3119 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3119 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * HEVC video Decoder
 | |
|  *
 | |
|  * Copyright (C) 2012 - 2013 Guillaume Martres
 | |
|  * Copyright (C) 2012 - 2013 Mickael Raulet
 | |
|  * Copyright (C) 2012 - 2013 Gildas Cocherel
 | |
|  * Copyright (C) 2012 - 2013 Wassim Hamidouche
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/attributes.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "libavutil/internal.h"
 | |
| #include "libavutil/md5.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/pixdesc.h"
 | |
| 
 | |
| #include "bytestream.h"
 | |
| #include "cabac_functions.h"
 | |
| #include "dsputil.h"
 | |
| #include "golomb.h"
 | |
| #include "hevc.h"
 | |
| 
 | |
| const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
 | |
| const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
 | |
| const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
 | |
| 
 | |
| static const uint8_t scan_1x1[1] = {
 | |
|     0,
 | |
| };
 | |
| 
 | |
| static const uint8_t horiz_scan2x2_x[4] = {
 | |
|     0, 1, 0, 1,
 | |
| };
 | |
| 
 | |
| static const uint8_t horiz_scan2x2_y[4] = {
 | |
|     0, 0, 1, 1
 | |
| };
 | |
| 
 | |
| static const uint8_t horiz_scan4x4_x[16] = {
 | |
|     0, 1, 2, 3,
 | |
|     0, 1, 2, 3,
 | |
|     0, 1, 2, 3,
 | |
|     0, 1, 2, 3,
 | |
| };
 | |
| 
 | |
| static const uint8_t horiz_scan4x4_y[16] = {
 | |
|     0, 0, 0, 0,
 | |
|     1, 1, 1, 1,
 | |
|     2, 2, 2, 2,
 | |
|     3, 3, 3, 3,
 | |
| };
 | |
| 
 | |
| static const uint8_t horiz_scan8x8_inv[8][8] = {
 | |
|     {  0,  1,  2,  3, 16, 17, 18, 19, },
 | |
|     {  4,  5,  6,  7, 20, 21, 22, 23, },
 | |
|     {  8,  9, 10, 11, 24, 25, 26, 27, },
 | |
|     { 12, 13, 14, 15, 28, 29, 30, 31, },
 | |
|     { 32, 33, 34, 35, 48, 49, 50, 51, },
 | |
|     { 36, 37, 38, 39, 52, 53, 54, 55, },
 | |
|     { 40, 41, 42, 43, 56, 57, 58, 59, },
 | |
|     { 44, 45, 46, 47, 60, 61, 62, 63, },
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan4x1_x[4] = {
 | |
|     0, 1, 2, 3,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan1x4_y[4] = {
 | |
|     0, 1, 2, 3,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x2_x[4] = {
 | |
|     0, 0, 1, 1,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x2_y[4] = {
 | |
|     0, 1, 0, 1,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x2_inv[2][2] = {
 | |
|     { 0, 2, },
 | |
|     { 1, 3, },
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan8x2_x[16] = {
 | |
|     0, 0, 1, 1,
 | |
|     2, 2, 3, 3,
 | |
|     4, 4, 5, 5,
 | |
|     6, 6, 7, 7,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan8x2_y[16] = {
 | |
|     0, 1, 0, 1,
 | |
|     0, 1, 0, 1,
 | |
|     0, 1, 0, 1,
 | |
|     0, 1, 0, 1,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan8x2_inv[2][8] = {
 | |
|     { 0, 2, 4, 6, 8, 10, 12, 14, },
 | |
|     { 1, 3, 5, 7, 9, 11, 13, 15, },
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x8_x[16] = {
 | |
|     0, 0, 1, 0,
 | |
|     1, 0, 1, 0,
 | |
|     1, 0, 1, 0,
 | |
|     1, 0, 1, 1,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x8_y[16] = {
 | |
|     0, 1, 0, 2,
 | |
|     1, 3, 2, 4,
 | |
|     3, 5, 4, 6,
 | |
|     5, 7, 6, 7,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan2x8_inv[8][2] = {
 | |
|     {  0,  2, },
 | |
|     {  1,  4, },
 | |
|     {  3,  6, },
 | |
|     {  5,  8, },
 | |
|     {  7, 10, },
 | |
|     {  9, 12, },
 | |
|     { 11, 14, },
 | |
|     { 13, 15, },
 | |
| };
 | |
| 
 | |
| const uint8_t ff_hevc_diag_scan4x4_x[16] = {
 | |
|     0, 0, 1, 0,
 | |
|     1, 2, 0, 1,
 | |
|     2, 3, 1, 2,
 | |
|     3, 2, 3, 3,
 | |
| };
 | |
| 
 | |
| const uint8_t ff_hevc_diag_scan4x4_y[16] = {
 | |
|     0, 1, 0, 2,
 | |
|     1, 0, 3, 2,
 | |
|     1, 0, 3, 2,
 | |
|     1, 3, 2, 3,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan4x4_inv[4][4] = {
 | |
|     { 0,  2,  5,  9, },
 | |
|     { 1,  4,  8, 12, },
 | |
|     { 3,  7, 11, 14, },
 | |
|     { 6, 10, 13, 15, },
 | |
| };
 | |
| 
 | |
| const uint8_t ff_hevc_diag_scan8x8_x[64] = {
 | |
|     0, 0, 1, 0,
 | |
|     1, 2, 0, 1,
 | |
|     2, 3, 0, 1,
 | |
|     2, 3, 4, 0,
 | |
|     1, 2, 3, 4,
 | |
|     5, 0, 1, 2,
 | |
|     3, 4, 5, 6,
 | |
|     0, 1, 2, 3,
 | |
|     4, 5, 6, 7,
 | |
|     1, 2, 3, 4,
 | |
|     5, 6, 7, 2,
 | |
|     3, 4, 5, 6,
 | |
|     7, 3, 4, 5,
 | |
|     6, 7, 4, 5,
 | |
|     6, 7, 5, 6,
 | |
|     7, 6, 7, 7,
 | |
| };
 | |
| 
 | |
| const uint8_t ff_hevc_diag_scan8x8_y[64] = {
 | |
|     0, 1, 0, 2,
 | |
|     1, 0, 3, 2,
 | |
|     1, 0, 4, 3,
 | |
|     2, 1, 0, 5,
 | |
|     4, 3, 2, 1,
 | |
|     0, 6, 5, 4,
 | |
|     3, 2, 1, 0,
 | |
|     7, 6, 5, 4,
 | |
|     3, 2, 1, 0,
 | |
|     7, 6, 5, 4,
 | |
|     3, 2, 1, 7,
 | |
|     6, 5, 4, 3,
 | |
|     2, 7, 6, 5,
 | |
|     4, 3, 7, 6,
 | |
|     5, 4, 7, 6,
 | |
|     5, 7, 6, 7,
 | |
| };
 | |
| 
 | |
| static const uint8_t diag_scan8x8_inv[8][8] = {
 | |
|     {  0,  2,  5,  9, 14, 20, 27, 35, },
 | |
|     {  1,  4,  8, 13, 19, 26, 34, 42, },
 | |
|     {  3,  7, 12, 18, 25, 33, 41, 48, },
 | |
|     {  6, 11, 17, 24, 32, 40, 47, 53, },
 | |
|     { 10, 16, 23, 31, 39, 46, 52, 57, },
 | |
|     { 15, 22, 30, 38, 45, 51, 56, 60, },
 | |
|     { 21, 29, 37, 44, 50, 55, 59, 62, },
 | |
|     { 28, 36, 43, 49, 54, 58, 61, 63, },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * NOTE: Each function hls_foo correspond to the function foo in the
 | |
|  * specification (HLS stands for High Level Syntax).
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Section 5.7
 | |
|  */
 | |
| 
 | |
| /* free everything allocated  by pic_arrays_init() */
 | |
| static void pic_arrays_free(HEVCContext *s)
 | |
| {
 | |
|     av_freep(&s->sao);
 | |
|     av_freep(&s->deblock);
 | |
|     av_freep(&s->split_cu_flag);
 | |
| 
 | |
|     av_freep(&s->skip_flag);
 | |
|     av_freep(&s->tab_ct_depth);
 | |
| 
 | |
|     av_freep(&s->tab_ipm);
 | |
|     av_freep(&s->cbf_luma);
 | |
|     av_freep(&s->is_pcm);
 | |
| 
 | |
|     av_freep(&s->qp_y_tab);
 | |
|     av_freep(&s->tab_slice_address);
 | |
|     av_freep(&s->filter_slice_edges);
 | |
| 
 | |
|     av_freep(&s->horizontal_bs);
 | |
|     av_freep(&s->vertical_bs);
 | |
| 
 | |
|     av_buffer_pool_uninit(&s->tab_mvf_pool);
 | |
|     av_buffer_pool_uninit(&s->rpl_tab_pool);
 | |
| }
 | |
| 
 | |
| /* allocate arrays that depend on frame dimensions */
 | |
| static int pic_arrays_init(HEVCContext *s)
 | |
| {
 | |
|     int log2_min_cb_size     = s->sps->log2_min_coding_block_size;
 | |
|     int width                = s->sps->width;
 | |
|     int height               = s->sps->height;
 | |
|     int pic_size             = width * height;
 | |
|     int pic_size_in_ctb      = ((width  >> log2_min_cb_size) + 1) *
 | |
|                                ((height >> log2_min_cb_size) + 1);
 | |
|     int ctb_count            = s->sps->ctb_width * s->sps->ctb_height;
 | |
|     int pic_width_in_min_pu  = width  >> s->sps->log2_min_pu_size;
 | |
|     int pic_height_in_min_pu = height >> s->sps->log2_min_pu_size;
 | |
|     int pic_size_in_min_pu   = pic_width_in_min_pu * pic_height_in_min_pu;
 | |
|     int pic_width_in_min_tu  = width  >> s->sps->log2_min_transform_block_size;
 | |
|     int pic_height_in_min_tu = height >> s->sps->log2_min_transform_block_size;
 | |
| 
 | |
|     s->bs_width  = width  >> 3;
 | |
|     s->bs_height = height >> 3;
 | |
| 
 | |
|     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
 | |
|     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
 | |
|     s->split_cu_flag = av_malloc(pic_size);
 | |
|     if (!s->sao || !s->deblock || !s->split_cu_flag)
 | |
|         goto fail;
 | |
| 
 | |
|     s->skip_flag    = av_malloc(pic_size_in_ctb);
 | |
|     s->tab_ct_depth = av_malloc(s->sps->min_cb_height * s->sps->min_cb_width);
 | |
|     if (!s->skip_flag || !s->tab_ct_depth)
 | |
|         goto fail;
 | |
| 
 | |
|     s->tab_ipm  = av_malloc(pic_size_in_min_pu);
 | |
|     s->cbf_luma = av_malloc(pic_width_in_min_tu * pic_height_in_min_tu);
 | |
|     s->is_pcm   = av_malloc(pic_size_in_min_pu);
 | |
|     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
 | |
|         goto fail;
 | |
| 
 | |
|     s->filter_slice_edges = av_malloc(ctb_count);
 | |
|     s->tab_slice_address = av_malloc(pic_size_in_ctb * sizeof(*s->tab_slice_address));
 | |
|     s->qp_y_tab = av_malloc(pic_size_in_ctb * sizeof(*s->qp_y_tab));
 | |
|     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
 | |
|         goto fail;
 | |
| 
 | |
|     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
 | |
|     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
 | |
|     if (!s->horizontal_bs || !s->vertical_bs)
 | |
|         goto fail;
 | |
| 
 | |
|     s->tab_mvf_pool = av_buffer_pool_init(pic_size_in_min_pu * sizeof(MvField),
 | |
|                                           av_buffer_alloc);
 | |
|     if (!s->tab_mvf_pool)
 | |
|         goto fail;
 | |
| 
 | |
|     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
 | |
|                                           av_buffer_allocz);
 | |
|     if (!s->rpl_tab_pool)
 | |
|         goto fail;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     pic_arrays_free(s);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
 | |
| {
 | |
|     int i = 0;
 | |
|     int j = 0;
 | |
|     uint8_t luma_weight_l0_flag[16];
 | |
|     uint8_t chroma_weight_l0_flag[16];
 | |
|     uint8_t luma_weight_l1_flag[16];
 | |
|     uint8_t chroma_weight_l1_flag[16];
 | |
| 
 | |
|     s->sh.luma_log2_weight_denom = get_ue_golomb(gb);
 | |
|     if (s->sps->chroma_format_idc != 0) {
 | |
|         int delta = get_se_golomb(gb);
 | |
|         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|         luma_weight_l0_flag[i] = get_bits1(gb);
 | |
|         if (!luma_weight_l0_flag[i]) {
 | |
|             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
 | |
|             s->sh.luma_offset_l0[i] = 0;
 | |
|         }
 | |
|     }
 | |
|     if (s->sps->chroma_format_idc != 0) { //fix me ! invert "if" and "for"
 | |
|         for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|             chroma_weight_l0_flag[i] = get_bits1(gb);
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|             chroma_weight_l0_flag[i] = 0;
 | |
|         }
 | |
|     }
 | |
|     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | |
|         if (luma_weight_l0_flag[i]) {
 | |
|             int delta_luma_weight_l0 = get_se_golomb(gb);
 | |
|             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
 | |
|             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
 | |
|         }
 | |
|         if (chroma_weight_l0_flag[i]) {
 | |
|             for (j = 0; j < 2; j++) {
 | |
|                 int delta_chroma_weight_l0 = get_se_golomb(gb);
 | |
|                 int delta_chroma_offset_l0 = get_se_golomb(gb);
 | |
|                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
 | |
|                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
 | |
|                                                                                      >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | |
|             }
 | |
|         } else {
 | |
|             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|             s->sh.chroma_offset_l0[i][0] = 0;
 | |
|             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|             s->sh.chroma_offset_l0[i][1] = 0;
 | |
|         }
 | |
|     }
 | |
|     if (s->sh.slice_type == B_SLICE) {
 | |
|         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|             luma_weight_l1_flag[i] = get_bits1(gb);
 | |
|             if (!luma_weight_l1_flag[i]) {
 | |
|                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
 | |
|                 s->sh.luma_offset_l1[i] = 0;
 | |
|             }
 | |
|         }
 | |
|         if (s->sps->chroma_format_idc != 0) {
 | |
|             for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|                 chroma_weight_l1_flag[i] = get_bits1(gb);
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|                 chroma_weight_l1_flag[i] = 0;
 | |
|             }
 | |
|         }
 | |
|         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | |
|             if (luma_weight_l1_flag[i]) {
 | |
|                 int delta_luma_weight_l1 = get_se_golomb(gb);
 | |
|                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
 | |
|                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
 | |
|             }
 | |
|             if (chroma_weight_l1_flag[i]) {
 | |
|                 for (j = 0; j < 2; j++) {
 | |
|                     int delta_chroma_weight_l1 = get_se_golomb(gb);
 | |
|                     int delta_chroma_offset_l1 = get_se_golomb(gb);
 | |
|                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
 | |
|                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
 | |
|                                                                                          >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | |
|                 }
 | |
|             } else {
 | |
|                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|                 s->sh.chroma_offset_l1[i][0] = 0;
 | |
|                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | |
|                 s->sh.chroma_offset_l1[i][1] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
 | |
| {
 | |
|     const HEVCSPS *sps = s->sps;
 | |
|     int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
 | |
|     int prev_delta_msb = 0;
 | |
|     int nb_sps = 0, nb_sh;
 | |
|     int i;
 | |
| 
 | |
|     rps->nb_refs = 0;
 | |
|     if (!sps->long_term_ref_pics_present_flag)
 | |
|         return 0;
 | |
| 
 | |
|     if (sps->num_long_term_ref_pics_sps > 0)
 | |
|         nb_sps = get_ue_golomb(gb);
 | |
|     nb_sh = get_ue_golomb(gb);
 | |
| 
 | |
|     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     rps->nb_refs = nb_sh + nb_sps;
 | |
| 
 | |
|     for (i = 0; i < rps->nb_refs; i++) {
 | |
|         uint8_t delta_poc_msb_present;
 | |
| 
 | |
|         if (i < nb_sps) {
 | |
|             uint8_t lt_idx_sps = 0;
 | |
| 
 | |
|             if (sps->num_long_term_ref_pics_sps > 1)
 | |
