Just put the subtraction in the table. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
		
			
				
	
	
		
			1027 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1027 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2012 Andrew D'Addesio
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Opus CELT decoder
 | |
|  */
 | |
| 
 | |
| #include "opus_celt.h"
 | |
| #include "opustab.h"
 | |
| #include "opus_pvq.h"
 | |
| 
 | |
| /* Use the 2D z-transform to apply prediction in both the time domain (alpha)
 | |
|  * and the frequency domain (beta) */
 | |
| static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i, j;
 | |
|     float prev[2] = { 0 };
 | |
|     float alpha = ff_celt_alpha_coef[f->size];
 | |
|     float beta  = ff_celt_beta_coef[f->size];
 | |
|     const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
 | |
| 
 | |
|     /* intra frame */
 | |
|     if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
 | |
|         alpha = 0.0f;
 | |
|         beta  = 1.0f - (4915.0f/32768.0f);
 | |
|         model = ff_celt_coarse_energy_dist[f->size][1];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++) {
 | |
|         for (j = 0; j < f->channels; j++) {
 | |
|             CeltBlock *block = &f->block[j];
 | |
|             float value;
 | |
|             int available;
 | |
| 
 | |
|             if (i < f->start_band || i >= f->end_band) {
 | |
|                 block->energy[i] = 0.0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             available = f->framebits - opus_rc_tell(rc);
 | |
|             if (available >= 15) {
 | |
|                 /* decode using a Laplace distribution */
 | |
|                 int k = FFMIN(i, 20) << 1;
 | |
|                 value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
 | |
|             } else if (available >= 2) {
 | |
|                 int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
 | |
|                 value = (x>>1) ^ -(x&1);
 | |
|             } else if (available >= 1) {
 | |
|                 value = -(float)ff_opus_rc_dec_log(rc, 1);
 | |
|             } else value = -1;
 | |
| 
 | |
|             block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
 | |
|             prev[j] += beta * value;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i;
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int j;
 | |
|         if (!f->fine_bits[i])
 | |
|             continue;
 | |
| 
 | |
|         for (j = 0; j < f->channels; j++) {
 | |
|             CeltBlock *block = &f->block[j];
 | |
|             int q2;
 | |
|             float offset;
 | |
|             q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
 | |
|             offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
 | |
|             block->energy[i] += offset;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int priority, i, j;
 | |
|     int bits_left = f->framebits - opus_rc_tell(rc);
 | |
| 
 | |
|     for (priority = 0; priority < 2; priority++) {
 | |
|         for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
 | |
|             if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
 | |
|                 continue;
 | |
| 
 | |
|             for (j = 0; j < f->channels; j++) {
 | |
|                 int q2;
 | |
|                 float offset;
 | |
|                 q2 = ff_opus_rc_get_raw(rc, 1);
 | |
|                 offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
 | |
|                 f->block[j].energy[i] += offset;
 | |
|                 bits_left--;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
 | |
|     int consumed, bits = f->transient ? 2 : 4;
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
|     tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         if (consumed+bits+tf_select_bit <= f->framebits) {
 | |
|             diff ^= ff_opus_rc_dec_log(rc, bits);
 | |
|             consumed = opus_rc_tell(rc);
 | |
|             tf_changed |= diff;
 | |
|         }
 | |
|         f->tf_change[i] = diff;
 | |
|         bits = f->transient ? 4 : 5;
 | |
|     }
 | |
| 
 | |
|     if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
 | |
|                          ff_celt_tf_select[f->size][f->transient][1][tf_changed])
 | |
|         tf_select = ff_opus_rc_dec_log(rc, 1);
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     // approx. maximum bit allocation for each band before boost/trim
