496 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			496 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2019 The FFmpeg Project
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avfilter.h"
 | |
| #include "audio.h"
 | |
| #include "formats.h"
 | |
| 
 | |
| #define MAX_OVERSAMPLE 64
 | |
| 
 | |
| enum ASoftClipTypes {
 | |
|     ASC_HARD = -1,
 | |
|     ASC_TANH,
 | |
|     ASC_ATAN,
 | |
|     ASC_CUBIC,
 | |
|     ASC_EXP,
 | |
|     ASC_ALG,
 | |
|     ASC_QUINTIC,
 | |
|     ASC_SIN,
 | |
|     ASC_ERF,
 | |
|     NB_TYPES,
 | |
| };
 | |
| 
 | |
| typedef struct Lowpass {
 | |
|     float  fb0, fb1, fb2;
 | |
|     float  fa0, fa1, fa2;
 | |
| 
 | |
|     double db0, db1, db2;
 | |
|     double da0, da1, da2;
 | |
| } Lowpass;
 | |
| 
 | |
| typedef struct ASoftClipContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     int type;
 | |
|     int oversample;
 | |
|     int64_t delay;
 | |
|     double threshold;
 | |
|     double output;
 | |
|     double param;
 | |
| 
 | |
|     Lowpass lowpass[MAX_OVERSAMPLE];
 | |
|     AVFrame *frame[2];
 | |
| 
 | |
|     void (*filter)(struct ASoftClipContext *s, void **dst, const void **src,
 | |
|                    int nb_samples, int channels, int start, int end);
 | |
| } ASoftClipContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(ASoftClipContext, x)
 | |
| #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
 | |
| 
 | |
| static const AVOption asoftclip_options[] = {
 | |
|     { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT,    {.i64=0},         -1, NB_TYPES-1, A, "types" },
 | |
|     { "hard",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_HARD},   0,          0, A, "types" },
 | |
|     { "tanh",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_TANH},   0,          0, A, "types" },
 | |
|     { "atan",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ATAN},   0,          0, A, "types" },
 | |
|     { "cubic",               NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_CUBIC},  0,          0, A, "types" },
 | |
|     { "exp",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_EXP},    0,          0, A, "types" },
 | |
|     { "alg",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ALG},    0,          0, A, "types" },
 | |
|     { "quintic",             NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_QUINTIC},0,          0, A, "types" },
 | |
|     { "sin",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_SIN},    0,          0, A, "types" },
 | |
|     { "erf",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ERF},    0,          0, A, "types" },
 | |
|     { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A },
 | |
|     { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A },
 | |
|     { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01,        3, A },
 | |
|     { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(asoftclip);
 | |
| 
 | |
| static void get_lowpass(Lowpass *s,
 | |
|                         double frequency,
 | |
|                         double sample_rate)
 | |
| {
 | |
|     double w0 = 2 * M_PI * frequency / sample_rate;
 | |
|     double alpha = sin(w0) / (2 * 0.8);
 | |
|     double factor;
 | |
| 
 | |
|     s->da0 =  1 + alpha;
 | |
|     s->da1 = -2 * cos(w0);
 | |
|     s->da2 =  1 - alpha;
 | |
|     s->db0 = (1 - cos(w0)) / 2;
 | |
|     s->db1 =  1 - cos(w0);
 | |
|     s->db2 = (1 - cos(w0)) / 2;
 | |
| 
 | |
|     s->da1 /= s->da0;
 | |
|     s->da2 /= s->da0;
 | |
|     s->db0 /= s->da0;
 | |
|     s->db1 /= s->da0;
 | |
|     s->db2 /= s->da0;
 | |
|     s->da0 /= s->da0;
 | |
| 
 | |
|     factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2);
 | |
|     s->db0 *= factor;
 | |
|     s->db1 *= factor;
 | |
|     s->db2 *= factor;
 | |
| 
 | |
|     s->fa0 = s->da0;
 | |
|     s->fa1 = s->da1;
 | |
|     s->fa2 = s->da2;
 | |
|     s->fb0 = s->db0;
 | |
|     s->fb1 = s->db1;
 | |
|     s->fb2 = s->db2;
 | |
| }
 | |
| 
 | |
| static inline float run_lowpassf(const Lowpass *const s,
 | |
|                                  float src, float *w)
 | |
| {
 | |
|     float dst;
 | |
| 
 | |
|     dst = src * s->fb0 + w[0];
 | |
|     w[0] = s->fb1 * src + w[1] - s->fa1 * dst;
 | |
|     w[1] = s->fb2 * src - s->fa2 * dst;
 | |
| 
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| static void filter_flt(ASoftClipContext *s,
 | |
|                        void **dptr, const void **sptr,
 | |
|                        int nb_samples, int channels,
 | |
|                        int start, int end)
 | |
| {
 | |
|     const int oversample = s->oversample;
 | |
|     const int nb_osamples = nb_samples * oversample;
 | |
|     const float scale = oversample > 1 ? oversample * 0.5f : 1.f;
 | |
|     float threshold = s->threshold;
 | |
|     float gain = s->output * threshold;
 | |
|     float factor = 1.f / threshold;
 | |
|     float param = s->param;
 | |
| 
 | |
|     for (int c = start; c < end; c++) {
 | |
|         float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