|                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
 | |
| 
 | |
|             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
 | |
|             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
 | |
|         } else {
 | |
|             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
 | |
|             rps->used[i] = get_bits1(gb);
 | |
|         }
 | |
| 
 | |
|         delta_poc_msb_present = get_bits1(gb);
 | |
|         if (delta_poc_msb_present) {
 | |
|             int delta = get_ue_golomb(gb);
 | |
| 
 | |
|             if (i && i != nb_sps)
 | |
|                 delta += prev_delta_msb;
 | |
| 
 | |
|             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
 | |
|             prev_delta_msb = delta;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_slice_header(HEVCContext *s)
 | |
| {
 | |
|     GetBitContext *gb = &s->HEVClc.gb;
 | |
|     SliceHeader   *sh = &s->sh;
 | |
|     int i, ret;
 | |
| 
 | |
|     // Coded parameters
 | |
|     sh->first_slice_in_pic_flag = get_bits1(gb);
 | |
|     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra = INT_MAX;
 | |
|         if (IS_IDR(s))
 | |
|             ff_hevc_clear_refs(s);
 | |
|     }
 | |
|     if (s->nal_unit_type >= 16 && s->nal_unit_type <= 23)
 | |
|         sh->no_output_of_prior_pics_flag = get_bits1(gb);
 | |
| 
 | |
|     sh->pps_id = get_ue_golomb(gb);
 | |
|     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
 | |
| 
 | |
|     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
 | |
|         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
 | |
|         s->vps = s->vps_list[s->sps->vps_id];
 | |
| 
 | |
|         pic_arrays_free(s);
 | |
|         ret = pic_arrays_init(s);
 | |
|         if (ret < 0) {
 | |
|             s->sps = NULL;
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
| 
 | |
|         s->width  = s->sps->width;
 | |
|         s->height = s->sps->height;
 | |
| 
 | |
|         s->avctx->coded_width  = s->sps->width;
 | |
|         s->avctx->coded_height = s->sps->height;
 | |
|         s->avctx->width        = s->sps->output_width;
 | |
|         s->avctx->height       = s->sps->output_height;
 | |
|         s->avctx->pix_fmt      = s->sps->pix_fmt;
 | |
|         s->avctx->sample_aspect_ratio = s->sps->vui.sar;
 | |
|         s->avctx->has_b_frames = s->sps->temporal_layer[s->sps->max_sub_layers - 1].num_reorder_pics;
 | |
| 
 | |
|         if (s->sps->chroma_format_idc == 0 || s->sps->separate_colour_plane_flag) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                    "TODO: s->sps->chroma_format_idc == 0 || "
 | |
|                    "s->sps->separate_colour_plane_flag\n");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         ff_hevc_pred_init(&s->hpc,     s->sps->bit_depth);
 | |
|         ff_hevc_dsp_init (&s->hevcdsp, s->sps->bit_depth);
 | |
|         ff_videodsp_init (&s->vdsp,    s->sps->bit_depth);
 | |
| 
 | |
|         if (s->sps->sao_enabled) {
 | |
|             av_frame_unref(s->tmp_frame);
 | |
|             ret = ff_get_buffer(s->avctx, s->tmp_frame, 0);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|             s->frame = s->tmp_frame;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sh->dependent_slice_segment_flag = 0;
 | |
|     if (!sh->first_slice_in_pic_flag) {
 | |
|         int slice_address_length;
 | |
| 
 | |
|         if (s->pps->dependent_slice_segments_enabled_flag)
 | |
|             sh->dependent_slice_segment_flag = get_bits1(gb);
 | |
| 
 | |
|         slice_address_length = av_ceil_log2(s->sps->ctb_width *
 | |
|                                               s->sps->ctb_height);
 | |
|         sh->slice_segment_addr = get_bits(gb, slice_address_length);
 | |
|         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n",
 | |
|                    sh->slice_segment_addr);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (!sh->dependent_slice_segment_flag) {
 | |
|             sh->slice_addr = sh->slice_segment_addr;
 | |
|             s->slice_idx++;
 | |
|         }
 | |
|     } else {
 | |
|         sh->slice_segment_addr = sh->slice_addr = 0;
 | |
|         s->slice_idx = 0;
 | |
|         s->slice_initialized = 0;
 | |
|     }
 | |
| 
 | |
|     if (!sh->dependent_slice_segment_flag) {
 | |
|         s->slice_initialized = 0;
 | |
| 
 | |
|         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
 | |
|             skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
 | |
| 
 | |
|         sh->slice_type = get_ue_golomb(gb);
 | |
|         if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE ||
 | |
|               sh->slice_type == B_SLICE)) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
 | |
|                    sh->slice_type);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (s->pps->output_flag_present_flag)
 | |
|             sh->pic_output_flag = get_bits1(gb);
 | |
| 
 | |
|         if (s->sps->separate_colour_plane_flag)
 | |
|             sh->colour_plane_id = get_bits(gb, 2);
 | |
| 
 | |
|         if (!IS_IDR(s)) {
 | |
|             int short_term_ref_pic_set_sps_flag;
 | |
|             int poc;
 | |
| 
 | |
|             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
 | |
|             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
 | |
|             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING,
 | |
|                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 poc = s->poc;
 | |
|             }
 | |
|             s->poc = poc;
 | |
| 
 | |
|             short_term_ref_pic_set_sps_flag = get_bits1(gb);
 | |
|             if (!short_term_ref_pic_set_sps_flag) {
 | |
|                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
| 
 | |
|                 sh->short_term_rps = &sh->slice_rps;
 | |
|             } else {
 | |
|                 int numbits, rps_idx;
 | |
| 
 | |
|                 if (!s->sps->nb_st_rps) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 numbits = av_ceil_log2(s->sps->nb_st_rps);
 | |
|                 rps_idx = (numbits > 0) ? get_bits(gb, numbits) : 0;
 | |
|                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
 | |
|             }
 | |
| 
 | |
|             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
 | |
|             if (ret < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             if (s->sps->sps_temporal_mvp_enabled_flag)
 | |
|                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
 | |
|             else
 | |
|                 sh->slice_temporal_mvp_enabled_flag = 0;
 | |
|         } else {
 | |
|             s->sh.short_term_rps = NULL;
 | |
|             s->poc = 0;
 | |
|         }
 | |
| 
 | |
|         if (s->temporal_id == 0 &&
 | |
|             s->nal_unit_type != NAL_TRAIL_N &&
 | |
|             s->nal_unit_type != NAL_TSA_N &&
 | |
|             s->nal_unit_type != NAL_STSA_N &&
 | |
|             s->nal_unit_type != NAL_TRAIL_N &&
 | |
|             s->nal_unit_type != NAL_RADL_N &&
 | |
|             s->nal_unit_type != NAL_RADL_R &&
 | |
|             s->nal_unit_type != NAL_RASL_R)
 | |
|             s->pocTid0 = s->poc;
 | |
| 
 | |
|         if (s->sps->sao_enabled) {
 | |
|             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
 | |
|             sh->slice_sample_adaptive_offset_flag[2] =
 | |
|             sh->slice_sample_adaptive_offset_flag[1] = get_bits1(gb);
 | |
|         } else {
 | |
|             sh->slice_sample_adaptive_offset_flag[0] = 0;
 | |
|             sh->slice_sample_adaptive_offset_flag[1] = 0;
 | |
|             sh->slice_sample_adaptive_offset_flag[2] = 0;
 | |
|         }
 | |
| 
 | |
|         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
 | |
|         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
 | |
|             int nb_refs;
 | |
| 
 | |
|             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
 | |
|             if (sh->slice_type == B_SLICE)
 | |
|                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
 | |
| 
 | |
|             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
 | |
|                 sh->nb_refs[L0] = get_ue_golomb(gb) + 1;
 | |
|                 if (sh->slice_type == B_SLICE)
 | |
|                     sh->nb_refs[L1] = get_ue_golomb(gb) + 1;
 | |
|             }
 | |
|             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
 | |
|                        sh->nb_refs[L0], sh->nb_refs[L1]);
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             sh->rpl_modification_flag[0] = 0;
 | |
|             sh->rpl_modification_flag[1] = 0;
 | |
|             nb_refs = ff_hevc_frame_nb_refs(s);
 | |
|             if (!nb_refs) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
 | |
|                 sh->rpl_modification_flag[0] = get_bits1(gb);
 | |
|                 if (sh->rpl_modification_flag[0]) {
 | |
|                     for (i = 0; i < sh->nb_refs[L0]; i++)
 | |
|                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | |
|                 }
 | |
| 
 | |
|                 if (sh->slice_type == B_SLICE) {
 | |
|                     sh->rpl_modification_flag[1] = get_bits1(gb);
 | |
|                     if (sh->rpl_modification_flag[1] == 1)
 | |
|                         for (i = 0; i < sh->nb_refs[L1]; i++)
 | |
|                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (sh->slice_type == B_SLICE)
 | |
|                 sh->mvd_l1_zero_flag = get_bits1(gb);
 | |
| 
 | |
|             if (s->pps->cabac_init_present_flag)
 | |
|                 sh->cabac_init_flag = get_bits1(gb);
 | |
|             else
 | |
|                 sh->cabac_init_flag = 0;
 | |
| 
 | |
|             sh->collocated_ref_idx = 0;
 | |
|             if (sh->slice_temporal_mvp_enabled_flag) {
 | |
|                 sh->collocated_list = L0;
 | |
|                 if (sh->slice_type == B_SLICE)
 | |
|                     sh->collocated_list = !get_bits1(gb);
 | |
| 
 | |
|                 if (sh->nb_refs[sh->collocated_list] > 1) {
 | |
|                     sh->collocated_ref_idx = get_ue_golomb(gb);
 | |
|                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                "Invalid collocated_ref_idx: %d.\n", sh->collocated_ref_idx);
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
 | |
|                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
 | |
|                 pred_weight_table(s, gb);
 | |
|             }
 | |
| 
 | |
|             sh->max_num_merge_cand = 5 - get_ue_golomb(gb);
 | |
|         }
 | |
| 
 | |
|         sh->slice_qp_delta = get_se_golomb(gb);
 | |
|         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
 | |
|             sh->slice_cb_qp_offset = get_se_golomb(gb);
 | |
|             sh->slice_cr_qp_offset = get_se_golomb(gb);
 | |
|         } else {
 | |
|             sh->slice_cb_qp_offset = 0;
 | |
|             sh->slice_cr_qp_offset = 0;
 | |
|         }
 | |
| 
 | |
|         if (s->pps->deblocking_filter_control_present_flag) {
 | |
|             int deblocking_filter_override_flag = 0;
 | |
| 
 | |
|             if (s->pps->deblocking_filter_override_enabled_flag)
 | |
|                 deblocking_filter_override_flag = get_bits1(gb);
 | |
| 
 | |
|             if (deblocking_filter_override_flag) {
 | |
|                 sh->disable_deblocking_filter_flag = get_bits1(gb);
 | |
|                 if (!sh->disable_deblocking_filter_flag) {
 | |
|                     sh->beta_offset = get_se_golomb(gb) * 2;
 | |
|                     sh->tc_offset   = get_se_golomb(gb) * 2;
 | |
|                 }
 | |
|             } else {
 | |
|                 sh->disable_deblocking_filter_flag = s->pps->pps_disable_deblocking_filter_flag;
 | |
|                 sh->beta_offset = s->pps->beta_offset;
 | |
|                 sh->tc_offset = s->pps->tc_offset;
 | |
|             }
 | |
|         } else {
 | |
|             sh->disable_deblocking_filter_flag = 0;
 | |
|             sh->beta_offset = 0;
 | |
|             sh->tc_offset = 0;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
 | |
|             (sh->slice_sample_adaptive_offset_flag[0] ||
 | |
|              sh->slice_sample_adaptive_offset_flag[1] ||
 | |
|              !sh->disable_deblocking_filter_flag)) {
 | |
|             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
 | |
|         } else {
 | |
|             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
 | |
|         }
 | |
|     } else if (!s->slice_initialized) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     sh->num_entry_point_offsets = 0;
 | |
|     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
 | |
|         sh->num_entry_point_offsets = get_ue_golomb(gb);
 | |
|         if (sh->num_entry_point_offsets > 0) {
 | |
|             int offset_len = get_ue_golomb(gb) + 1;
 | |
| 
 | |
|             for (i = 0; i < sh->num_entry_point_offsets; i++)
 | |
|                 skip_bits(gb, offset_len);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->pps->slice_header_extension_present_flag) {
 | |
|         int length = get_ue_golomb(gb);
 | |
|         for (i = 0; i < length; i++)
 | |
|             skip_bits(gb, 8); // slice_header_extension_data_byte
 | |
|     }
 | |
| 
 | |
|     // Inferred parameters
 | |
|     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
 | |
|     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
 | |
| 
 | |
|     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
 | |
| 
 | |
|     if (!s->pps->cu_qp_delta_enabled_flag)
 | |
|         s->HEVClc.qp_y = ((s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset) %
 | |
|                           (52 + s->sps->qp_bd_offset)) - s->sps->qp_bd_offset;
 | |
| 
 | |
|     s->slice_initialized = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
 | |
| 
 | |
| #define SET_SAO(elem, value)                            \
 | |
| do {                                                    \
 | |
|     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
 | |
|         sao->elem = value;                              \
 | |
|     else if (sao_merge_left_flag)                       \
 | |
|         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
 | |
|     else if (sao_merge_up_flag)                         \
 | |
|         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
 | |
|     else                                                \