 | |
|     int cap[CELT_MAX_BANDS];
 | |
|     int boost[CELT_MAX_BANDS];
 | |
|     int threshold[CELT_MAX_BANDS];
 | |
|     int bits1[CELT_MAX_BANDS];
 | |
|     int bits2[CELT_MAX_BANDS];
 | |
|     int trim_offset[CELT_MAX_BANDS];
 | |
| 
 | |
|     int skip_start_band = f->start_band;
 | |
|     int dynalloc       = 6;
 | |
|     int alloctrim      = 5;
 | |
|     int extrabits      = 0;
 | |
| 
 | |
|     int skip_bit             = 0;
 | |
|     int intensity_stereo_bit = 0;
 | |
|     int dual_stereo_bit      = 0;
 | |
| 
 | |
|     int remaining, bandbits;
 | |
|     int low, high, total, done;
 | |
|     int totalbits;
 | |
|     int consumed;
 | |
|     int i, j;
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
| 
 | |
|     /* obtain spread flag */
 | |
|     f->spread = CELT_SPREAD_NORMAL;
 | |
|     if (consumed + 4 <= f->framebits)
 | |
|         f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
 | |
| 
 | |
|     /* generate static allocation caps */
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++) {
 | |
|         cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
 | |
|                  * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
 | |
|     }
 | |
| 
 | |
|     /* obtain band boost */
 | |
|     totalbits = f->framebits << 3; // convert to 1/8 bits
 | |
|     consumed = opus_rc_tell_frac(rc);
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int quanta, band_dynalloc;
 | |
| 
 | |
|         boost[i] = 0;
 | |
| 
 | |
|         quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
 | |
|         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | |
|         band_dynalloc = dynalloc;
 | |
|         while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
 | |
|             int add = ff_opus_rc_dec_log(rc, band_dynalloc);
 | |
|             consumed = opus_rc_tell_frac(rc);
 | |
|             if (!add)
 | |
|                 break;
 | |
| 
 | |
|             boost[i]     += quanta;
 | |
|             totalbits    -= quanta;
 | |
|             band_dynalloc = 1;
 | |
|         }
 | |
|         /* dynalloc is more likely to occur if it's already been used for earlier bands */
 | |
|         if (boost[i])
 | |
|             dynalloc = FFMAX(2, dynalloc - 1);
 | |
|     }
 | |
| 
 | |
|     /* obtain allocation trim */
 | |
|     if (consumed + (6 << 3) <= totalbits)
 | |
|         alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
 | |
| 
 | |
|     /* anti-collapse bit reservation */
 | |
|     totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | |
|     f->anticollapse_needed = 0;
 | |
|     if (f->blocks > 1 && f->size >= 2 &&
 | |
|         totalbits >= ((f->size + 2) << 3))
 | |
|         f->anticollapse_needed = 1 << 3;
 | |
|     totalbits -= f->anticollapse_needed;
 | |
| 
 | |
|     /* band skip bit reservation */
 | |
|     if (totalbits >= 1 << 3)
 | |
|         skip_bit = 1 << 3;
 | |
|     totalbits -= skip_bit;
 | |
| 
 | |
|     /* intensity/dual stereo bit reservation */
 | |
|     if (f->channels == 2) {
 | |
|         intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
 | |
|         if (intensity_stereo_bit <= totalbits) {
 | |
|             totalbits -= intensity_stereo_bit;
 | |
|             if (totalbits >= 1 << 3) {
 | |
|                 dual_stereo_bit = 1 << 3;
 | |
|                 totalbits -= 1 << 3;
 | |
|             }
 | |
|         } else
 | |
|             intensity_stereo_bit = 0;
 | |
|     }
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int trim     = alloctrim - 5 - f->size;
 | |
|         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
 | |
|         int duration = f->size + 3;
 | |
|         int scale    = duration + f->channels - 1;
 | |
| 
 | |
|         /* PVQ minimum allocation threshold, below this value the band is
 | |
|          * skipped */
 | |
|         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
 | |
|                              f->channels << 3);
 | |
| 
 | |
|         trim_offset[i] = trim * (band << scale) >> 6;
 | |
| 
 | |
|         if (ff_celt_freq_range[i] << f->size == 1)
 | |
|             trim_offset[i] -= f->channels << 3;
 | |
|     }
 | |
| 
 | |
|     /* bisection */
 | |
|     low  = 1;
 | |
|     high = CELT_VECTORS - 1;
 | |
|     while (low <= high) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (i = f->end_band - 1; i >= f->start_band; i--) {
