All that remains in it are things that belong in avfilter_internal.h. Move them there and remove internal.h
		
			
				
	
	
		
			623 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			623 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2021 Paul B Mahol
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "libavutil/mem.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/tx.h"
 | |
| #include "audio.h"
 | |
| #include "avfilter.h"
 | |
| #include "filters.h"
 | |
| #include "window_func.h"
 | |
| 
 | |
| #define MEASURE_ALL       UINT_MAX
 | |
| #define MEASURE_NONE      0
 | |
| #define MEASURE_MEAN     (1 <<  0)
 | |
| #define MEASURE_VARIANCE (1 <<  1)
 | |
| #define MEASURE_CENTROID (1 <<  2)
 | |
| #define MEASURE_SPREAD   (1 <<  3)
 | |
| #define MEASURE_SKEWNESS (1 <<  4)
 | |
| #define MEASURE_KURTOSIS (1 <<  5)
 | |
| #define MEASURE_ENTROPY  (1 <<  6)
 | |
| #define MEASURE_FLATNESS (1 <<  7)
 | |
| #define MEASURE_CREST    (1 <<  8)
 | |
| #define MEASURE_FLUX     (1 <<  9)
 | |
| #define MEASURE_SLOPE    (1 << 10)
 | |
| #define MEASURE_DECREASE (1 << 11)
 | |
| #define MEASURE_ROLLOFF  (1 << 12)
 | |
| 
 | |
| typedef struct ChannelSpectralStats {
 | |
|     float mean;
 | |
|     float variance;
 | |
|     float centroid;
 | |
|     float spread;
 | |
|     float skewness;
 | |
|     float kurtosis;
 | |
|     float entropy;
 | |
|     float flatness;
 | |
|     float crest;
 | |
|     float flux;
 | |
|     float slope;
 | |
|     float decrease;
 | |
|     float rolloff;
 | |
| } ChannelSpectralStats;
 | |
| 
 | |
| typedef struct AudioSpectralStatsContext {
 | |
|     const AVClass *class;
 | |
|     unsigned measure;
 | |
|     int win_size;
 | |
|     int win_func;
 | |
|     float overlap;
 | |
|     int nb_channels;
 | |
|     int hop_size;
 | |
|     ChannelSpectralStats *stats;
 | |
|     float *window_func_lut;
 | |
|     av_tx_fn tx_fn;
 | |
|     AVTXContext **fft;
 | |
|     AVComplexFloat **fft_in;
 | |
|     AVComplexFloat **fft_out;
 | |
|     float **prev_magnitude;
 | |
|     float **magnitude;
 | |
|     AVFrame *window;
 | |
| } AudioSpectralStatsContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(AudioSpectralStatsContext, x)
 | |
| #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 | |
| 
 | |
| static const AVOption aspectralstats_options[] = {
 | |
|     { "win_size", "set the window size", OFFSET(win_size), AV_OPT_TYPE_INT, {.i64=2048}, 32, 65536, A },
 | |
|     WIN_FUNC_OPTION("win_func", OFFSET(win_func), A, WFUNC_HANNING),
 | |
|     { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0,  1, A },
 | |
|     { "measure", "select the parameters which are measured", OFFSET(measure), AV_OPT_TYPE_FLAGS, {.i64=MEASURE_ALL}, 0, UINT_MAX, A, .unit = "measure" },
 | |
|     { "none",     "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_NONE    }, 0, 0, A, .unit = "measure" },
 | |
|     { "all",      "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ALL     }, 0, 0, A, .unit = "measure" },
 | |
|     { "mean",     "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_MEAN    }, 0, 0, A, .unit = "measure" },
 | |
|     { "variance", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_VARIANCE}, 0, 0, A, .unit = "measure" },
 | |
|     { "centroid", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CENTROID}, 0, 0, A, .unit = "measure" },
 | |
|     { "spread",   "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_SPREAD  }, 0, 0, A, .unit = "measure" },
 | |
|     { "skewness", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_SKEWNESS}, 0, 0, A, .unit = "measure" },
 | |
|     { "kurtosis", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_KURTOSIS}, 0, 0, A, .unit = "measure" },
 | |
|     { "entropy",  "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ENTROPY }, 0, 0, A, .unit = "measure" },
 | |
|     { "flatness", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLATNESS}, 0, 0, A, .unit = "measure" },
 | |
|     { "crest",    "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_CREST   }, 0, 0, A, .unit = "measure" },
 | |
|     { "flux",     "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_FLUX    }, 0, 0, A, .unit = "measure" },
 | |
|     { "slope",    "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_SLOPE   }, 0, 0, A, .unit = "measure" },
 | |
|     { "decrease", "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_DECREASE}, 0, 0, A, .unit = "measure" },
 | |
|     { "rolloff",  "", 0, AV_OPT_TYPE_CONST, {.i64=MEASURE_ROLLOFF }, 0, 0, A, .unit = "measure" },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(aspectralstats);
 | |
| 
 | |
| static int config_output(AVFilterLink *outlink)
 | |
| {
 | |
|     AudioSpectralStatsContext *s = outlink->src->priv;
 | |