 | |
|         sao->elem = 0;                                  \
 | |
| } while (0)
 | |
| 
 | |
| static void hls_sao_param(HEVCContext *s, int rx, int ry)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int sao_merge_left_flag = 0;
 | |
|     int sao_merge_up_flag   = 0;
 | |
|     int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
 | |
|     SAOParams *sao = &CTB(s->sao, rx, ry);
 | |
|     int c_idx, i;
 | |
| 
 | |
|     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
 | |
|         s->sh.slice_sample_adaptive_offset_flag[1]) {
 | |
|         if (rx > 0) {
 | |
|             if (lc->ctb_left_flag)
 | |
|                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
 | |
|         }
 | |
|         if (ry > 0 && !sao_merge_left_flag) {
 | |
|             if (lc->ctb_up_flag)
 | |
|                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (c_idx = 0; c_idx < 3; c_idx++) {
 | |
|         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
 | |
|             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (c_idx == 2) {
 | |
|             sao->type_idx[2] = sao->type_idx[1];
 | |
|             sao->eo_class[2] = sao->eo_class[1];
 | |
|         } else {
 | |
|             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
 | |
|         }
 | |
| 
 | |
|         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
 | |
|             continue;
 | |
| 
 | |
|         for (i = 0; i < 4; i++)
 | |
|             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
 | |
| 
 | |
|         if (sao->type_idx[c_idx] == SAO_BAND) {
 | |
|             for (i = 0; i < 4; i++) {
 | |
|                 if (sao->offset_abs[c_idx][i]) {
 | |
|                     SET_SAO(offset_sign[c_idx][i], ff_hevc_sao_offset_sign_decode(s));
 | |
|                 } else {
 | |
|                     sao->offset_sign[c_idx][i] = 0;
 | |
|                 }
 | |
|             }
 | |
|             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
 | |
|         } else if (c_idx != 2) {
 | |
|             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
 | |
|         }
 | |
| 
 | |
|         // Inferred parameters
 | |
|         sao->offset_val[c_idx][0] = 0;   //avoid undefined values
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
 | |
|             if (sao->type_idx[c_idx] == SAO_EDGE) {
 | |
|                 if (i > 1)
 | |
|                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | |
|             } else if (sao->offset_sign[c_idx][i]) {
 | |
|                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #undef SET_SAO
 | |
| #undef CTB
 | |
| 
 | |
| static void hls_residual_coding(HEVCContext *s, int x0, int y0,
 | |
|                                 int log2_trafo_size, enum ScanType scan_idx,
 | |
|                                 int c_idx)
 | |
| {
 | |
| #define GET_COORD(offset, n)                                    \
 | |
|     do {                                                        \
 | |
|         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
 | |
|         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
 | |
|     } while (0)
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int transform_skip_flag = 0;
 | |
| 
 | |
|     int last_significant_coeff_x, last_significant_coeff_y;
 | |
|     int last_scan_pos;
 | |
|     int n_end;
 | |
|     int num_coeff = 0;
 | |
|     int num_last_subset;
 | |
|     int x_cg_last_sig, y_cg_last_sig;
 | |
| 
 | |
|     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
 | |
| 
 | |
|     ptrdiff_t stride = s->frame->linesize[c_idx];
 | |
|     int hshift = s->sps->hshift[c_idx];
 | |
|     int vshift = s->sps->vshift[c_idx];
 | |
|     uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride +
 | |
|                                            ((x0 >> hshift) << s->sps->pixel_shift)];
 | |
|     DECLARE_ALIGNED( 16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE] ) = {0};
 | |
| 
 | |
|     int trafo_size = 1 << log2_trafo_size;
 | |
|     int i;
 | |
|     int qp,shift,add,scale,scale_m;
 | |
|     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
 | |
|     const uint8_t *scale_matrix;
 | |
|     uint8_t dc_scale;
 | |
| 
 | |
|     // Derive QP for dequant
 | |
|     if (!lc->cu.cu_transquant_bypass_flag) {
 | |
|         static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 };
 | |
|         int qp_y = lc->qp_y;
 | |
| 
 | |
|         if (c_idx == 0) {
 | |
|             qp = qp_y + s->sps->qp_bd_offset;
 | |
|         } else {
 | |
|             int qp_i, offset;
 | |
| 
 | |
|             if (c_idx == 1)
 | |
|                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
 | |
|             else
 | |
|                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
 | |
| 
 | |
|             qp_i = av_clip_c(qp_y + offset, - s->sps->qp_bd_offset, 57);
 | |
|             if (qp_i < 30)
 | |
|                 qp = qp_i;
 | |
|             else if (qp_i > 43)
 | |
|                 qp = qp_i - 6;
 | |
|             else
 | |
|                 qp = qp_c[qp_i - 30];
 | |
| 
 | |
|             qp += s->sps->qp_bd_offset;
 | |
|         }
 | |
| 
 | |
|         shift    = s->sps->bit_depth + log2_trafo_size - 5;
 | |
|         add      = 1 << (shift-1);
 | |
|         scale    = level_scale[qp%6] << (qp/6);
 | |
|         scale_m  = 16; // default when no custom scaling lists.
 | |
|         dc_scale = 16;
 | |
| 
 | |
|         if (s->sps->scaling_list_enable_flag) {
 | |
|             const ScalingList *sl = s->pps->pps_scaling_list_data_present_flag ?
 | |
|                                     &s->pps->scaling_list : &s->sps->scaling_list;
 | |
|             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
 | |
| 
 | |
|             if (log2_trafo_size != 5)
 | |
|                 matrix_id = 3 * matrix_id + c_idx;
 | |
| 
 | |
|             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
 | |
|             if (log2_trafo_size >= 4)
 | |
|                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memset(lc->rc.significant_coeff_group_flag, 0, 8 * 8);
 | |
| 
 | |
|     if (s->pps->transform_skip_enabled_flag && !lc->cu.cu_transquant_bypass_flag &&
 | |
|         log2_trafo_size == 2) {
 | |
|         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
 | |
|     }
 | |
| 
 | |
|     last_significant_coeff_x =
 | |
|         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
 | |
|     last_significant_coeff_y =
 | |
|         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
 | |
| 
 | |
|     if (last_significant_coeff_x > 3) {
 | |
|         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
 | |
|         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
 | |
|                                    (2 + (last_significant_coeff_x & 1)) +
 | |
|                                    suffix;
 | |
|     }
 | |
| 
 | |
|     if (last_significant_coeff_y > 3) {
 | |
|         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
 | |
|         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
 | |
|                                    (2 + (last_significant_coeff_y & 1)) +
 | |
|                                    suffix;
 | |
|     }
 | |
| 
 | |
|     if (scan_idx == SCAN_VERT)
 | |
|         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
 | |
| 
 | |
|     x_cg_last_sig = last_significant_coeff_x >> 2;
 | |
|     y_cg_last_sig = last_significant_coeff_y >> 2;
 | |
| 
 | |
|     switch (scan_idx) {
 | |
|     case SCAN_DIAG: {
 | |
|         int last_x_c = last_significant_coeff_x & 3;
 | |
|         int last_y_c = last_significant_coeff_y & 3;
 | |
| 
 | |
|         scan_x_off = ff_hevc_diag_scan4x4_x;
 | |
|         scan_y_off = ff_hevc_diag_scan4x4_y;
 | |
|         num_coeff = diag_scan4x4_inv[last_y_c][last_x_c];
 | |
|         if (trafo_size == 4) {
 | |
|             scan_x_cg = scan_1x1;
 | |
|             scan_y_cg = scan_1x1;
 | |
|         } else if (trafo_size == 8) {
 | |
|             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
 | |
|             scan_x_cg = diag_scan2x2_x;
 | |
|             scan_y_cg = diag_scan2x2_y;
 | |
|         } else if (trafo_size == 16) {
 | |
|             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
 | |
|             scan_x_cg = ff_hevc_diag_scan4x4_x;
 | |
|             scan_y_cg = ff_hevc_diag_scan4x4_y;
 | |
|         } else { // trafo_size == 32
 | |
|             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
 | |
|             scan_x_cg = ff_hevc_diag_scan8x8_x;
 | |
|             scan_y_cg = ff_hevc_diag_scan8x8_y;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case SCAN_HORIZ:
 | |
|         scan_x_cg = horiz_scan2x2_x;
 | |
|         scan_y_cg = horiz_scan2x2_y;
 | |
|         scan_x_off = horiz_scan4x4_x;
 | |
|         scan_y_off = horiz_scan4x4_y;
 | |
|         num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
 | |
|         break;
 | |
|     default: //SCAN_VERT
 | |
|         scan_x_cg = horiz_scan2x2_y;
 | |
|         scan_y_cg = horiz_scan2x2_x;
 | |
|         scan_x_off = horiz_scan4x4_y;
 | |
|         scan_y_off = horiz_scan4x4_x;
 | |
|         num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
 | |
|         break;
 | |
|     }
 | |
|     num_coeff++;
 | |
| 
 | |
|     num_last_subset = (num_coeff - 1) >> 4;
 | |
| 
 | |
|     for (i = num_last_subset; i >= 0; i--) {
 | |
|         int n, m;
 | |
|         int first_nz_pos_in_cg, last_nz_pos_in_cg, num_sig_coeff, first_greater1_coeff_idx;
 | |
|         int sign_hidden;
 | |
|         int sum_abs;
 | |
|         int x_cg, y_cg, x_c, y_c, pos;
 | |
|         int implicit_non_zero_coeff = 0;
 | |
|         int64_t trans_coeff_level;
 | |
| 
 | |
|         int offset = i << 4;
 | |
| 
 | |
|         uint8_t significant_coeff_flag_idx[16] = {0};
 | |
|         uint8_t coeff_abs_level_greater1_flag[16] = {0};
 | |
|         uint8_t coeff_abs_level_greater2_flag[16] = {0};
 | |
|         uint16_t coeff_sign_flag;
 | |
|         uint8_t nb_significant_coeff_flag = 0;
 | |
| 
 | |
|         int first_elem;
 | |
| 
 | |
|         x_cg = scan_x_cg[i];
 | |
|         y_cg = scan_y_cg[i];
 | |
| 
 | |
|         if ((i < num_last_subset) && (i > 0)) {
 | |
|             lc->rc.significant_coeff_group_flag[x_cg][y_cg] =
 | |
|             ff_hevc_significant_coeff_group_flag_decode(s, c_idx, x_cg, y_cg,
 | |
|                                                         log2_trafo_size);
 | |
|             implicit_non_zero_coeff = 1;
 | |
|         } else {
 | |
|             lc->rc.significant_coeff_group_flag[x_cg][y_cg] =
 | |
|             ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
 | |
|              (x_cg == 0 && y_cg == 0));
 | |
|         }
 | |
| 
 | |
|         last_scan_pos = num_coeff - offset - 1;
 | |
| 
 | |
|         if (i == num_last_subset) {
 | |
|             n_end = last_scan_pos - 1;
 | |
|             significant_coeff_flag_idx[0] = last_scan_pos;
 | |
|             nb_significant_coeff_flag = 1;
 | |
|         } else {
 | |
|             n_end = 15;
 | |
|         }
 | |
|         for (n = n_end; n >= 0; n--) {
 | |
|             GET_COORD(offset, n);
 | |
| 
 | |
|             if (lc->rc.significant_coeff_group_flag[x_cg][y_cg] &&
 | |
|                 (n > 0 || implicit_non_zero_coeff == 0)) {
 | |
|                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c, log2_trafo_size, scan_idx) == 1) {
 | |
|                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
 | |
|                     nb_significant_coeff_flag = nb_significant_coeff_flag + 1;
 | |
|                     implicit_non_zero_coeff = 0;
 | |
|                 }
 | |
|             } else {
 | |
|                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
 | |
|                 if (last_cg && implicit_non_zero_coeff && lc->rc.significant_coeff_group_flag[x_cg][y_cg]) {
 | |
|                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
 | |
|                     nb_significant_coeff_flag = nb_significant_coeff_flag + 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         n_end = nb_significant_coeff_flag;
 | |
| 
 | |
|         first_nz_pos_in_cg = 16;
 | |
|         last_nz_pos_in_cg = -1;
 | |
|         num_sig_coeff = 0;
 | |
|         first_greater1_coeff_idx = -1;
 | |
|         for (m = 0; m < n_end; m++) {
 | |
|             n = significant_coeff_flag_idx[m];
 | |
|             if (num_sig_coeff < 8) {
 | |
|                 coeff_abs_level_greater1_flag[n] =
 | |
|                 ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, i, n,
 | |
|                                                              (num_sig_coeff == 0),
 | |
|                                                              (i == num_last_subset));
 | |
|                 num_sig_coeff++;
 | |
|                 if (coeff_abs_level_greater1_flag[n] &&
 | |
|                     first_greater1_coeff_idx == -1)
 | |
|                     first_greater1_coeff_idx = n;
 | |
|             }
 | |
|             if (last_nz_pos_in_cg == -1)
 | |
|                 last_nz_pos_in_cg = n;
 | |
|             first_nz_pos_in_cg = n;
 | |
|         }
 | |
| 
 | |
|         sign_hidden = (last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
 | |
|                        !lc->cu.cu_transquant_bypass_flag);
 | |
|         if (first_greater1_coeff_idx != -1) {
 | |
|             coeff_abs_level_greater2_flag[first_greater1_coeff_idx] =
 | |
|             ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, i, first_greater1_coeff_idx);
 | |
|         }
 | |
|         if (!s->pps->sign_data_hiding_flag || !sign_hidden ) {
 | |
|             coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
 | |
|         } else {
 | |
|             coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag-1) << (16 - (nb_significant_coeff_flag - 1));
 | |
|         }
 | |
| 
 | |
|         num_sig_coeff = 0;
 | |
|         sum_abs = 0;
 | |
|         first_elem = 1;
 | |
|         for (m = 0; m < n_end; m++) {
 | |
|             n = significant_coeff_flag_idx[m];
 | |
|             GET_COORD(offset, n);
 | |
|             trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n] +
 | |
|                                 coeff_abs_level_greater2_flag[n];
 | |
|             if (trans_coeff_level == ((num_sig_coeff < 8) ?