 | |
|             bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
 | |
|                        << (f->channels - 1) << f->size >> 2;
 | |
| 
 | |
|             if (bandbits)
 | |
|                 bandbits = FFMAX(0, bandbits + trim_offset[i]);
 | |
|             bandbits += boost[i];
 | |
| 
 | |
|             if (bandbits >= threshold[i] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, cap[i]);
 | |
|             } else if (bandbits >= f->channels << 3)
 | |
|                 total += f->channels << 3;
 | |
|         }
 | |
| 
 | |
|         if (total > totalbits)
 | |
|             high = center - 1;
 | |
|         else
 | |
|             low = center + 1;
 | |
|     }
 | |
|     high = low--;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
 | |
|                    << (f->channels - 1) << f->size >> 2;
 | |
|         bits2[i] = high >= CELT_VECTORS ? cap[i] :
 | |
|                    ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
 | |
|                    << (f->channels - 1) << f->size >> 2;
 | |
| 
 | |
|         if (bits1[i])
 | |
|             bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
 | |
|         if (bits2[i])
 | |
|             bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
 | |
|         if (low)
 | |
|             bits1[i] += boost[i];
 | |
|         bits2[i] += boost[i];
 | |
| 
 | |
|         if (boost[i])
 | |
|             skip_start_band = i;
 | |
|         bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
 | |
|     }
 | |
| 
 | |
|     /* bisection */
 | |
|     low  = 0;
 | |
|     high = 1 << CELT_ALLOC_STEPS;
 | |
|     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (j = f->end_band - 1; j >= f->start_band; j--) {
 | |
|             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|             if (bandbits >= threshold[j] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, cap[j]);
 | |
|             } else if (bandbits >= f->channels << 3)
 | |
|                 total += f->channels << 3;
 | |
|         }
 | |
|         if (total > totalbits)
 | |
|             high = center;
 | |
|         else
 | |
|             low = center;
 | |
|     }
 | |
| 
 | |
|     done = total = 0;
 | |
|     for (i = f->end_band - 1; i >= f->start_band; i--) {
 | |
|         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|         if (bandbits >= threshold[i] || done)
 | |
|             done = 1;
 | |
|         else
 | |
|             bandbits = (bandbits >= f->channels << 3) ?
 | |
|                        f->channels << 3 : 0;
 | |
| 
 | |
|         bandbits     = FFMIN(bandbits, cap[i]);
 | |
|         f->pulses[i] = bandbits;
 | |
|         total      += bandbits;
 | |
|     }
 | |
| 
 | |
|     /* band skipping */
 | |
|     for (f->coded_bands = f->end_band; ; f->coded_bands--) {
 | |
|         int allocation;
 | |
|         j = f->coded_bands - 1;
 | |
| 
 | |
|         if (j == skip_start_band) {
 | |
|             /* all remaining bands are not skipped */
 | |
|             totalbits += skip_bit;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* determine the number of bits available for coding "do not skip" markers */
 | |
|         remaining   = totalbits - total;
 | |
|         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | |
|         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | |
|         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]
 | |
|                       + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
 | |
| 
 | |
|         /* a "do not skip" marker is only coded if the allocation is
 | |
|            above the chosen threshold */
 | |
|         if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) {
 | |
|             if (ff_opus_rc_dec_log(rc, 1))
 | |
|                 break;
 | |
| 
 | |
|             total      += 1 << 3;
 | |
|             allocation -= 1 << 3;
 | |
|         }
 | |
| 
 | |
|         /* the band is skipped, so reclaim its bits */
 | |
|         total -= f->pulses[j];
 | |
|         if (intensity_stereo_bit) {
 | |
|             total -= intensity_stereo_bit;
 | |
|             intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band];
 | |
|             total += intensity_stereo_bit;
 | |
|         }
 | |
| 
 | |
|         total += f->pulses[j] = (allocation >= f->channels << 3) ?
