | |
|         } else {
 | |
|             /* warm-up samples */
 | |
|             if (sub->obits == 33) {
 | |
|                 for (int i = 0; i < sub->order; i++)
 | |
|                     put_sbits63(&s->pb, 33, s->frame.samples_33bps[i]);
 | |
|                 res += sub->order;
 | |
|             } else if (sub->obits == 32) {
 | |
|                 for (int i = 0; i < sub->order; i++)
 | |
|                     put_bits32(&s->pb, *res++);
 | |
|             } else {
 | |
|                 for (int i = 0; i < sub->order; i++)
 | |
|                     put_sbits(&s->pb, sub->obits, *res++);
 | |
|             }
 | |
| 
 | |
|             /* LPC coefficients */
 | |
|             if (sub->type == FLAC_SUBFRAME_LPC) {
 | |
|                 int cbits = s->options.lpc_coeff_precision;
 | |
|                 put_bits( &s->pb, 4, cbits-1);
 | |
|                 put_sbits(&s->pb, 5, sub->shift);
 | |
|                 for (int i = 0; i < sub->order; i++)
 | |
|                     put_sbits(&s->pb, cbits, sub->coefs[i]);
 | |
|             }
 | |
| 
 | |
|             /* rice-encoded block */
 | |
|             put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
 | |
| 
 | |
|             /* partition order */
 | |
|             porder  = sub->rc.porder;
 | |
|             psize   = s->frame.blocksize >> porder;
 | |
|             put_bits(&s->pb, 4, porder);
 | |
| 
 | |
|             /* residual */
 | |
|             part_end  = &sub->residual[psize];
 | |
|             for (p = 0; p < 1 << porder; p++) {
 | |
|                 int k = sub->rc.params[p];
 | |
|                 put_bits(&s->pb, sub->rc.coding_mode, k);
 | |
|                 while (res < part_end)
 | |
|                     set_sr_golomb_flac(&s->pb, *res++, k);
 | |
|                 part_end = FFMIN(frame_end, part_end + psize);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void write_frame_footer(FlacEncodeContext *s)
 | |
| {
 | |
|     int crc;
 | |
|     flush_put_bits(&s->pb);
 | |
|     crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
 | |
|                             put_bytes_output(&s->pb)));
 | |
|     put_bits(&s->pb, 16, crc);
 | |
|     flush_put_bits(&s->pb);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
 | |
| {
 | |
|     init_put_bits(&s->pb, avpkt->data, avpkt->size);
 | |
|     write_frame_header(s);
 | |
|     write_subframes(s);
 | |
|     write_frame_footer(s);
 | |
|     return put_bytes_output(&s->pb);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int update_md5_sum(FlacEncodeContext *s, const void *samples)
 | |
| {
 | |
|     const uint8_t *buf;
 | |
|     int buf_size = s->frame.blocksize * s->channels *
 | |
|                    ((s->avctx->bits_per_raw_sample + 7) / 8);
 | |
| 
 | |
|     if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
 | |
|         av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
 | |
|         if (!s->md5_buffer)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     if (s->avctx->bits_per_raw_sample <= 16) {
 | |
|         buf = (const uint8_t *)samples;
 | |
| #if HAVE_BIGENDIAN
 | |
|         s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer,
 | |
|                             (const uint16_t *) samples, buf_size / 2);
 | |
|         buf = s->md5_buffer;
 | |
| #endif
 | |
|     } else if (s->avctx->bits_per_raw_sample <= 24) {
 | |
|         int i;
 | |
|         const int32_t *samples0 = samples;
 | |
|         uint8_t *tmp            = s->md5_buffer;
 | |
| 
 | |
|         for (i = 0; i < s->frame.blocksize * s->channels; i++) {
 | |
|             int32_t v = samples0[i] >> 8;
 | |
|             AV_WL24(tmp + 3*i, v);
 | |
|         }
 | |
|         buf = s->md5_buffer;
 | |
|     } else {
 | |
|         /* s->avctx->bits_per_raw_sample <= 32 */
 | |
|         int i;
 | |
|         const int32_t *samples0 = samples;
 | |
|         uint8_t *tmp            = s->md5_buffer;
 | |
| 
 | |
|         for (i = 0; i < s->frame.blocksize * s->channels; i++)
 | |
|             AV_WL32(tmp + 4*i, samples0[i]);
 | |
|         buf = s->md5_buffer;
 | |
|     }
 | |
|     av_md5_update(s->md5ctx, buf, buf_size);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                              const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     FlacEncodeContext *s;
 | |
|     int frame_bytes, out_bytes, ret;
 | |
| 
 | |
|     s = avctx->priv_data;
 | |
| 
 | |
|     /* when the last block is reached, update the header in extradata */
 | |
|     if (!frame) {
 | |
|         s->max_framesize = s->max_encoded_framesize;
 | |
|         av_md5_final(s->md5ctx, s->md5sum);
 | |
|         write_streaminfo(s, avctx->extradata);
 | |
| 
 | |
|         if (!s->flushed) {
 | |
|             uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
 | |
|                                                          avctx->extradata_size);
 | |
|             if (!side_data)
 | |
|                 return AVERROR(ENOMEM);
 | |
|             memcpy(side_data, avctx->extradata, avctx->extradata_size);
 | |
| 
 | |
|             avpkt->pts = s->next_pts;
 | |
| 
 | |
|             *got_packet_ptr = 1;