 | |
|                                       ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
 | |
|                 trans_coeff_level += ff_hevc_coeff_abs_level_remaining(s, first_elem, trans_coeff_level);
 | |
|                 first_elem = 0;
 | |
|             }
 | |
|             if (s->pps->sign_data_hiding_flag && sign_hidden) {
 | |
|                 sum_abs += trans_coeff_level;
 | |
|                 if (n == first_nz_pos_in_cg && ((sum_abs&1) == 1))
 | |
|                     trans_coeff_level = -trans_coeff_level;
 | |
|             }
 | |
|             if (coeff_sign_flag >> 15)
 | |
|                 trans_coeff_level = -trans_coeff_level;
 | |
|             coeff_sign_flag <<= 1;
 | |
|             num_sig_coeff++;
 | |
| 
 | |
|             if (!lc->cu.cu_transquant_bypass_flag) {
 | |
|                 if(s->sps->scaling_list_enable_flag) {
 | |
|                     if(y_c || x_c || log2_trafo_size < 4) {
 | |
|                         switch(log2_trafo_size) {
 | |
|                             case 3: pos = (y_c << 3) + x_c; break;
 | |
|                             case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
 | |
|                             case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
 | |
|                             default: pos = (y_c << 2) + x_c;
 | |
|                         }
 | |
|                         scale_m = scale_matrix[pos];
 | |
|                     } else
 | |
|                         scale_m = dc_scale;
 | |
|                 }
 | |
|                 trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
 | |
|                 if (trans_coeff_level < 0) {
 | |
|                     if((~trans_coeff_level) & 0xFffffffffff8000)
 | |
|                         trans_coeff_level = -32768;
 | |
|                 } else {
 | |
|                     if(trans_coeff_level & 0xffffffffffff8000)
 | |
|                         trans_coeff_level = 32767;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (lc->cu.cu_transquant_bypass_flag) {
 | |
|         s->hevcdsp.transquant_bypass[log2_trafo_size-2](dst, coeffs, stride);
 | |
|     } else {
 | |
|         if (transform_skip_flag)
 | |
|             s->hevcdsp.transform_skip(dst, coeffs, stride);
 | |
|         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 && log2_trafo_size == 2)
 | |
|             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
 | |
|         else
 | |
|             s->hevcdsp.transform_add[log2_trafo_size-2](dst, coeffs, stride);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hls_transform_unit(HEVCContext *s, int x0, int  y0, int xBase, int yBase, int cb_xBase, int cb_yBase,
 | |
|                                int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int scan_idx = SCAN_DIAG;
 | |
|     int scan_idx_c = SCAN_DIAG;
 | |
| 
 | |
|     if (lc->cu.pred_mode == MODE_INTRA) {
 | |
|         int trafo_size = 1 << log2_trafo_size;
 | |
|         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
 | |
| 
 | |
|         s->hpc.intra_pred(s, x0, y0, log2_trafo_size, 0);
 | |
|         if (log2_trafo_size > 2) {
 | |
|             trafo_size = trafo_size<<(s->sps->hshift[1]-1);
 | |
|             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
 | |
|             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 1);
 | |
|             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 2);
 | |
|         } else if (blk_idx == 3) {
 | |
|             trafo_size = trafo_size<<(s->sps->hshift[1]);
 | |
|             ff_hevc_set_neighbour_available(s, xBase, yBase, trafo_size, trafo_size);
 | |
|             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 1);
 | |
|             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (lc->tt.cbf_luma ||
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
 | |
|         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
 | |
|         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
 | |
|             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
 | |
|             if (lc->tu.cu_qp_delta != 0)
 | |
|                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
 | |
|                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
 | |
|             lc->tu.is_cu_qp_delta_coded = 1;
 | |
|             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
 | |
|         }
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
 | |
|             if (lc->tu.cur_intra_pred_mode >= 6 &&
 | |
|                 lc->tu.cur_intra_pred_mode <= 14) {
 | |
|                 scan_idx = SCAN_VERT;
 | |
|             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
 | |
|                        lc->tu.cur_intra_pred_mode <= 30) {
 | |
|                 scan_idx = SCAN_HORIZ;
 | |
|             }
 | |
| 
 | |
|             if (lc->pu.intra_pred_mode_c >= 6 &&
 | |
|                 lc->pu.intra_pred_mode_c <= 14) {
 | |
|                 scan_idx_c = SCAN_VERT;
 | |
|             } else if (lc->pu.intra_pred_mode_c >= 22 &&
 | |
|                        lc->pu.intra_pred_mode_c <= 30) {
 | |
|                 scan_idx_c = SCAN_HORIZ;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (lc->tt.cbf_luma)
 | |
|             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
 | |
|         if (log2_trafo_size > 2) {
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0))
 | |
|                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0))
 | |
|                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
 | |
|         } else if (blk_idx == 3) {
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase))
 | |
|                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
 | |
|             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase))
 | |
|                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     int cb_size = 1 << log2_cb_size;
 | |
|     int log2_min_pu_size = s->sps->log2_min_pu_size;
 | |
| 
 | |
|     int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
 | |
|     int x_end = FFMIN(x0 + cb_size, s->sps->width);
 | |
|     int y_end = FFMIN(y0 + cb_size, s->sps->height);
 | |
|     int i, j;
 | |
| 
 | |
|     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
 | |
|         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
 | |
|             s->is_pcm[i + j * pic_width_in_min_pu] = 2;
 | |
| }
 | |
| 
 | |
| static void hls_transform_tree(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase,
 | |
|                                int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     uint8_t split_transform_flag;
 | |
| 
 | |
|     if (trafo_depth > 0 && log2_trafo_size == 2) {
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase);
 | |
|         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase);
 | |
|     } else {
 | |
|         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0;
 | |
|     }
 | |
| 
 | |
|     if (lc->cu.intra_split_flag) {
 | |
|         if (trafo_depth == 1)
 | |
|             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
 | |
|     } else {
 | |
|         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
 | |
|     }
 | |
| 
 | |
|     lc->tt.cbf_luma = 1;
 | |
| 
 | |
|     lc->tt.inter_split_flag = (s->sps->max_transform_hierarchy_depth_inter == 0 &&
 | |
|                                lc->cu.pred_mode == MODE_INTER &&
 | |
|                                lc->cu.part_mode != PART_2Nx2N && trafo_depth == 0);
 | |
| 
 | |
|     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
 | |
|         log2_trafo_size > s->sps->log2_min_transform_block_size &&
 | |
|         trafo_depth < lc->cu.max_trafo_depth &&
 | |
|         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
 | |
|         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
 | |
|     } else {
 | |
|         split_transform_flag = (log2_trafo_size > s->sps->log2_max_trafo_size ||
 | |
|                                (lc->cu.intra_split_flag && (trafo_depth == 0)) ||
 | |
|                                lc->tt.inter_split_flag);
 | |
|     }
 | |
| 
 | |
|     if (log2_trafo_size > 2) {
 | |
|         if (trafo_depth == 0 ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) {
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
 | |
|                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | |
|         }
 | |
| 
 | |
|         if (trafo_depth == 0 || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) {
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
 | |
|                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (split_transform_flag) {
 | |
|         int x1 = x0 + ((1 << log2_trafo_size) >> 1);
 | |
|         int y1 = y0 + ((1 << log2_trafo_size) >> 1);
 | |
| 
 | |
|         hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
 | |
|                            log2_trafo_size - 1, trafo_depth + 1, 0);
 | |
|         hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
 | |
|                            log2_trafo_size - 1, trafo_depth + 1, 1);
 | |
|         hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
 | |
|                            log2_trafo_size - 1, trafo_depth + 1, 2);
 | |
|         hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
 | |
|                            log2_trafo_size - 1, trafo_depth + 1, 3);
 | |
|     } else {
 | |
|         int min_tu_size = 1 << s->sps->log2_min_transform_block_size;
 | |
|         int log2_min_tu_size = s->sps->log2_min_transform_block_size;
 | |
|         int pic_width_in_min_tu = s->sps->width >> log2_min_tu_size;
 | |
|         int i, j;
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
 | |
|             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
 | |
|             lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
 | |
|         }
 | |
| 
 | |
|         hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
 | |
|                 log2_cb_size, log2_trafo_size, trafo_depth, blk_idx);
 | |
| 
 | |
|         // TODO: store cbf_luma somewhere else
 | |
|         if (lc->tt.cbf_luma)
 | |
|             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
 | |
|                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
 | |
|                     int x_tu = (x0 + j) >> log2_min_tu_size;
 | |
|                     int y_tu = (y0 + i) >> log2_min_tu_size;
 | |
|                     s->cbf_luma[y_tu * pic_width_in_min_tu + x_tu] = 1;
 | |
|                 }
 | |
|         if (!s->sh.disable_deblocking_filter_flag) {
 | |
|             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size,
 | |
|                                                   lc->slice_or_tiles_up_boundary,
 | |
|                                                   lc->slice_or_tiles_left_boundary);
 | |
|             if (s->pps->transquant_bypass_enable_flag && lc->cu.cu_transquant_bypass_flag)
 | |
|                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     //TODO: non-4:2:0 support
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     GetBitContext gb;
 | |
|     int cb_size = 1 << log2_cb_size;
 | |
|     int    stride0 = s->frame->linesize[0];
 | |
|     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
 | |
|     int   stride1 = s->frame->linesize[1];
 | |
|     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
 | |
|     int   stride2 = s->frame->linesize[2];
 | |
|     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
 | |
| 
 | |
|     int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth;
 | |
|     const uint8_t *pcm = skip_bytes(&s->HEVClc.cc, (length + 7) >> 3);
 | |
|     int ret;
 | |
| 
 | |
|     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
 | |
|                                           lc->slice_or_tiles_up_boundary,
 | |
|                                           lc->slice_or_tiles_left_boundary);
 | |
| 
 | |
|     ret = init_get_bits(&gb, pcm, length);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth);
 | |
|     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth);
 | |
|     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
 | |
|     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
 | |
| 
 | |
|     if (x)
 | |
|         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
 | |
|     if (y)
 | |
|         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
 | |
| 
 | |
|     switch (x) {
 | |
|     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
 | |
|     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
 | |
|     case 0: lc->pu.mvd.x = 0;                               break;
 | |
|     }
 | |
| 
 | |
|     switch (y) {
 | |
|     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
 | |
|     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
 | |
|     case 0: lc->pu.mvd.y = 0;                               break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.1 Luma sample interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst target buffer for block data at block position
 | |
|  * @param dststride stride of the dst buffer
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  */
 | |
| static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride, AVFrame *ref,
 | |
|                     const Mv *mv, int x_off, int y_off, int block_w, int block_h)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     uint8_t *src = ref->data[0];
 | |
|     ptrdiff_t srcstride = ref->linesize[0];
 | |
|     int pic_width = s->sps->width;
 | |
|     int pic_height = s->sps->height;
 | |
| 
 | |
|     int mx = mv->x & 3;
 | |
|     int my = mv->y & 3;
 | |
|     int extra_left = ff_hevc_qpel_extra_before[mx];
 | |
|     int extra_top  = ff_hevc_qpel_extra_before[my];
 | |
| 
 | |
|     x_off += mv->x >> 2;
 | |
|     y_off += mv->y >> 2;
 | |
|     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off < extra_left || x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
 | |
|         y_off < extra_top || y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
 | |
|         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, srcstride, src - offset, srcstride,
 | |
|                                  block_w + ff_hevc_qpel_extra[mx], block_h + ff_hevc_qpel_extra[my],
 | |
|                                  x_off - extra_left, y_off - extra_top,
 | |
|                                  pic_width, pic_height);
 | |
|         src = lc->edge_emu_buffer + offset;
 | |
|     }
 | |
|     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
 | |
|                                      block_h, lc->mc_buffer);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.5.3.2.2.2 Chroma sample interpolation process
 | |
|  *
 | |
|  * @param s HEVC decoding context
 | |
|  * @param dst1 target buffer for block data at block position (U plane)
 | |
|  * @param dst2 target buffer for block data at block position (V plane)
 | |
|  * @param dststride stride of the dst1 and dst2 buffers
 | |
|  * @param ref reference picture buffer at origin (0, 0)
 | |
|  * @param mv motion vector (relative to block position) to get pixel data from
 | |
|  * @param x_off horizontal position of block from origin (0, 0)
 | |
|  * @param y_off vertical position of block from origin (0, 0)
 | |
|  * @param block_w width of block
 | |
|  * @param block_h height of block
 | |
|  */
 | |
| static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2, ptrdiff_t dststride, AVFrame *ref,
 | |