 | |
|                               f->channels << 3 : 0;
 | |
|     }
 | |
| 
 | |
|     /* obtain stereo flags */
 | |
|     f->intensity_stereo = 0;
 | |
|     f->dual_stereo      = 0;
 | |
|     if (intensity_stereo_bit)
 | |
|         f->intensity_stereo = f->start_band +
 | |
|                           ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
 | |
|     if (f->intensity_stereo <= f->start_band)
 | |
|         totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */
 | |
|     else if (dual_stereo_bit)
 | |
|         f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
 | |
| 
 | |
|     /* supply the remaining bits in this frame to lower bands */
 | |
|     remaining = totalbits - total;
 | |
|     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | |
|     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | |
|     for (i = f->start_band; i < f->coded_bands; i++) {
 | |
|         int bits = FFMIN(remaining, ff_celt_freq_range[i]);
 | |
| 
 | |
|         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
 | |
|         remaining    -= bits;
 | |
|     }
 | |
| 
 | |
|     for (i = f->start_band; i < f->coded_bands; i++) {
 | |
|         int N = ff_celt_freq_range[i] << f->size;
 | |
|         int prev_extra = extrabits;
 | |
|         f->pulses[i] += extrabits;
 | |
| 
 | |
|         if (N > 1) {
 | |
|             int dof;        // degrees of freedom
 | |
|             int temp;       // dof * channels * log(dof)
 | |
|             int offset;     // fine energy quantization offset, i.e.
 | |
|                             // extra bits assigned over the standard
 | |
|                             // totalbits/dof
 | |
|             int fine_bits, max_bits;
 | |
| 
 | |
|             extrabits = FFMAX(0, f->pulses[i] - cap[i]);
 | |
|             f->pulses[i] -= extrabits;
 | |
| 
 | |
|             /* intensity stereo makes use of an extra degree of freedom */
 | |
|             dof = N * f->channels
 | |
|                   + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
 | |
|             temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3));
 | |
|             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | |
|             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | |
|                 offset += dof<<1;
 | |
| 
 | |
|             /* grant an additional bias for the first and second pulses */
 | |
|             if (f->pulses[i] + offset < 2 * (dof << 3))
 | |
|                 offset += temp >> 2;
 | |
|             else if (f->pulses[i] + offset < 3 * (dof << 3))
 | |
|                 offset += temp >> 3;
 | |
| 
 | |
|             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | |
|             max_bits  = FFMIN((f->pulses[i]>>3) >> (f->channels - 1),
 | |
|                               CELT_MAX_FINE_BITS);
 | |
| 
 | |
|             max_bits  = FFMAX(max_bits, 0);
 | |
| 
 | |
|             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | |
| 
 | |
|             /* if fine_bits was rounded down or capped,
 | |
|                give priority for the final fine energy pass */
 | |
|             f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset);
 | |
| 
 | |
|             /* the remaining bits are assigned to PVQ */
 | |
|             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
 | |
|         } else {
 | |
|             /* all bits go to fine energy except for the sign bit */
 | |
|             extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
 | |
|             f->pulses[i] -= extrabits;
 | |
|             f->fine_bits[i] = 0;
 | |
|             f->fine_priority[i] = 1;
 | |
|         }
 | |
| 
 | |
|         /* hand back a limited number of extra fine energy bits to this band */
 | |
|         if (extrabits > 0) {
 | |
|             int fineextra = FFMIN(extrabits >> (f->channels + 2),
 | |
|                                   CELT_MAX_FINE_BITS - f->fine_bits[i]);
 | |
|             f->fine_bits[i] += fineextra;
 | |
| 
 | |
|             fineextra <<= f->channels + 2;
 | |
|             f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | |
|             extrabits -= fineextra;
 | |
|         }
 | |
|     }
 | |
|     f->remaining = extrabits;
 | |
| 
 | |
|     /* skipped bands dedicate all of their bits for fine energy */
 | |
|     for (; i < f->end_band; i++) {
 | |
|         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
 | |
|         f->pulses[i]        = 0;
 | |
|         f->fine_priority[i] = f->fine_bits[i] < 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         float *dst = data + (ff_celt_freq_bands[i] << f->size);
 | |
|         float norm = exp2f(block->energy[i] + ff_celt_mean_energy[i]);
 | |
| 
 | |
|         for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
 | |
|             dst[j] *= norm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
 | |