|     float overlap, scale = 1.f;
 | |
|     int ret;
 | |
| 
 | |
|     s->nb_channels = outlink->ch_layout.nb_channels;
 | |
|     s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
 | |
|                                       sizeof(*s->window_func_lut));
 | |
|     if (!s->window_func_lut)
 | |
|         return AVERROR(ENOMEM);
 | |
|     generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
 | |
|     if (s->overlap == 1.f)
 | |
|         s->overlap = overlap;
 | |
| 
 | |
|     s->hop_size = s->win_size * (1.f - s->overlap);
 | |
|     if (s->hop_size <= 0)
 | |
|         return AVERROR(EINVAL);
 | |
| 
 | |
|     s->stats = av_calloc(s->nb_channels, sizeof(*s->stats));
 | |
|     if (!s->stats)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->fft = av_calloc(s->nb_channels, sizeof(*s->fft));
 | |
|     if (!s->fft)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->magnitude = av_calloc(s->nb_channels, sizeof(*s->magnitude));
 | |
|     if (!s->magnitude)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->prev_magnitude = av_calloc(s->nb_channels, sizeof(*s->prev_magnitude));
 | |
|     if (!s->prev_magnitude)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->fft_in = av_calloc(s->nb_channels, sizeof(*s->fft_in));
 | |
|     if (!s->fft_in)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->fft_out = av_calloc(s->nb_channels, sizeof(*s->fft_out));
 | |
|     if (!s->fft_out)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (int ch = 0; ch < s->nb_channels; ch++) {
 | |
|         ret = av_tx_init(&s->fft[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->win_size, &scale, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         s->fft_in[ch] = av_calloc(s->win_size, sizeof(**s->fft_in));
 | |
|         if (!s->fft_in[ch])
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         s->fft_out[ch] = av_calloc(s->win_size, sizeof(**s->fft_out));
 | |
|         if (!s->fft_out[ch])
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         s->magnitude[ch] = av_calloc(s->win_size, sizeof(**s->magnitude));
 | |
|         if (!s->magnitude[ch])
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         s->prev_magnitude[ch] = av_calloc(s->win_size, sizeof(**s->prev_magnitude));
 | |
|         if (!s->prev_magnitude[ch])
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     s->window = ff_get_audio_buffer(outlink, s->win_size);
 | |
|     if (!s->window)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void set_meta(AVDictionary **metadata, int chan, const char *key,
 | |
|                      const char *fmt, float val)
 | |
| {
 | |
|     uint8_t value[128];
 | |
|     uint8_t key2[128];
 | |
| 
 | |
|     snprintf(value, sizeof(value), fmt, val);
 | |
|     if (chan)
 | |
|         snprintf(key2, sizeof(key2), "lavfi.aspectralstats.%d.%s", chan, key);
 | |
|     else
 | |
|         snprintf(key2, sizeof(key2), "lavfi.aspectralstats.%s", key);
 | |
|     av_dict_set(metadata, key2, value, 0);
 | |
| }
 | |
| 
 | |
| static void set_metadata(AudioSpectralStatsContext *s, AVDictionary **metadata)
 | |
| {
 | |
|     for (int ch = 0; ch < s->nb_channels; ch++) {
 | |
|         ChannelSpectralStats *stats = &s->stats[ch];
 | |
| 
 | |
|         if (s->measure & MEASURE_MEAN)
 | |
|             set_meta(metadata, ch + 1, "mean",     "%g", stats->mean);
 | |
|         if (s->measure & MEASURE_VARIANCE)
 | |
|             set_meta(metadata, ch + 1, "variance", "%g", stats->variance);
 | |
|         if (s->measure & MEASURE_CENTROID)
 | |
|             set_meta(metadata, ch + 1, "centroid", "%g", stats->centroid);
 | |
|         if (s->measure & MEASURE_SPREAD)
 | |
|             set_meta(metadata, ch + 1, "spread",   "%g", stats->spread);
 | |
|         if (s->measure & MEASURE_SKEWNESS)
 | |
|             set_meta(metadata, ch + 1, "skewness", "%g", stats->skewness);
 | |
|         if (s->measure & MEASURE_KURTOSIS)
 | |
|             set_meta(metadata, ch + 1, "kurtosis", "%g", stats->kurtosis);
 | |
|         if (s->measure & MEASURE_ENTROPY)
 | |
|             set_meta(metadata, ch + 1, "entropy",  "%g", stats->entropy);
 | |
|         if (s->measure & MEASURE_FLATNESS)
 | |
|             set_meta(metadata, ch + 1, "flatness", "%g", stats->flatness);
 | |
|         if (s->measure & MEASURE_CREST)
 | |
|             set_meta(metadata, ch + 1, "crest",    "%g", stats->crest);
 | |
|         if (s->measure & MEASURE_FLUX)
 | |
|             set_meta(metadata, ch + 1, "flux",     "%g", stats->flux);
 | |
|         if (s->measure & MEASURE_SLOPE)
 | |
|             set_meta(metadata, ch + 1, "slope",    "%g", stats->slope);
 | |
|         if (s->measure & MEASURE_DECREASE)
 | |
|             set_meta(metadata, ch + 1, "decrease", "%g", stats->decrease);
 | |