|                       const Mv *mv, int x_off, int y_off, int block_w, int block_h)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     uint8_t *src1 = ref->data[1];
 | |
|     uint8_t *src2 = ref->data[2];
 | |
|     ptrdiff_t src1stride = ref->linesize[1];
 | |
|     ptrdiff_t src2stride = ref->linesize[2];
 | |
|     int pic_width  = s->sps->width >> 1;
 | |
|     int pic_height = s->sps->height >> 1;
 | |
| 
 | |
|     int mx = mv->x & 7;
 | |
|     int my = mv->y & 7;
 | |
| 
 | |
|     x_off += mv->x >> 3;
 | |
|     y_off += mv->y >> 3;
 | |
|     src1 += y_off * src1stride + (x_off << s->sps->pixel_shift);
 | |
|     src2 += y_off * src2stride + (x_off << s->sps->pixel_shift);
 | |
| 
 | |
|     if (x_off < EPEL_EXTRA_BEFORE || x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | |
|         y_off < EPEL_EXTRA_AFTER || y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | |
|         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
 | |
|         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1stride, src1 - offset1, src1stride,
 | |
|                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | |
|                                  x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
| 
 | |
|         src1 = lc->edge_emu_buffer + offset1;
 | |
|         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
 | |
|                                              block_w, block_h, mx, my, lc->mc_buffer);
 | |
| 
 | |
|         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2stride, src2 - offset2, src2stride,
 | |
|                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | |
|                                  x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE,
 | |
|                                  pic_width, pic_height);
 | |
|         src2 = lc->edge_emu_buffer + offset2;
 | |
|         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
 | |
|                                              block_w, block_h, mx, my, lc->mc_buffer);
 | |
|     } else {
 | |
|         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
 | |
|                                              block_w, block_h, mx, my, lc->mc_buffer);
 | |
|         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
 | |
|                                              block_w, block_h, mx, my, lc->mc_buffer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
 | |
|                                 const Mv *mv, int y0)
 | |
| {
 | |
|     int y = (mv->y >> 2) + y0;
 | |
| 
 | |
|     //ff_thread_await_progress(&ref->tf, FFMIN(s->height, y), 0);
 | |
|     ff_thread_await_progress(&ref->tf, INT_MAX, 0);
 | |
| }
 | |
| 
 | |
| static void hls_prediction_unit(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx)
 | |
| {
 | |
| #define POS(c_idx, x, y)                                                              \
 | |
|     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
 | |
|                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int merge_idx = 0;
 | |
|     enum InterPredIdc inter_pred_idc = PRED_L0;
 | |
|     struct MvField current_mv = {{{ 0 }}};
 | |
| 
 | |
|     int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|     MvField *tab_mvf = s->ref->tab_mvf;
 | |
|     RefPicList  *refPicList = s->ref->refPicList;
 | |
|     HEVCFrame *ref0, *ref1;
 | |
| 
 | |
|     int tmpstride = MAX_PB_SIZE;
 | |
| 
 | |
|     uint8_t *dst0 = POS(0, x0, y0);
 | |
|     uint8_t *dst1 = POS(1, x0, y0);
 | |
|     uint8_t *dst2 = POS(2, x0, y0);
 | |
|     int log2_min_cb_size = s->sps->log2_min_coding_block_size;
 | |
|     int pic_width_in_ctb = s->sps->width>>log2_min_cb_size;
 | |
|     int x_cb             = x0 >> log2_min_cb_size;
 | |
|     int y_cb             = y0 >> log2_min_cb_size;
 | |
|     int ref_idx[2];
 | |
|     int mvp_flag[2];
 | |
|     int x_pu, y_pu;
 | |
|     int i, j;
 | |
| 
 | |
|     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
 | |
|         if (s->sh.max_num_merge_cand > 1)
 | |
|             merge_idx = ff_hevc_merge_idx_decode(s);
 | |
|         else
 | |
|             merge_idx = 0;
 | |
| 
 | |
|         ff_hevc_luma_mv_merge_mode(s, x0, y0, 1 << log2_cb_size, 1 << log2_cb_size,
 | |
|                                    log2_cb_size, partIdx, merge_idx, ¤t_mv);
 | |
|         x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|         y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|             for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                 tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i] = current_mv;
 | |
|     } else { /* MODE_INTER */
 | |
|         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
 | |
|         if (lc->pu.merge_flag) {
 | |
|             if (s->sh.max_num_merge_cand > 1)
 | |
|                 merge_idx = ff_hevc_merge_idx_decode(s);
 | |
|             else
 | |
|                 merge_idx = 0;
 | |
| 
 | |
|             ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                        partIdx, merge_idx, ¤t_mv);
 | |
|             x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|             y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|                 for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                     tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i] = current_mv;
 | |
|         } else {
 | |
|             ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
 | |
|             if (s->sh.slice_type == B_SLICE)
 | |
|                 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
 | |
| 
 | |
|             if (inter_pred_idc != PRED_L1) {
 | |
|                 if (s->sh.nb_refs[L0]) {
 | |
|                     ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
 | |
|                     current_mv.ref_idx[0] = ref_idx[0];
 | |
|                 }
 | |
|                 current_mv.pred_flag[0] = 1;
 | |
|                 hls_mvd_coding(s, x0, y0, 0);
 | |
|                 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
 | |
|                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                          partIdx, merge_idx, ¤t_mv, mvp_flag[0], 0);
 | |
|                 current_mv.mv[0].x += lc->pu.mvd.x;
 | |
|                 current_mv.mv[0].y += lc->pu.mvd.y;
 | |
|             }
 | |
| 
 | |
|             if (inter_pred_idc != PRED_L0) {
 | |
|                 if (s->sh.nb_refs[L1]) {
 | |
|                     ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
 | |
|                     current_mv.ref_idx[1] = ref_idx[1];
 | |
|                 }
 | |
| 
 | |
|                 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
 | |
|                     lc->pu.mvd.x = 0;
 | |
|                     lc->pu.mvd.y = 0;
 | |
|                 } else {
 | |
|                     hls_mvd_coding(s, x0, y0, 1);
 | |
|                 }
 | |
| 
 | |
|                 current_mv.pred_flag[1] = 1;
 | |
|                 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
 | |
|                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | |
|                                          partIdx, merge_idx, ¤t_mv, mvp_flag[1], 1);
 | |
|                 current_mv.mv[1].x += lc->pu.mvd.x;
 | |
|                 current_mv.mv[1].y += lc->pu.mvd.y;
 | |
|             }
 | |
| 
 | |
|             x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|             y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
| 
 | |
|             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
 | |
|                 for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
 | |
|                     tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i] = current_mv;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (current_mv.pred_flag[0]) {
 | |
|         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
 | |
|         if (!ref0)
 | |
|             return;
 | |
|         hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0);
 | |
|     }
 | |
|     if (current_mv.pred_flag[1]) {
 | |
|         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
 | |
|         if (!ref1)
 | |
|             return;
 | |
|         hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0);
 | |
|     }
 | |
| 
 | |
|     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
| 
 | |
|         luma_mc(s, tmp, tmpstride, ref0->frame,
 | |
|                 ¤t_mv.mv[0], x0, y0, nPbW, nPbH);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
 | |
|             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
 | |
|                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
 | |
|                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
 | |
|                                      dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
 | |
|         } else {
 | |
|             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
 | |
|         }
 | |
|         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
 | |
|                   ¤t_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
 | |
|             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
 | |
|                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
 | |
|                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
 | |
|                                      dst1, s->frame->linesize[1], tmp, tmpstride,
 | |
|                                      nPbW / 2, nPbH / 2);
 | |
|             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
 | |
|                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
 | |
|                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
 | |
|                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
 | |
|                                      nPbW / 2, nPbH / 2);
 | |
|         } else {
 | |
|             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
 | |
|             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
 | |
|         }
 | |
|     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
| 
 | |
|         if (!ref1)
 | |
|             return;
 | |
| 
 | |
|         luma_mc(s, tmp, tmpstride, ref1->frame,
 | |
|                 ¤t_mv.mv[1], x0, y0, nPbW, nPbH);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
 | |
|             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
 | |
|                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
 | |
|                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
 | |
|                                       dst0, s->frame->linesize[0], tmp, tmpstride,
 | |
|                                       nPbW, nPbH);
 | |
|         } else {
 | |
|             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
 | |
|         }
 | |
| 
 | |
|         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
 | |
|                   ¤t_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
 | |
|             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
 | |
|                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
 | |
|                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
 | |
|                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
 | |
|             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
 | |
|                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
 | |
|                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
 | |
|                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
 | |
|         } else {
 | |
|             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
 | |
|             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
 | |
|         }
 | |
|     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
 | |
|         HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
 | |
|         HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
 | |
| 
 | |
|         if (!ref0 || !ref1)
 | |
|             return;
 | |
| 
 | |
|         luma_mc(s, tmp, tmpstride, ref0->frame,
 | |
|                 ¤t_mv.mv[0], x0, y0, nPbW, nPbH);
 | |
|         luma_mc(s, tmp2, tmpstride, ref1->frame,
 | |
|                 ¤t_mv.mv[1], x0, y0, nPbW, nPbH);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)){
 | |
|             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
 | |
|                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
 | |
|                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
 | |
|                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
 | |
|                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
 | |
|                                          dst0, s->frame->linesize[0], tmp, tmp2, tmpstride, nPbW, nPbH);
 | |
|         } else {
 | |
|             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0], tmp, tmp2, tmpstride, nPbW, nPbH);
 | |
|         }
 | |
| 
 | |
|         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
 | |
|                   ¤t_mv.mv[0], x0/2, y0/2, nPbW/2, nPbH/2);
 | |
|         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
 | |
|                   ¤t_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
 | |
| 
 | |
|         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
 | |
|             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
 | |
|             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom ,
 | |
|                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
 | |
|                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
 | |
|                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
 | |
|                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
 | |
|                                          dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
 | |
|             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom ,
 | |
|                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
 | |
|                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
 | |
|                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
 | |
|                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
 | |
|                                          dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
 | |
|         } else {
 | |
|             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
 | |
|             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 8.4.1
 | |
|  */
 | |
| static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
 | |
|                                 int prev_intra_luma_pred_flag)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|     int y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
|     int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
 | |
|     int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
 | |
|     int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
 | |
|     int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
 | |
| 
 | |
|     int cand_up   = (lc->ctb_up_flag || y0b) ? s->tab_ipm[(y_pu-1)*pic_width_in_min_pu+x_pu] : INTRA_DC ;
 | |
|     int cand_left = (lc->ctb_left_flag || x0b) ? s->tab_ipm[y_pu*pic_width_in_min_pu+x_pu-1] : INTRA_DC ;
 | |
| 
 | |
|     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
 | |
|     MvField *tab_mvf = s->ref->tab_mvf;
 | |
|     int intra_pred_mode;
 | |
|     int candidate[3];
 | |
|     int i, j;
 | |
| 
 | |
|     // intra_pred_mode prediction does not cross vertical CTB boundaries
 | |