 | |
|         const float *src = sptr[c];
 | |
|         float *dst = dptr[c];
 | |
| 
 | |
|         for (int n = 0; n < nb_samples; n++) {
 | |
|             dst[oversample * n] = src[n];
 | |
| 
 | |
|             for (int m = 1; m < oversample; m++)
 | |
|                 dst[oversample * n + m] = 0.f;
 | |
|         }
 | |
| 
 | |
|         for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | |
|             dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
 | |
| 
 | |
|         switch (s->type) {
 | |
|         case ASC_HARD:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_TANH:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = tanhf(dst[n] * factor * param);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ATAN:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_CUBIC:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 float sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= 1.5f)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sample - 0.1481f * powf(sample, 3.f);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_EXP:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.;
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ALG:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 float sample = dst[n] * factor;
 | |
| 
 | |
|                 dst[n] = sample / (sqrtf(param + sample * sample));
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_QUINTIC:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 float sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= 1.25)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sample - 0.08192f * powf(sample, 5.f);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_SIN:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 float sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= M_PI_2)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sinf(sample);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ERF:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = erff(dst[n] * factor);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
| 
 | |
|         w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
 | |
|         for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | |
|             dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
 | |
| 
 | |
|         for (int n = 0; n < nb_samples; n++)
 | |
|             dst[n] = dst[n * oversample] * scale;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline double run_lowpassd(const Lowpass *const s,
 | |
|                                   double src, double *w)
 | |
| {
 | |
|     double dst;
 | |
| 
 | |
|     dst = src * s->db0 + w[0];
 | |
|     w[0] = s->db1 * src + w[1] - s->da1 * dst;
 | |
|     w[1] = s->db2 * src - s->da2 * dst;
 | |
| 
 | |
|     return dst;
 | |
| }
 | |
| 
 | |
| static void filter_dbl(ASoftClipContext *s,
 | |
|                        void **dptr, const void **sptr,
 | |
|                        int nb_samples, int channels,
 | |
|                        int start, int end)
 | |
| {
 | |
|     const int oversample = s->oversample;
 | |
|     const int nb_osamples = nb_samples * oversample;
 | |
|     const double scale = oversample > 1 ? oversample * 0.5 : 1.;
 | |
|     double threshold = s->threshold;
 | |
|     double gain = s->output * threshold;
 | |
|     double factor = 1. / threshold;
 | |
|     double param = s->param;
 | |
| 
 | |
|     for (int c = start; c < end; c++) {
 | |
|         double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
 | |
|         const double *src = sptr[c];
 | |
|         double *dst = dptr[c];
 | |
| 
 | |
|         for (int n = 0; n < nb_samples; n++) {
 | |
|             dst[oversample * n] = src[n];
 | |
| 
 | |
|             for (int m = 1; m < oversample; m++)
 | |
|                 dst[oversample * n + m] = 0.f;
 | |
|         }
 | |
| 
 | |
|         for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | |
|             dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
 | |
| 
 | |
|         switch (s->type) {
 | |
|         case ASC_HARD:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = av_clipd(dst[n] * factor, -1., 1.);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_TANH:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = tanh(dst[n] * factor * param);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ATAN:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = 2. / M_PI * atan(dst[n] * factor * param);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_CUBIC:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 double sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= 1.5)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sample - 0.1481 * pow(sample, 3.);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_EXP:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.;
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ALG:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 double sample = dst[n] * factor;
 | |
| 
 | |