| {
 | |
|     const int T0 = block->pf_period_old;
 | |
|     const int T1 = block->pf_period;
 | |
| 
 | |
|     float g00, g01, g02;
 | |
|     float g10, g11, g12;
 | |
| 
 | |
|     float x0, x1, x2, x3, x4;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     if (block->pf_gains[0]     == 0.0 &&
 | |
|         block->pf_gains_old[0] == 0.0)
 | |
|         return;
 | |
| 
 | |
|     g00 = block->pf_gains_old[0];
 | |
|     g01 = block->pf_gains_old[1];
 | |
|     g02 = block->pf_gains_old[2];
 | |
|     g10 = block->pf_gains[0];
 | |
|     g11 = block->pf_gains[1];
 | |
|     g12 = block->pf_gains[2];
 | |
| 
 | |
|     x1 = data[-T1 + 1];
 | |
|     x2 = data[-T1];
 | |
|     x3 = data[-T1 - 1];
 | |
|     x4 = data[-T1 - 2];
 | |
| 
 | |
|     for (i = 0; i < CELT_OVERLAP; i++) {
 | |
|         float w = ff_celt_window2[i];
 | |
|         x0 = data[i - T1 + 2];
 | |
| 
 | |
|         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
 | |
|                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
 | |
|                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
 | |
|                     w         * g10 * x2                                    +
 | |
|                     w         * g11 * (x1 + x3)                             +
 | |
|                     w         * g12 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply(CeltBlock *block, float *data, int len)
 | |
| {
 | |
|     const int T = block->pf_period;
 | |
|     float g0, g1, g2;
 | |
|     float x0, x1, x2, x3, x4;
 | |
|     int i;
 | |
| 
 | |
|     if (block->pf_gains[0] == 0.0 || len <= 0)
 | |
|         return;
 | |
| 
 | |
|     g0 = block->pf_gains[0];
 | |
|     g1 = block->pf_gains[1];
 | |
|     g2 = block->pf_gains[2];
 | |
| 
 | |
|     x4 = data[-T - 2];
 | |
|     x3 = data[-T - 1];
 | |
|     x2 = data[-T];
 | |
|     x1 = data[-T + 1];
 | |
| 
 | |
|     for (i = 0; i < len; i++) {
 | |
|         x0 = data[i - T + 2];
 | |
|         data[i] += g0 * x2        +
 | |
|                    g1 * (x1 + x3) +
 | |
|                    g2 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter(CeltFrame *f, CeltBlock *block)
 | |
| {
 | |
|     int len = f->blocksize * f->blocks;
 | |
| 
 | |
|     celt_postfilter_apply_transition(block, block->buf + 1024);
 | |
| 
 | |
|     block->pf_period_old = block->pf_period;
 | |
|     memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | |
| 
 | |
|     block->pf_period = block->pf_period_new;
 | |
|     memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
 | |
| 
 | |
|     if (len > CELT_OVERLAP) {
 | |
|         celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
 | |
|         celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP,
 | |
|                               len - 2 * CELT_OVERLAP);
 | |
| 
 | |
|         block->pf_period_old = block->pf_period;
 | |
|         memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | |
|     }
 | |
| 
 | |
|     memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
 | |
| }
 | |
| 
 | |
| static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
 | |
|     memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
 | |
| 
 | |
|     if (f->start_band == 0 && consumed + 16 <= f->framebits) {
 | |
|         int has_postfilter = ff_opus_rc_dec_log(rc, 1);
 | |
|         if (has_postfilter) {
 | |
|             float gain;
 | |
|             int tapset, octave, period;
 | |
| 
 | |
|             octave = ff_opus_rc_dec_uint(rc, 6);
 | |
|             period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
 | |
|             gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
 | |
|             tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
 | |
|                      ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
 | |
| 
 | |
|             for (i = 0; i < 2; i++) {
 | |
|                 CeltBlock *block = &f->block[i];
 | |
| 
 | |
|                 block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
 | |
|                 block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
 | |
|                 block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
 | |
|                 block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         consumed = opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     return consumed;
 | |
| }
 | |
| 
 | |
| static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
 | |
| {
 | |
|     int i, j, k;
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         int renormalize = 0;
 | |
|         float *xptr;
 | |
|         float prev[2];
 | |
|         float Ediff, r;
 | |
|         float thresh, sqrt_1;
 | |
|         int depth;
 | |
| 
 | |
|         /* depth in 1/8 bits */
 | |
|         depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
 | |
|         thresh = exp2f(-1.0 - 0.125f * depth);
 | |