|     if ((y0 - 1) < y_ctb)
 | |
|         cand_up = INTRA_DC;
 | |
| 
 | |
|     if (cand_left == cand_up) {
 | |
|         if (cand_left < 2) {
 | |
|             candidate[0] = INTRA_PLANAR;
 | |
|             candidate[1] = INTRA_DC;
 | |
|             candidate[2] = INTRA_ANGULAR_26;
 | |
|         } else {
 | |
|             candidate[0] = cand_left;
 | |
|             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
 | |
|             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
 | |
|         }
 | |
|     } else {
 | |
|         candidate[0] = cand_left;
 | |
|         candidate[1] = cand_up;
 | |
|         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
 | |
|             candidate[2] = INTRA_PLANAR;
 | |
|         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
 | |
|             candidate[2] = INTRA_DC;
 | |
|         } else {
 | |
|             candidate[2] = INTRA_ANGULAR_26;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (prev_intra_luma_pred_flag) {
 | |
|         intra_pred_mode = candidate[lc->pu.mpm_idx];
 | |
|     } else {
 | |
|         if (candidate[0] > candidate[1])
 | |
|             FFSWAP(uint8_t, candidate[0], candidate[1]);
 | |
|         if (candidate[0] > candidate[2])
 | |
|             FFSWAP(uint8_t, candidate[0], candidate[2]);
 | |
|         if (candidate[1] > candidate[2])
 | |
|             FFSWAP(uint8_t, candidate[1], candidate[2]);
 | |
| 
 | |
|         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
 | |
|         for (i = 0; i < 3; i++) {
 | |
|             if (intra_pred_mode >= candidate[i])
 | |
|                 intra_pred_mode++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* write the intra prediction units into the mv array */
 | |
|     if(!size_in_pus)
 | |
|         size_in_pus = 1;
 | |
|     for (i = 0; i < size_in_pus; i++) {
 | |
|         memset(&s->tab_ipm[(y_pu + i) * pic_width_in_min_pu + x_pu],
 | |
|                intra_pred_mode, size_in_pus);
 | |
| 
 | |
|         for (j = 0; j < size_in_pus; j++) {
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].is_intra     = 1;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].pred_flag[0] = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].pred_flag[1] = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].ref_idx[0]   = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].ref_idx[1]   = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].mv[0].x      = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].mv[0].y      = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].mv[1].x      = 0;
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + i].mv[1].y      = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return intra_pred_mode;
 | |
| }
 | |
| 
 | |
| static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
 | |
|                                           int log2_cb_size, int ct_depth)
 | |
| {
 | |
|     int length = (1 << log2_cb_size) >> s->sps->log2_min_coding_block_size;
 | |
|     int x_cb = x0 >> s->sps->log2_min_coding_block_size;
 | |
|     int y_cb = y0 >> s->sps->log2_min_coding_block_size;
 | |
|     int y;
 | |
| 
 | |
|     for (y = 0; y < length; y++)
 | |
|         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
 | |
|                ct_depth, length);
 | |
| }
 | |
| 
 | |
| static void intra_prediction_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     static const uint8_t intra_chroma_table[4] = {0, 26, 10, 1};
 | |
|     uint8_t prev_intra_luma_pred_flag[4];
 | |
|     int split   = lc->cu.part_mode == PART_NxN;
 | |
|     int pb_size = (1 << log2_cb_size) >> split;
 | |
|     int side    = split + 1;
 | |
|     int chroma_mode;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < side; i++)
 | |
|         for (j = 0; j < side; j++)
 | |
|             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
 | |
| 
 | |
|     for (i = 0; i < side; i++) {
 | |
|         for (j = 0; j < side; j++) {
 | |
|             if (prev_intra_luma_pred_flag[2*i+j])
 | |
|                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
 | |
|             else
 | |
|                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
 | |
| 
 | |
|             lc->pu.intra_pred_mode[2 * i + j] =
 | |
|                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
 | |
|                                      prev_intra_luma_pred_flag[2 * i + j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
 | |
|     if (chroma_mode != 4) {
 | |
|         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
 | |
|             lc->pu.intra_pred_mode_c = 34;
 | |
|         else
 | |
|             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
 | |
|     } else {
 | |
|         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void intra_prediction_unit_default_value(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int pb_size = 1 << log2_cb_size;
 | |
|     int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
 | |
|     int pic_width_in_min_pu = s->sps->width >> s->sps->log2_min_pu_size;
 | |
|     MvField *tab_mvf = s->ref->tab_mvf;
 | |
|     int x_pu = x0 >> s->sps->log2_min_pu_size;
 | |
|     int y_pu = y0 >> s->sps->log2_min_pu_size;
 | |
|     int j, k;
 | |
| 
 | |
|     if (size_in_pus == 0)
 | |
|         size_in_pus = 1;
 | |
|     for (j = 0; j < size_in_pus; j++) {
 | |
|         memset(&s->tab_ipm[(y_pu + j) * pic_width_in_min_pu + x_pu], INTRA_DC, size_in_pus);
 | |
|         for (k = 0; k <size_in_pus; k++)
 | |
|             tab_mvf[(y_pu + j) * pic_width_in_min_pu + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | |
| {
 | |
|     int cb_size          = 1 << log2_cb_size;
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int log2_min_cb_size = s->sps->log2_min_coding_block_size;
 | |
|     int length           = cb_size >> log2_min_cb_size;
 | |
|     int pic_width_in_ctb = s->sps->width >> log2_min_cb_size;
 | |
|     int x_cb             = x0 >> log2_min_cb_size;
 | |
|     int y_cb             = y0 >> log2_min_cb_size;
 | |
|     int x, y;
 | |
| 
 | |
|     lc->cu.x = x0;
 | |
|     lc->cu.y = y0;
 | |
|     lc->cu.rqt_root_cbf = 1;
 | |
| 
 | |
|     lc->cu.pred_mode        = MODE_INTRA;
 | |
|     lc->cu.part_mode        = PART_2Nx2N;
 | |
|     lc->cu.intra_split_flag = 0;
 | |
|     lc->cu.pcm_flag         = 0;
 | |
|     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
 | |
|     for (x = 0; x < 4; x++)
 | |
|         lc->pu.intra_pred_mode[x] = 1;
 | |
|     if (s->pps->transquant_bypass_enable_flag) {
 | |
|         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
 | |
|         if (lc->cu.cu_transquant_bypass_flag)
 | |
|             set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | |
|     } else
 | |
|         lc->cu.cu_transquant_bypass_flag = 0;
 | |
| 
 | |
| 
 | |
|     if (s->sh.slice_type != I_SLICE) {
 | |
|         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
 | |
| 
 | |
|         lc->cu.pred_mode = MODE_SKIP;
 | |
|         x = y_cb * pic_width_in_ctb + x_cb;
 | |
|         for (y = 0; y < length; y++) {
 | |
|             memset(&s->skip_flag[x], skip_flag, length);
 | |
|             x += pic_width_in_ctb;
 | |
|         }
 | |
|         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
 | |
|     }
 | |
| 
 | |
|     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
 | |
|         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
 | |
|         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
| 
 | |
|         if (!s->sh.disable_deblocking_filter_flag)
 | |
|             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
 | |
|                                                   lc->slice_or_tiles_up_boundary,
 | |
|                                                   lc->slice_or_tiles_left_boundary);
 | |
|     } else {
 | |
|         if (s->sh.slice_type != I_SLICE)
 | |
|             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
 | |
|         if (lc->cu.pred_mode != MODE_INTRA ||
 | |
|             log2_cb_size == s->sps->log2_min_coding_block_size) {
 | |
|             lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
 | |
|             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
 | |
|                                       lc->cu.pred_mode == MODE_INTRA;
 | |
|         }
 | |
| 
 | |
|         if (lc->cu.pred_mode == MODE_INTRA) {
 | |
|             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
 | |
|                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
 | |
|                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
 | |
|                 lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
 | |
|             }
 | |
|             if (lc->cu.pcm_flag) {
 | |
|                 int ret;
 | |
|                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
|                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
 | |
|                 if(s->sps->pcm.loop_filter_disable_flag)
 | |
|                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | |
| 
 | |
|                 if (ret < 0)
 | |
|                     return ret;
 | |
|             } else {
 | |
|                 intra_prediction_unit(s, x0, y0, log2_cb_size);
 | |
|             }
 | |
|         } else {
 | |
|             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | |
|             switch (lc->cu.part_mode) {
 | |
|             case PART_2Nx2N:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
 | |
|                 break;
 | |
|             case PART_2NxN:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size/2, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_Nx2N:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_2NxnU:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_2NxnD:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_nLx2N:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size,0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_nRx2N:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size,0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size/4, cb_size, log2_cb_size, 1);
 | |
|                 break;
 | |
|             case PART_NxN:
 | |
|                 hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
 | |
|                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
 | |
|                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!lc->cu.pcm_flag) {
 | |
|             if (lc->cu.pred_mode != MODE_INTRA &&
 | |
|                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
 | |
|                 lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
 | |
|             }
 | |
|             if (lc->cu.rqt_root_cbf) {
 | |
|                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
 | |
|                                         s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
 | |
|                                         s->sps->max_transform_hierarchy_depth_inter;
 | |
|                 hls_transform_tree(s, x0, y0, x0, y0, x0, y0, log2_cb_size,
 | |
|                                    log2_cb_size, 0, 0);
 | |
|             } else {
 | |
|                 if (!s->sh.disable_deblocking_filter_flag)
 | |
|                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
 | |
|                                                           lc->slice_or_tiles_up_boundary,
 | |
|                                                           lc->slice_or_tiles_left_boundary);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
 | |
|         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
 | |
| 
 | |
|     x = y_cb * pic_width_in_ctb + x_cb;
 | |
|     for (y = 0; y < length; y++) {
 | |
|         memset(&s->qp_y_tab[x], lc->qp_y, length);
 | |
|         x += pic_width_in_ctb;
 | |
|     }
 | |
| 
 | |
|     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, int log2_cb_size, int cb_depth)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int ret;
 | |
| 
 | |
|     lc->ct.depth = cb_depth;
 | |
|     if ((x0 + (1 << log2_cb_size) <= s->sps->width) &&
 | |
|         (y0 + (1 << log2_cb_size) <= s->sps->height) &&
 | |
|         log2_cb_size > s->sps->log2_min_coding_block_size) {
 | |
|         SAMPLE(s->split_cu_flag, x0, y0) =
 | |
|             ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
 | |
|     } else {
 | |
|         SAMPLE(s->split_cu_flag, x0, y0) =
 | |
|             (log2_cb_size > s->sps->log2_min_coding_block_size);
 | |
|     }
 | |
|     if (s->pps->cu_qp_delta_enabled_flag &&
 | |
|         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
 | |
|         lc->tu.is_cu_qp_delta_coded = 0;
 | |
|         lc->tu.cu_qp_delta          = 0;
 | |
|     }
 | |
| 
 | |
|     if (SAMPLE(s->split_cu_flag, x0, y0)) {
 | |
|         int more_data = 0;
 | |
|         int cb_size = (1 << (log2_cb_size)) >> 1;
 | |
|         int x1 = x0 + cb_size;
 | |
|         int y1 = y0 + cb_size;
 | |
| 
 | |
|         more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
 | |
|         if (more_data < 0)
 | |
|             return more_data;
 | |
| 
 | |
|         if (more_data && x1 < s->sps->width)
 | |
|             more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
 | |
|         if (more_data && y1 < s->sps->height)
 | |
|             more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
 | |
|         if (more_data && x1 < s->sps->width &&
 | |
|             y1 < s->sps->height) {
 | |
|             return hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
 | |
|         }
 | |
|         if (more_data)
 | |
|             return ((x1 + cb_size) < s->sps->width ||
 | |
|                     (y1 + cb_size) < s->sps->height);
 | |
|         else
 | |
|             return 0;
 | |
|     } else {
 | |
|         ret = hls_coding_unit(s, x0, y0, log2_cb_size);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         if ((!((x0 + (1 << log2_cb_size)) %
 | |
|                (1 << (s->sps->log2_ctb_size))) ||
 | |
|              (x0 + (1 << log2_cb_size) >= s->sps->width)) &&
 | |
|             (!((y0 + (1 << log2_cb_size)) %
 | |
|                (1 << (s->sps->log2_ctb_size))) ||
 | |
|              (y0 + (1 << log2_cb_size) >= s->sps->height))) {
 | |
|             int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
 | |
|             return !end_of_slice_flag;
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 7.3.4
 | |
|  */
 | |
| 
 | |
| static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts)
 | |
| {
 | |
|     HEVCLocalContext *lc  = &s->HEVClc;
 | |
|     int ctb_size          = 1 << s->sps->log2_ctb_size;
 | |
|     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | |
|     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
 | |
| 
 | |
|     int tile_left_boundary;
 | |
|     int tile_up_boundary;
 | |
|     int slice_left_boundary;
 | |
|     int slice_up_boundary;
 | |
| 
 | |
|     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
 | |
| 
 | |
| 
 | |
|     if (s->pps->entropy_coding_sync_enabled_flag) {
 | |
|         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
 | |
|             lc->first_qp_group = 1;
 | |
|         lc->end_of_tiles_x = s->sps->width;
 | |
|     } else if (s->pps->tiles_enabled_flag) {
 | |
|         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
 | |
|             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
 | |
|             lc->start_of_tiles_x = x_ctb;
 | |
|             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX]<< s->sps->log2_ctb_size);