|                 dst[n] = sample / (sqrt(param + sample * sample));
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_QUINTIC:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 double sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= 1.25)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sample - 0.08192 * pow(sample, 5.);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_SIN:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 double sample = dst[n] * factor;
 | |
| 
 | |
|                 if (FFABS(sample) >= M_PI_2)
 | |
|                     dst[n] = FFSIGN(sample);
 | |
|                 else
 | |
|                     dst[n] = sin(sample);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         case ASC_ERF:
 | |
|             for (int n = 0; n < nb_osamples; n++) {
 | |
|                 dst[n] = erf(dst[n] * factor);
 | |
|                 dst[n] *= gain;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             av_assert0(0);
 | |
|         }
 | |
| 
 | |
|         w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
 | |
|         for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | |
|             dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
 | |
| 
 | |
|         for (int n = 0; n < nb_samples; n++)
 | |
|             dst[n] = dst[n * oversample] * scale;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     ASoftClipContext *s = ctx->priv;
 | |
| 
 | |
|     switch (inlink->format) {
 | |
|     case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break;
 | |
|     case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break;
 | |
|     default: av_assert0(0);
 | |
|     }
 | |
| 
 | |
|     s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
 | |
|     s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
 | |
|     if (!s->frame[0] || !s->frame[1])
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (int i = 0; i < MAX_OVERSAMPLE; i++) {
 | |
|         get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef struct ThreadData {
 | |
|     AVFrame *in, *out;
 | |
|     int nb_samples;
 | |
|     int channels;
 | |
| } ThreadData;
 | |
| 
 | |
| static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     ASoftClipContext *s = ctx->priv;
 | |
|     ThreadData *td = arg;
 | |
|     AVFrame *out = td->out;
 | |
|     AVFrame *in = td->in;
 | |
|     const int channels = td->channels;
 | |
|     const int nb_samples = td->nb_samples;
 | |
|     const int start = (channels * jobnr) / nb_jobs;
 | |
|     const int end = (channels * (jobnr+1)) / nb_jobs;
 | |
| 
 | |
|     s->filter(s, (void **)out->extended_data, (const void **)in->extended_data,
 | |
|               nb_samples, channels, start, end);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     ASoftClipContext *s = ctx->priv;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     int nb_samples, channels;
 | |
|     ThreadData td;
 | |
|     AVFrame *out;
 | |
| 
 | |
|     if (av_frame_is_writable(in) && s->oversample == 1) {
 | |
|         out = in;
 | |
|     } else {
 | |
|         out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample);
 | |
|         if (!out) {
 | |
|             av_frame_free(&in);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|         av_frame_copy_props(out, in);
 | |
|     }
 | |
| 
 | |
|     nb_samples = in->nb_samples;
 | |
|     channels = in->channels;
 | |
| 
 | |
|     td.in = in;
 | |
|     td.out = out;
 | |
|     td.nb_samples = nb_samples;
 | |
|     td.channels = channels;
 | |
|     ff_filter_execute(ctx, filter_channels, &td, NULL,
 | |
|                       FFMIN(channels, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     if (out != in)
 | |
|         av_frame_free(&in);
 | |
| 
 | |
|     out->nb_samples /= s->oversample;
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     ASoftClipContext *s = ctx->priv;
 | |
| 
 | |
|     av_frame_free(&s->frame[0]);
 | |
|     av_frame_free(&s->frame[1]);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_AUDIO,
 | |
|         .filter_frame = filter_frame,
 | |
|         .config_props = config_input,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const AVFilterPad outputs[] = {
 | |
|     {
 | |
|         .name = "default",
 | |
|         .type = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
| };
 | |
| 
 | |
| const AVFilter ff_af_asoftclip = {
 | |
|     .name           = "asoftclip",
 | |
|     .description    = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."),
 | |
|     .priv_size      = sizeof(ASoftClipContext),
 | |
|     .priv_class     = &asoftclip_class,
 | |
|     FILTER_INPUTS(inputs),
 | |
|     FILTER_OUTPUTS(outputs),
 | |
|     FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP),
 | |
|     .uninit         = uninit,
 | |
|     .process_command = ff_filter_process_command,
 | |
|     .flags          = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
 | |
|                       AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 |