 | |
|             s->flushed = 1;
 | |
|         }
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* change max_framesize for small final frame */
 | |
|     if (frame->nb_samples < s->frame.blocksize) {
 | |
|         s->max_framesize = flac_get_max_frame_size(frame->nb_samples,
 | |
|                                                    s->channels,
 | |
|                                                    avctx->bits_per_raw_sample);
 | |
|     }
 | |
| 
 | |
|     init_frame(s, frame->nb_samples);
 | |
| 
 | |
|     copy_samples(s, frame->data[0]);
 | |
| 
 | |
|     channel_decorrelation(s);
 | |
| 
 | |
|     remove_wasted_bits(s);
 | |
| 
 | |
|     frame_bytes = encode_frame(s);
 | |
| 
 | |
|     /* Fall back on verbatim mode if the compressed frame is larger than it
 | |
|        would be if encoded uncompressed. */
 | |
|     if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
 | |
|         s->frame.verbatim_only = 1;
 | |
|         frame_bytes = encode_frame(s);
 | |
|         if (frame_bytes < 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
 | |
|             return frame_bytes;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((ret = ff_get_encode_buffer(avctx, avpkt, frame_bytes, 0)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     out_bytes = write_frame(s, avpkt);
 | |
| 
 | |
|     s->frame_count++;
 | |
|     s->sample_count += frame->nb_samples;
 | |
|     if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
 | |
|         return ret;
 | |
|     }
 | |
|     if (out_bytes > s->max_encoded_framesize)
 | |
|         s->max_encoded_framesize = out_bytes;
 | |
|     if (out_bytes < s->min_framesize)
 | |
|         s->min_framesize = out_bytes;
 | |
| 
 | |
|     s->next_pts = frame->pts + ff_samples_to_time_base(avctx, frame->nb_samples);
 | |
| 
 | |
|     av_shrink_packet(avpkt, out_bytes);
 | |
| 
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int flac_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     FlacEncodeContext *s = avctx->priv_data;
 | |
| 
 | |
|     av_freep(&s->md5ctx);
 | |
|     av_freep(&s->md5_buffer);
 | |
|     ff_lpc_end(&s->lpc_ctx);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | |
| static const AVOption options[] = {
 | |
| { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
 | |
| { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, .unit = "lpc_type" },
 | |
| { "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, .unit = "lpc_type" },
 | |
| { "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, .unit = "lpc_type" },
 | |
| { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, .unit = "lpc_type" },
 | |
| { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, .unit = "lpc_type" },
 | |
| { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
 | |
| { "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | |
| { "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | |
| { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, .unit = "predm" },
 | |
| { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, .unit = "predm" },
 | |
| { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, .unit = "ch_mode" },
 | |
| { "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, .unit = "ch_mode" },
 | |
| { "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, .unit = "ch_mode" },
 | |
| { "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, .unit = "ch_mode" },
 | |
| { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, .unit = "ch_mode" },
 | |
| { "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, .unit = "ch_mode" },
 | |
| { "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
| { "multi_dim_quant",       "Multi-dimensional quantization",    offsetof(FlacEncodeContext, options.multi_dim_quant),       AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
| { "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
 | |
| { "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
 | |
| 
 | |
| { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass flac_encoder_class = {
 | |
|     .class_name = "FLAC encoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| const FFCodec ff_flac_encoder = {
 | |
|     .p.name         = "flac",
 | |
|     CODEC_LONG_NAME("FLAC (Free Lossless Audio Codec)"),
 | |
|     .p.type         = AVMEDIA_TYPE_AUDIO,
 | |
|     .p.id           = AV_CODEC_ID_FLAC,
 | |
|     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
 | |
|                       AV_CODEC_CAP_SMALL_LAST_FRAME |
 | |
|                       AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
 | |
|     .priv_data_size = sizeof(FlacEncodeContext),
 | |
|     .init           = flac_encode_init,
 | |
|     FF_CODEC_ENCODE_CB(flac_encode_frame),
 | |
|     .close          = flac_encode_close,
 | |
|     .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
 | |
|                                                      AV_SAMPLE_FMT_S32,
 | |
|                                                      AV_SAMPLE_FMT_NONE },
 | |
|     .p.priv_class   = &flac_encoder_class,
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_EOF_FLUSH,
 | |
| };
 |