 | |
|             lc->first_qp_group   = 1;
 | |
|         }
 | |
|     } else {
 | |
|         lc->end_of_tiles_x = s->sps->width;
 | |
|     }
 | |
| 
 | |
|     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
 | |
| 
 | |
|     if (s->pps->tiles_enabled_flag) {
 | |
|         tile_left_boundary = ((x_ctb > 0) &&
 | |
|                               (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]]));
 | |
|         slice_left_boundary = ((x_ctb > 0) &&
 | |
|                                (s->tab_slice_address[ctb_addr_rs] == s->tab_slice_address[ctb_addr_rs - 1]));
 | |
|         tile_up_boundary = ((y_ctb > 0) &&
 | |
|                             (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]));
 | |
|         slice_up_boundary = ((y_ctb > 0) &&
 | |
|                              (s->tab_slice_address[ctb_addr_rs] == s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width]));
 | |
|     } else {
 | |
|         tile_left_boundary =
 | |
|         tile_up_boundary = 1;
 | |
|         slice_left_boundary = ctb_addr_in_slice > 0;
 | |
|         slice_up_boundary = ctb_addr_in_slice >= s->sps->ctb_width;
 | |
|     }
 | |
|     lc->slice_or_tiles_left_boundary = (!slice_left_boundary) + (!tile_left_boundary << 1);
 | |
|     lc->slice_or_tiles_up_boundary   = (!slice_up_boundary + (!tile_up_boundary << 1));
 | |
|     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && tile_left_boundary);
 | |
|     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && tile_up_boundary);
 | |
|     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
 | |
|     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
 | |
| }
 | |
| 
 | |
| static int hls_slice_data(HEVCContext *s)
 | |
| {
 | |
|     int ctb_size    = 1 << s->sps->log2_ctb_size;
 | |
|     int more_data   = 1;
 | |
|     int x_ctb       = 0;
 | |
|     int y_ctb       = 0;
 | |
|     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
 | |
| 
 | |
|     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
 | |
|         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | |
| 
 | |
|         x_ctb = (ctb_addr_rs % ((s->sps->width + (ctb_size - 1)) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
 | |
|         y_ctb = (ctb_addr_rs / ((s->sps->width + (ctb_size - 1)) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
 | |
|         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
 | |
| 
 | |
|         ff_hevc_cabac_init(s, ctb_addr_ts);
 | |
| 
 | |
|         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
 | |
| 
 | |
|         s->deblock[ctb_addr_rs].disable     = s->sh.disable_deblocking_filter_flag;
 | |
|         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
 | |
|         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
 | |
|         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
 | |
| 
 | |
|         more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
 | |
|         if (more_data < 0)
 | |
|             return more_data;
 | |
| 
 | |
|         ctb_addr_ts++;
 | |
|         ff_hevc_save_states(s, ctb_addr_ts);
 | |
|         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
 | |
|     }
 | |
| 
 | |
|     if (x_ctb + ctb_size >= s->sps->width &&
 | |
|         y_ctb + ctb_size >= s->sps->height)
 | |
|         ff_hevc_hls_filter(s, x_ctb, y_ctb);
 | |
| 
 | |
|     return ctb_addr_ts;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
 | |
|  * 0 if the unit should be skipped, 1 otherwise
 | |
|  */
 | |
| static int hls_nal_unit(HEVCContext *s)
 | |
| {
 | |
|     GetBitContext *gb = &s->HEVClc.gb;
 | |
|     int nuh_layer_id;
 | |
| 
 | |
|     if (get_bits1(gb) != 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     s->nal_unit_type = get_bits(gb, 6);
 | |
| 
 | |
|     nuh_layer_id   = get_bits(gb, 6);
 | |
|     s->temporal_id = get_bits(gb, 3) - 1;
 | |
|     if (s->temporal_id < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG,
 | |
|            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
 | |
|            s->nal_unit_type, nuh_layer_id, s->temporal_id);
 | |
| 
 | |
|     return (nuh_layer_id == 0);
 | |
| }
 | |
| 
 | |
| static void restore_tqb_pixels(HEVCContext *s)
 | |
| {
 | |
|     int pic_width_in_min_pu  = s->sps->width >> s->sps->log2_min_pu_size;
 | |
|     int pic_height_in_min_pu = s->sps->height >> s->sps->log2_min_pu_size;
 | |
|     int min_pu_size = 1 << s->sps->log2_min_pu_size;
 | |
|     int x, y, c_idx;
 | |
| 
 | |
|     for (c_idx = 0; c_idx < 3; c_idx++) {
 | |
|         ptrdiff_t stride = s->frame->linesize[c_idx];
 | |
|         int hshift = s->sps->hshift[c_idx];
 | |
|         int vshift = s->sps->vshift[c_idx];
 | |
|         for (y = 0; y < pic_height_in_min_pu; y++) {
 | |
|             for (x = 0; x < pic_width_in_min_pu; x++) {
 | |
|                 if (s->is_pcm[y*pic_width_in_min_pu+x]) {
 | |
|                     int n;
 | |
|                     int len = min_pu_size >> hshift;
 | |
|                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
 | |
|                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
 | |
|                     for (n = 0;n < (min_pu_size >> vshift); n++) {
 | |
|                        memcpy(dst,src,len);
 | |
|                        src += stride;
 | |
|                        dst += stride;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int hevc_frame_start(HEVCContext *s)
 | |
| {
 | |
|     HEVCLocalContext *lc     = &s->HEVClc;
 | |
|     int pic_width_in_min_pu  = s->sps->width  >> s->sps->log2_min_pu_size;
 | |
|     int pic_height_in_min_pu = s->sps->height >> s->sps->log2_min_pu_size;
 | |
|     int pic_width_in_min_tu  = s->sps->width  >> s->sps->log2_min_transform_block_size;
 | |
|     int pic_height_in_min_tu = s->sps->height >> s->sps->log2_min_transform_block_size;
 | |
|     int ret;
 | |
| 
 | |
|     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
 | |
|     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
 | |
|     memset(s->cbf_luma,      0, pic_width_in_min_tu * pic_height_in_min_tu);
 | |
|     memset(s->is_pcm,        0, pic_width_in_min_pu * pic_height_in_min_pu);
 | |
| 
 | |
|     lc->start_of_tiles_x = 0;
 | |
|     s->is_decoded        = 0;
 | |
| 
 | |
|     if (s->pps->tiles_enabled_flag)
 | |
|         lc->end_of_tiles_x   = s->pps->column_width[0] << s->sps->log2_ctb_size;
 | |
| 
 | |
|     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
 | |
|                               s->poc);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     av_fast_malloc(&lc->edge_emu_buffer, &lc->edge_emu_buffer_size,
 | |
|                    (MAX_PB_SIZE + 7) * s->ref->frame->linesize[0]);
 | |
|     if (!lc->edge_emu_buffer) {
 | |
|         ret = AVERROR(ENOMEM);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     ret = ff_hevc_frame_rps(s);
 | |
|     if (ret < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     av_frame_unref(s->output_frame);
 | |
|     ret = ff_hevc_output_frame(s, s->output_frame, 0);
 | |
|     if (ret < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     ff_thread_finish_setup(s->avctx);
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     if (s->ref)
 | |
|         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
 | |
|     s->ref = NULL;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
 | |
| {
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     GetBitContext *gb = &lc->gb;
 | |
|     int ctb_addr_ts;
 | |
|     int ret;
 | |
| 
 | |
|     ret = init_get_bits8(gb, nal, length);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = hls_nal_unit(s);
 | |
|     if (ret < 0) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
 | |
|                 s->nal_unit_type);
 | |
|         if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|             return ret;
 | |
|         return 0;
 | |
|     } else if (!ret)
 | |
|         return 0;
 | |
| 
 | |
|     switch (s->nal_unit_type) {
 | |
|     case NAL_VPS:
 | |
|         ret = ff_hevc_decode_nal_vps(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         break;
 | |
|     case NAL_SPS:
 | |
|         ret = ff_hevc_decode_nal_sps(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         break;
 | |
|     case NAL_PPS:
 | |
|         ret = ff_hevc_decode_nal_pps(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         break;
 | |
|     case NAL_SEI_PREFIX:
 | |
|     case NAL_SEI_SUFFIX:
 | |
|         ret = ff_hevc_decode_nal_sei(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         break;
 | |
|     case NAL_TRAIL_R:
 | |
|     case NAL_TRAIL_N:
 | |
|     case NAL_TSA_N:
 | |
|     case NAL_TSA_R:
 | |
|     case NAL_STSA_N:
 | |
|     case NAL_STSA_R:
 | |
|     case NAL_BLA_W_LP:
 | |
|     case NAL_BLA_W_RADL:
 | |
|     case NAL_BLA_N_LP:
 | |
|     case NAL_IDR_W_RADL:
 | |
|     case NAL_IDR_N_LP:
 | |
|     case NAL_CRA_NUT:
 | |
|     case NAL_RADL_N:
 | |
|     case NAL_RADL_R:
 | |
|     case NAL_RASL_N:
 | |
|     case NAL_RASL_R:
 | |
|         ret = hls_slice_header(s);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         if (s->max_ra == INT_MAX) {
 | |
|             if (s->nal_unit_type == NAL_CRA_NUT  ||
 | |
|                 s->nal_unit_type == NAL_BLA_W_LP ||
 | |
|                 s->nal_unit_type == NAL_BLA_N_LP ||
 | |
|                 s->nal_unit_type == NAL_BLA_N_LP) {
 | |
|                 s->max_ra = s->poc;
 | |
|             } else {
 | |
|                 if (IS_IDR(s))
 | |
|                     s->max_ra = INT_MIN;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
 | |
|             s->poc <= s->max_ra) {
 | |
|             s->is_decoded = 0;
 | |
|             break;
 | |
|         } else {
 | |
|             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
 | |
|                 s->max_ra = INT_MIN;
 | |
|         }
 | |
| 
 | |
|         if (s->sh.first_slice_in_pic_flag) {
 | |
|             ret = hevc_frame_start(s);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|         } else if (!s->ref) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         if (!s->sh.dependent_slice_segment_flag &&
 | |
|             s->sh.slice_type != I_SLICE) {
 | |
|             ret = ff_hevc_slice_rpl(s);
 | |
|             if (ret < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_WARNING, "Error constructing the reference "
 | |
|                        "lists for the current slice.\n");
 | |
|                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                     return ret;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ctb_addr_ts = hls_slice_data(s);
 | |
|         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
 | |
|             s->is_decoded = 1;
 | |
|             if ((s->pps->transquant_bypass_enable_flag ||
 | |
|                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
 | |
|                 s->sps->sao_enabled)
 | |
|                 restore_tqb_pixels(s);
 | |
|         }
 | |
| 
 | |
|         if (ctb_addr_ts < 0)
 | |
|             return ctb_addr_ts;
 | |
|         break;
 | |
|     case NAL_EOS_NUT:
 | |
|     case NAL_EOB_NUT:
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra     = INT_MAX;
 | |
|         break;
 | |
|     case NAL_AUD:
 | |
|     case NAL_FD_NUT:
 | |
|         break;
 | |
|     default:
 | |
|         av_log(s->avctx, AV_LOG_INFO, "Skipping NAL unit %d\n", s->nal_unit_type);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
 | |
|    between these functions would be nice. */
 | |
| static int extract_rbsp(const uint8_t *src, int length,
 | |
|                         HEVCNAL *nal)
 | |
| {
 | |
|     int i, si, di;
 | |
|     uint8_t *dst;
 | |
| 
 | |
| #define STARTCODE_TEST                                                  \
 | |
|         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
 | |
|             if (src[i + 2] != 3) {                                      \
 | |
|                 /* startcode, so we must be past the end */             \
 | |
|                 length = i;                                             \
 | |
|             }                                                           \
 | |
|             break;                                                      \
 | |
|         }
 | |
| #if HAVE_FAST_UNALIGNED
 | |
| #define FIND_FIRST_ZERO                                                 \
 | |
|         if (i > 0 && !src[i])                                           \
 | |
|             i--;                                                        \
 | |
|         while (src[i])                                                  \
 | |
|             i++
 | |
| #if HAVE_FAST_64BIT
 | |
|     for (i = 0; i + 1 < length; i += 9) {
 | |
|         if (!((~AV_RN64A(src + i) &
 | |
|                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
 | |
|               0x8000800080008080ULL))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 7;
 | |
|     }
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 5) {
 | |
|         if (!((~AV_RN32A(src + i) &
 | |
|                (AV_RN32A(src + i) - 0x01000101U)) &
 | |
|               0x80008080U))
 | |
|             continue;
 | |
|         FIND_FIRST_ZERO;
 | |
|         STARTCODE_TEST;
 | |
|         i -= 3;
 | |
|     }
 | |
| #endif
 | |
| #else
 | |
|     for (i = 0; i + 1 < length; i += 2) {
 | |
|         if (src[i])
 | |
|             continue;
 | |
|         if (i > 0 && src[i - 1] == 0)
 | |
|             i--;
 | |
|         STARTCODE_TEST;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (i >= length - 1) { // no escaped 0
 | |
|         nal->data = src;
 | |
|         nal->size = length;
 | |
|         return length;
 | |
|     }
 | |
| 
 | |
|     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
 | |
|                    length + FF_INPUT_BUFFER_PADDING_SIZE);
 | |
|     if (!nal->rbsp_buffer)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     dst = nal->rbsp_buffer;
 | |
| 
 | |
|     memcpy(dst, src, i);
 | |
|     si = di = i;
 | |
|     while (si + 2 < length) {
 | |
|         // remove escapes (very rare 1:2^22)
 | |
|         if (src[si + 2] > 3) {
 | |
|             dst[di++] = src[si++];
 | |
|             dst[di++] = src[si++];
 | |
|         } else if (src[si] == 0 && src[si + 1] == 0) {
 | |
|             if (src[si + 2] == 3) { // escape
 | |
|                 dst[di++]  = 0;
 | |
|                 dst[di++]  = 0;
 | |
|                 si        += 3;
 | |
| 
 | |
|                 continue;
 | |
|             } else // next start code
 | |
|                 goto nsc;
 | |
|         }
 | |
| 
 | |
|         dst[di++] = src[si++];
 | |
|     }
 | |
|     while (si < length)
 | |
|         dst[di++] = src[si++];
 | |
| nsc:
 | |
| 
 | |
|     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
 | |
| 
 | |
|     nal->data = dst;
 | |
|     nal->size = di;
 | |
|     return si;
 | |
| }
 | |
| 
 | |
| static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
 | |
| {
 | |
|     int i, consumed, ret = 0;
 | |
| 
 | |
|     s->ref = NULL;
 | |
|     s->eos = 0;
 | |
| 
 | |
|     /* split the input packet into NAL units, so we know the upper bound on the
 | |
|      * number of slices in the frame */
 | |
|     s->nb_nals = 0;
 | |
|     while (length >= 4) {
 | |
|         HEVCNAL *nal;
 | |
|         int extract_length = 0;
 | |
| 
 | |
|         if (s->disable_au == 0) {
 | |
|             if (s->is_nalff) {
 | |
|                 int i;
 | |