|         sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
 | |
| 
 | |
|         xptr = X + (ff_celt_freq_bands[i] << f->size);
 | |
| 
 | |
|         prev[0] = block->prev_energy[0][i];
 | |
|         prev[1] = block->prev_energy[1][i];
 | |
|         if (f->channels == 1) {
 | |
|             CeltBlock *block1 = &f->block[1];
 | |
| 
 | |
|             prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
 | |
|             prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
 | |
|         }
 | |
|         Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
 | |
|         Ediff = FFMAX(0, Ediff);
 | |
| 
 | |
|         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
 | |
|         short blocks don't have the same energy as long */
 | |
|         r = exp2f(1 - Ediff);
 | |
|         if (f->size == 3)
 | |
|             r *= M_SQRT2;
 | |
|         r = FFMIN(thresh, r) * sqrt_1;
 | |
|         for (k = 0; k < 1 << f->size; k++) {
 | |
|             /* Detect collapse */
 | |
|             if (!(block->collapse_masks[i] & 1 << k)) {
 | |
|                 /* Fill with noise */
 | |
|                 for (j = 0; j < ff_celt_freq_range[i]; j++)
 | |
|                     xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
 | |
|                 renormalize = 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* We just added some energy, so we need to renormalize */
 | |
|         if (renormalize)
 | |
|             celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc)
 | |
| {
 | |
|     float lowband_scratch[8 * 22];
 | |
|     float norm[2 * 8 * 100];
 | |
| 
 | |
|     int totalbits = (f->framebits << 3) - f->anticollapse_needed;
 | |
| 
 | |
|     int update_lowband = 1;
 | |
|     int lowband_offset = 0;
 | |
| 
 | |
|     int i, j;
 | |
| 
 | |
|     memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
 | |
|     memset(f->block[1].coeffs, 0, sizeof(f->block[0].coeffs));
 | |
| 
 | |
|     for (i = f->start_band; i < f->end_band; i++) {
 | |
|         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
 | |
|         int band_offset = ff_celt_freq_bands[i] << f->size;
 | |
|         int band_size   = ff_celt_freq_range[i] << f->size;
 | |
|         float *X = f->block[0].coeffs + band_offset;
 | |
|         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
 | |
| 
 | |
|         int consumed = opus_rc_tell_frac(rc);
 | |
|         float *norm2 = norm + 8 * 100;
 | |
|         int effective_lowband = -1;
 | |
|         int b = 0;
 | |
| 
 | |
|         /* Compute how many bits we want to allocate to this band */
 | |
|         if (i != f->start_band)
 | |
|             f->remaining -= consumed;
 | |
|         f->remaining2 = totalbits - consumed - 1;
 | |
|         if (i <= f->coded_bands - 1) {
 | |
|             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
 | |
|             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
 | |
|         }
 | |
| 
 | |
|         if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
 | |
|             (update_lowband || lowband_offset == 0))
 | |
|             lowband_offset = i;
 | |
| 
 | |
|         /* Get a conservative estimate of the collapse_mask's for the bands we're
 | |
|            going to be folding from. */
 | |
|         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
 | |
|                                     f->blocks > 1 || f->tf_change[i] < 0)) {
 | |
|             int foldstart, foldend;
 | |
| 
 | |
|             /* This ensures we never repeat spectral content within one band */
 | |
|             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
 | |
|                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
 | |
|             foldstart = lowband_offset;
 | |
|             while (ff_celt_freq_bands[--foldstart] > effective_lowband);
 | |
|             foldend = lowband_offset - 1;
 | |
|             while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
 | |
| 
 | |
|             cm[0] = cm[1] = 0;
 | |
|             for (j = foldstart; j < foldend; j++) {
 | |
|                 cm[0] |= f->block[0].collapse_masks[j];
 | |
|                 cm[1] |= f->block[f->channels - 1].collapse_masks[j];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (f->dual_stereo && i == f->intensity_stereo) {
 | |
|             /* Switch off dual stereo to do intensity */
 | |
|             f->dual_stereo = 0;
 | |
|             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
 | |
|                 norm[j] = (norm[j] + norm2[j]) / 2;
 | |
|         }
 | |
| 
 | |
|         if (f->dual_stereo) {
 | |
|             cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
 | |
|                                         effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | |
|                                         norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
 | |
| 