|                 for (i = 0; i < s->nal_length_size; i++)
 | |
|                     extract_length = (extract_length << 8) | buf[i];
 | |
|                 buf    += s->nal_length_size;
 | |
|                 length -= s->nal_length_size;
 | |
| 
 | |
|                 if (extract_length > length) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
 | |
|                     ret = AVERROR_INVALIDDATA;
 | |
|                     goto fail;
 | |
|                 }
 | |
|             } else {
 | |
|                 if (buf[2] == 0) {
 | |
|                     length--;
 | |
|                     buf++;
 | |
|                     continue;
 | |
|                 }
 | |
|                 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
 | |
|                     ret = AVERROR_INVALIDDATA;
 | |
|                     goto fail;
 | |
|                 }
 | |
| 
 | |
|                 buf    += 3;
 | |
|                 length -= 3;
 | |
|             }
 | |
|         }
 | |
|         if (!s->is_nalff || s->disable_au)
 | |
|             extract_length = length;
 | |
| 
 | |
|         if (s->nals_allocated < s->nb_nals + 1) {
 | |
|             int new_size = s->nals_allocated + 1;
 | |
|             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
 | |
|             if (!tmp) {
 | |
|                 ret = AVERROR(ENOMEM);
 | |
|                 goto fail;
 | |
|             }
 | |
|             s->nals = tmp;
 | |
|             memset(s->nals + s->nals_allocated, 0, (new_size - s->nals_allocated) * sizeof(*tmp));
 | |
|             s->nals_allocated = new_size;
 | |
|         }
 | |
|         nal = &s->nals[s->nb_nals++];
 | |
| 
 | |
|         consumed = extract_rbsp(buf, extract_length, nal);
 | |
|         if (consumed < 0) {
 | |
|             ret = consumed;
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         hls_nal_unit(s);
 | |
| 
 | |
|         if (s->nal_unit_type == NAL_EOS_NUT || s->nal_unit_type == NAL_EOS_NUT)
 | |
|             s->eos = 1;
 | |
| 
 | |
|         buf    += consumed;
 | |
|         length -= consumed;
 | |
|     }
 | |
| 
 | |
|     /* parse the NAL units */
 | |
|     for (i = 0; i < s->nb_nals; i++) {
 | |
|         int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
 | |
|         if (ret < 0) {
 | |
|             av_log(s->avctx, AV_LOG_WARNING, "Error parsing NAL unit #%d.\n", i);
 | |
|             if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | |
|                 goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| fail:
 | |
|     if (s->ref)
 | |
|         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void print_md5(void *log_ctx, int level,  uint8_t md5[16])
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < 16; i++)
 | |
|         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
 | |
| }
 | |
| 
 | |
| static int verify_md5(HEVCContext *s, AVFrame *frame)
 | |
| {
 | |
|     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
 | |
|     int pixel_shift = desc->comp[0].depth_minus1 > 7;
 | |
|     int i, j;
 | |
| 
 | |
|     if (!desc)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
 | |
|            s->poc);
 | |
| 
 | |
|     /* the checksums are LE, so we have to byteswap for >8bpp formats
 | |
|      * on BE arches */
 | |
| #if HAVE_BIGENDIAN
 | |
|     if (pixel_shift && !s->checksum_buf) {
 | |
|         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
 | |
|                        FFMAX3(frame->linesize[0], frame->linesize[1],
 | |
|                               frame->linesize[2]));
 | |
|         if (!s->checksum_buf)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (i = 0; frame->data[i]; i++) {
 | |
|         int width  = s->avctx->coded_width;
 | |
|         int height = s->avctx->coded_height;
 | |
|         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
 | |
|         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
 | |
|         uint8_t md5[16];
 | |
| 
 | |
|         av_md5_init(s->md5_ctx);
 | |
|         for (j = 0; j < h; j++) {
 | |
|             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
 | |
| #if HAVE_BIGENDIAN
 | |
|             if (pixel_shift) {
 | |
|                 s->dsp.bswap16_buf((uint16_t*)s->checksum_buf,
 | |
|                                    (const uint16_t*)src, w);
 | |
|                 src = s->checksum_buf;
 | |
|             }
 | |
| #endif
 | |
|             av_md5_update(s->md5_ctx, src, w << pixel_shift);
 | |
|         }
 | |
|         av_md5_final(s->md5_ctx, md5);
 | |
| 
 | |
|         if (!memcmp(md5, s->md5[i], 16)) {
 | |
|             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
 | |
|             print_md5(s->avctx, AV_LOG_DEBUG, md5);
 | |
|             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
 | |
|         } else {
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
 | |
|             print_md5(s->avctx, AV_LOG_ERROR, md5);
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, " != ");
 | |
|             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
 | |
|             av_log   (s->avctx, AV_LOG_ERROR, "\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
 | |
|                              AVPacket *avpkt)
 | |
| {
 | |
|     int ret;
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
| 
 | |
|     //av_log(avctx, AV_LOG_WARNING, "decode size %d\n", avpkt->size);
 | |
| 
 | |
|     if (!avpkt->size) {
 | |
|         ret = ff_hevc_output_frame(s, data, 1);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         *got_output = ret;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     s->ref = NULL;
 | |
|     ret = decode_nal_units(s, avpkt->data, avpkt->size);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /* verify the SEI checksum */
 | |
|     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
 | |
|         s->is_md5) {
 | |
|         ret = verify_md5(s, s->ref->frame);
 | |
|         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
 | |
|             ff_hevc_unref_frame(s, s->ref, ~0);
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
|     s->is_md5 = 0;
 | |
| 
 | |
|     if (s->is_decoded) {
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
 | |
|         s->is_decoded = 0;
 | |
|     }
 | |
| 
 | |
|     if (s->output_frame->buf[0]) {
 | |
|         av_frame_move_ref(data, s->output_frame);
 | |
|         *got_output = 1;
 | |
|     }
 | |
| 
 | |
|     return avpkt->size;
 | |
| }
 | |
| 
 | |
| static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_thread_ref_frame(&dst->tf, &src->tf);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
 | |
|     if (!dst->tab_mvf_buf)
 | |
|         goto fail;
 | |
|     dst->tab_mvf = src->tab_mvf;
 | |
| 
 | |
|     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
 | |
|     if (!dst->rpl_tab_buf)
 | |
|         goto fail;
 | |
|     dst->rpl_tab = src->rpl_tab;
 | |
| 
 | |
|     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
 | |
|     if (!dst->rpl_buf)
 | |
|         goto fail;
 | |
| 
 | |
|     dst->poc        = src->poc;
 | |
|     dst->ctb_count  = src->ctb_count;
 | |
|     dst->window     = src->window;
 | |
|     dst->flags      = src->flags;
 | |
|     dst->sequence   = src->sequence;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_hevc_unref_frame(s, dst, ~0);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_decode_free(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext       *s = avctx->priv_data;
 | |
|     HEVCLocalContext *lc = &s->HEVClc;
 | |
|     int i;
 | |
| 
 | |
|     pic_arrays_free(s);
 | |
| 
 | |
|     av_freep(&lc->edge_emu_buffer);
 | |
|     av_freep(&s->md5_ctx);
 | |
| 
 | |
|     av_frame_free(&s->tmp_frame);
 | |
|     av_frame_free(&s->output_frame);
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | |
|         av_frame_free(&s->DPB[i].frame);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
 | |
|         av_freep(&s->vps_list[i]);
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
 | |
|         av_buffer_unref(&s->sps_list[i]);
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
 | |
|         av_buffer_unref(&s->pps_list[i]);
 | |
| 
 | |
|     for (i = 0; i < s->nals_allocated; i++)
 | |
|         av_freep(&s->nals[i].rbsp_buffer);
 | |
|     av_freep(&s->nals);
 | |
|     s->nals_allocated = 0;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_init_context(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     s->tmp_frame = av_frame_alloc();
 | |
|     if (!s->tmp_frame)
 | |
|         goto fail;
 | |
| 
 | |
|     s->output_frame = av_frame_alloc();
 | |
|     if (!s->output_frame)
 | |
|         goto fail;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         s->DPB[i].frame = av_frame_alloc();
 | |
|         if (!s->DPB[i].frame)
 | |
|             goto fail;
 | |
|         s->DPB[i].tf.f = s->DPB[i].frame;
 | |
|     }
 | |
| 
 | |
|     s->max_ra = INT_MAX;
 | |
| 
 | |
|     s->md5_ctx = av_md5_alloc();
 | |
|     if (!s->md5_ctx)
 | |
|         goto fail;
 | |
| 
 | |
|     ff_dsputil_init(&s->dsp, avctx);
 | |
| 
 | |
|     s->context_initialized = 1;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     hevc_decode_free(avctx);
 | |
|     return AVERROR(ENOMEM);
 | |
| }
 | |
| 
 | |
| static int hevc_update_thread_context(AVCodecContext *dst,
 | |
|                                       const AVCodecContext *src)
 | |
| {
 | |
|     HEVCContext *s  = dst->priv_data;
 | |
|     HEVCContext *s0 = src->priv_data;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (!s->context_initialized) {
 | |
|         ret = hevc_init_context(dst);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | |
|         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | |
|         if (s0->DPB[i].frame->buf[0]) {
 | |
|             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
 | |
|             if (ret < 0)
 | |
|                 return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
 | |
|         av_buffer_unref(&s->sps_list[i]);
 | |
|         if (s0->sps_list[i]) {
 | |
|             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
 | |
|             if (!s->sps_list[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
 | |
|         av_buffer_unref(&s->pps_list[i]);
 | |
|         if (s0->pps_list[i]) {
 | |
|             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
 | |
|             if (!s->pps_list[i])
 | |
|                 return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->seq_decode = s0->seq_decode;
 | |
|     s->seq_output = s0->seq_output;
 | |
|     s->pocTid0    = s0->pocTid0;
 | |
|     s->max_ra     = s0->max_ra;
 | |
| 
 | |
|     s->is_nalff        = s0->is_nalff;
 | |
|     s->nal_length_size = s0->nal_length_size;
 | |
| 
 | |
| 
 | |
|     if (s0->eos) {
 | |
|         s->seq_decode = (s->seq_decode + 1) & 0xff;
 | |
|         s->max_ra = INT_MAX;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hevc_decode_extradata(HEVCContext *s)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     GetByteContext gb;
 | |
|     int ret;
 | |
| 
 | |
|     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
 | |
| 
 | |
|     if (avctx->extradata_size > 3 &&
 | |
|         (avctx->extradata[0] || avctx->extradata[1] ||
 | |
|          avctx->extradata[2] > 1)) {
 | |
|         /* It seems the extradata is encoded as hvcC format.
 | |
|          * Temporarily, we support configurationVersion==0 until 14496-15 3rd finalized.
 | |
|          * When finalized, configurationVersion will be 1 and we can recognize hvcC by
 | |
|          * checking if avctx->extradata[0]==1 or not. */
 | |
|         int i, j, num_arrays;
 | |
|         int nal_len_size;
 | |
| 
 | |
|         s->is_nalff = 1;
 | |
| 
 | |
|         bytestream2_skip(&gb, 21);
 | |
|         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
 | |
|         num_arrays   = bytestream2_get_byte(&gb);
 | |
| 
 | |
|         /* nal units in the hvcC always have length coded with 2 bytes,
 | |
|          * so put a fake nal_length_size = 2 while parsing them */
 | |
|         s->nal_length_size = 2;
 | |
| 
 | |
|         /* Decode nal units from hvcC. */
 | |
|         for (i = 0; i < num_arrays; i++) {
 | |
|             int type = bytestream2_get_byte(&gb) & 0x3f;
 | |
|             int cnt  = bytestream2_get_be16(&gb);
 | |
| 
 | |
|             for (j = 0; j < cnt; j++) {
 | |
|                 // +2 for the nal size field
 | |
|                 int nalsize = bytestream2_peek_be16(&gb) + 2;
 | |
|                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size in extradata.\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
| 
 | |
|                 ret = decode_nal_units(s, gb.buffer, nalsize);
 | |
|                 if (ret < 0) {
 | |
|                     av_log(avctx, AV_LOG_ERROR,
 | |
|                            "Decoding nal unit %d %d from hvcC failed\n", type, i);
 | |
|                     return ret;
 | |
|                 }
 | |
|                 bytestream2_skip(&gb, nalsize);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Now store right nal length size, that will be used to parse all other nals */
 | |
|         s->nal_length_size = nal_len_size;
 | |
|     } else {
 | |
|         s->is_nalff = 0;
 | |
|         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     ff_init_cabac_states();
 | |
| 
 | |
|     avctx->internal->allocate_progress = 1;
 | |
| 
 | |
|     ret = hevc_init_context(avctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (avctx->extradata_size > 0 && avctx->extradata) {
 | |
|         ret = hevc_decode_extradata(s);
 | |
|         if (ret < 0) {
 | |
|             hevc_decode_free(avctx);
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     int ret;
 | |
| 
 | |
|     memset(s, 0, sizeof(*s));
 | |
| 
 | |
|     ret = hevc_init_context(avctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hevc_decode_flush(AVCodecContext *avctx)
 | |
| {
 | |
|     HEVCContext *s = avctx->priv_data;
 | |
|     ff_hevc_flush_dpb(s);
 | |
|     s->max_ra = INT_MAX;
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(HEVCContext, x)
 | |
| #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
 | |
| static const AVOption options[] = {
 | |
|     { "disable-au", "disable read frame AU by AU", OFFSET(disable_au),
 | |
|         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
 | |
|     { "strict-displaywin", "stricly apply default display window size", OFFSET(strict_def_disp_win),
 | |
|         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
 | |
|     { NULL },
 | |
| };
 | |
| 
 | |
| static const AVClass hevc_decoder_class = {
 | |
|     .class_name = "HEVC decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_hevc_decoder = {
 | |
|     .name                  = "hevc",
 | |
|     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
 | |
|     .type                  = AVMEDIA_TYPE_VIDEO,
 | |
|     .id                    = AV_CODEC_ID_HEVC,
 | |
|     .priv_data_size        = sizeof(HEVCContext),
 | |
|     .priv_class            = &hevc_decoder_class,
 | |
|     .init                  = hevc_decode_init,
 | |
|     .close                 = hevc_decode_free,
 | |
|     .decode                = hevc_decode_frame,
 | |
|     .flush                 = hevc_decode_flush,
 | |
|     .update_thread_context = hevc_update_thread_context,
 | |
|     .init_thread_copy      = hevc_init_thread_copy,
 | |
|     .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_FRAME_THREADS | CODEC_CAP_EXPERIMENTAL,
 | |
| };
 |