 | |
|             cm[1] = f->pvq->decode_band(f->pvq, f, rc, i, Y, NULL, band_size, b/2, f->blocks,
 | |
|                                         effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
 | |
|                                         norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
 | |
|         } else {
 | |
|             cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
 | |
|                                         effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | |
|                                         norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
 | |
|             cm[1] = cm[0];
 | |
|         }
 | |
| 
 | |
|         f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
 | |
|         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | |
|         f->remaining += f->pulses[i] + consumed;
 | |
| 
 | |
|         /* Update the folding position only as long as we have 1 bit/sample depth */
 | |
|         update_lowband = (b > band_size << 3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
 | |
|                          float **output, int channels, int frame_size,
 | |
|                          int start_band,  int end_band)
 | |
| {
 | |
|     int i, j, downmix = 0;
 | |
|     int consumed;           // bits of entropy consumed thus far for this frame
 | |
|     MDCT15Context *imdct;
 | |
| 
 | |
|     if (channels != 1 && channels != 2) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
 | |
|                channels);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
 | |
|                start_band, end_band);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     f->silence        = 0;
 | |
|     f->transient      = 0;
 | |
|     f->anticollapse   = 0;
 | |
|     f->flushed        = 0;
 | |
|     f->channels       = channels;
 | |
|     f->start_band     = start_band;
 | |
|     f->end_band       = end_band;
 | |
|     f->framebits      = rc->rb.bytes * 8;
 | |
| 
 | |
|     f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
 | |
|     if (f->size > CELT_MAX_LOG_BLOCKS ||
 | |
|         frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
 | |
|         av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
 | |
|                frame_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!f->output_channels)
 | |
|         f->output_channels = channels;
 | |
| 
 | |
|     memset(f->block[0].collapse_masks, 0, sizeof(f->block[0].collapse_masks));
 | |
|     memset(f->block[1].collapse_masks, 0, sizeof(f->block[1].collapse_masks));
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
| 
 | |
|     /* obtain silence flag */
 | |
|     if (consumed >= f->framebits)
 | |
|         f->silence = 1;
 | |
|     else if (consumed == 1)
 | |
|         f->silence = ff_opus_rc_dec_log(rc, 15);
 | |
| 
 | |
| 
 | |
|     if (f->silence) {
 | |
|         consumed = f->framebits;
 | |
|         rc->total_bits += f->framebits - opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     /* obtain post-filter options */
 | |
|     consumed = parse_postfilter(f, rc, consumed);
 | |
| 
 | |
|     /* obtain transient flag */
 | |
|     if (f->size != 0 && consumed+3 <= f->framebits)
 | |
|         f->transient = ff_opus_rc_dec_log(rc, 3);
 | |
| 
 | |
|     f->blocks    = f->transient ? 1 << f->size : 1;
 | |
|     f->blocksize = frame_size / f->blocks;
 | |
| 
 | |
|     imdct = f->imdct[f->transient ? 0 : f->size];
 | |
| 
 | |
|     if (channels == 1) {
 | |
|         for (i = 0; i < CELT_MAX_BANDS; i++)
 | |
|             f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
 | |
|     }
 | |
| 
 | |
|     celt_decode_coarse_energy(f, rc);
 | |
|     celt_decode_tf_changes   (f, rc);
 | |
|     celt_decode_allocation   (f, rc);
 | |
|     celt_decode_fine_energy  (f, rc);
 | |
|     celt_decode_bands        (f, rc);
 | |
| 
 | |
|     if (f->anticollapse_needed)
 | |
|         f->anticollapse = ff_opus_rc_get_raw(rc, 1);
 | |
| 
 | |
|     celt_decode_final_energy(f, rc);
 | |
| 
 | |
|     /* apply anti-collapse processing and denormalization to
 | |
|      * each coded channel */
 | |
|     for (i = 0; i < f->channels; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         if (f->anticollapse)
 | |
|             process_anticollapse(f, block, f->block[i].coeffs);
 | |
| 
 | |
|         celt_denormalize(f, block, f->block[i].coeffs);
 | |
|     }
 | |
| 
 | |
|     /* stereo -> mono downmix */
 | |
|     if (f->output_channels < f->channels) {
 | |
|         f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
 | |
|         downmix = 1;
 | |
|     } else if (f->output_channels > f->channels)
 | |
|         memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
 | |
| 
 | |
|     if (f->silence) {
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             CeltBlock *block = &f->block[i];
 | |
| 
 | |
|             for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
 | |
|                 block->energy[j] = CELT_ENERGY_SILENCE;
 | |
|         }
 | |
|         memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
 | |
|         memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
 | |
|     }
 | |
| 
 | |
|     /* transform and output for each output channel */
 | |
|     for (i = 0; i < f->output_channels; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
|         float m = block->emph_coeff;
 | |
| 
 | |
|         /* iMDCT and overlap-add */
 | |
|         for (j = 0; j < f->blocks; j++) {
 | |
|             float *dst  = block->buf + 1024 + j * f->blocksize;
 | |
| 
 | |
|             imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
 | |
|                               f->blocks);
 | |
|             f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
 | |
|                                        ff_celt_window, CELT_OVERLAP / 2);
 | |
|         }
 | |
| 
 | |
|         if (downmix)
 | |
|             f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
 | |
| 
 | |
|         /* postfilter */
 | |
|         celt_postfilter(f, block);
 | |
| 
 | |
|         /* deemphasis and output scaling */
 | |
|         for (j = 0; j < frame_size; j++) {
 | |
|             const float tmp = block->buf[1024 - frame_size + j] + m;
 | |
|             m = tmp * CELT_EMPH_COEFF;
 | |
|             output[i][j] = tmp;
 | |
|         }
 | |
| 
 | |
|         block->emph_coeff = m;
 | |
|     }
 | |
| 
 | |
|     if (channels == 1)
 | |
|         memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
 | |
| 
 | |
|     for (i = 0; i < 2; i++ ) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         if (!f->transient) {
 | |
|             memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
 | |
|             memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0]));
 | |
|         } else {
 | |
|             for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|                 block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < f->start_band; j++) {
 | |
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             block->energy[j]         = 0.0;
 | |
|         }
 | |
|         for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
 | |
|             block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             block->energy[j]         = 0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     f->seed = rc->range;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void ff_celt_flush(CeltFrame *f)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     if (f->flushed)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         CeltBlock *block = &f->block[i];
 | |
| 
 | |
|         for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|             block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
 | |
| 
 | |
|         memset(block->energy, 0, sizeof(block->energy));
 | |
|         memset(block->buf,    0, sizeof(block->buf));
 | |
| 
 | |
|         memset(block->pf_gains,     0, sizeof(block->pf_gains));
 | |
|         memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
 | |
|         memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
 | |
| 
 | |
|         block->emph_coeff = 0.0;
 | |
|     }
 | |
|     f->seed = 0;
 | |
| 
 | |
|     f->flushed = 1;
 | |
| }
 | |
| 
 | |
| void ff_celt_free(CeltFrame **f)
 | |
| {
 | |
|     CeltFrame *frm = *f;
 | |
|     int i;
 | |
| 
 | |
|     if (!frm)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | |
|         ff_mdct15_uninit(&frm->imdct[i]);
 | |
| 
 | |
|     ff_celt_pvq_uninit(&frm->pvq);
 | |
| 
 | |
|     av_freep(&frm->dsp);
 | |
|     av_freep(f);
 | |
| }
 | |
| 
 | |
| int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels)
 | |
| {
 | |
|     CeltFrame *frm;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (output_channels != 1 && output_channels != 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
 | |
|                output_channels);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     frm = av_mallocz(sizeof(*frm));
 | |
|     if (!frm)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     frm->avctx           = avctx;
 | |
|     frm->output_channels = output_channels;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | |
|         if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
 | |
|             goto fail;
 | |
| 
 | |
|     if ((ret = ff_celt_pvq_init(&frm->pvq)) < 0)
 | |
|         goto fail;
 | |
| 
 | |
|     frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
 | |
|     if (!frm->dsp) {
 | |
|         ret = AVERROR(ENOMEM);
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     ff_celt_flush(frm);
 | |
| 
 | |
|     *f = frm;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_celt_free(&frm);
 | |
|     return ret;
 | |
| }
 |