|         if (s->measure & MEASURE_ROLLOFF)
 | |
|             set_meta(metadata, ch + 1, "rolloff",  "%g", stats->rolloff);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static float spectral_mean(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     float sum = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++)
 | |
|         sum += spectral[n];
 | |
| 
 | |
|     return sum / size;
 | |
| }
 | |
| 
 | |
| static float sqrf(float a)
 | |
| {
 | |
|     return a * a;
 | |
| }
 | |
| 
 | |
| static float spectral_variance(const float *const spectral, int size, int max_freq, float mean)
 | |
| {
 | |
|     float sum = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++)
 | |
|         sum += sqrf(spectral[n] - mean);
 | |
| 
 | |
|     return sum / size;
 | |
| }
 | |
| 
 | |
| static float spectral_centroid(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     const float scale = max_freq / (float)size;
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += spectral[n] * n * scale;
 | |
|         den += spectral[n];
 | |
|     }
 | |
| 
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 1.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_spread(const float *const spectral, int size, int max_freq, float centroid)
 | |
| {
 | |
|     const float scale = max_freq / (float)size;
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += spectral[n] * sqrf(n * scale - centroid);
 | |
|         den += spectral[n];
 | |
|     }
 | |
| 
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 1.f;
 | |
|     return sqrtf(num / den);
 | |
| }
 | |
| 
 | |
| static float cbrf(float a)
 | |
| {
 | |
|     return a * a * a;
 | |
| }
 | |
| 
 | |
| static float spectral_skewness(const float *const spectral, int size, int max_freq, float centroid, float spread)
 | |
| {
 | |
|     const float scale = max_freq / (float)size;
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += spectral[n] * cbrf(n * scale - centroid);
 | |
|         den += spectral[n];
 | |
|     }
 | |
| 
 | |
|     den *= cbrf(spread);
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 1.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_kurtosis(const float *const spectral, int size, int max_freq, float centroid, float spread)
 | |
| {
 | |
|     const float scale = max_freq / (float)size;
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += spectral[n] * sqrf(sqrf(n * scale - centroid));
 | |
|         den += spectral[n];
 | |
|     }
 | |
| 
 | |
|     den *= sqrf(sqrf(spread));
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 1.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_entropy(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += spectral[n] * logf(spectral[n] + FLT_EPSILON);
 | |
|     }
 | |
| 
 | |
|     den = logf(size);
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 1.f;
 | |
|     return -num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_flatness(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         float v = FLT_EPSILON + spectral[n];
 | |
|         num += logf(v);
 | |
|         den += v;
 | |
|     }
 | |
| 
 | |
|     num /= size;
 | |
|     den /= size;
 | |
|     num = expf(num);
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 0.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_crest(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     float max = 0.f, mean = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         max = fmaxf(max, spectral[n]);
 | |
|         mean += spectral[n];
 | |
|     }
 | |
| 
 | |
|     mean /= size;
 | |
|     if (mean <= FLT_EPSILON)
 | |
|         return 0.f;
 | |
|     return max / mean;
 | |
| }
 | |
| 
 | |
| static float spectral_flux(const float *const spectral, const float *const prev_spectral,
 | |
|                            int size, int max_freq)
 | |
| {
 | |
|     float sum = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++)
 | |
|         sum += sqrf(spectral[n] - prev_spectral[n]);
 | |
| 
 | |
|     return sqrtf(sum);
 | |
| }
 | |
| 
 | |
| static float spectral_slope(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     const float mean_freq = size * 0.5f;
 | |
|     float mean_spectral = 0.f, num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++)
 | |
|         mean_spectral += spectral[n];
 | |
|     mean_spectral /= size;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         num += ((n - mean_freq) / mean_freq) * (spectral[n] - mean_spectral);
 | |
|         den += sqrf((n - mean_freq) / mean_freq);
 | |
|     }
 | |
| 
 | |
|     if (fabsf(den) <= FLT_EPSILON)
 | |
|         return 0.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_decrease(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     float num = 0.f, den = 0.f;
 | |
| 
 | |
|     for (int n = 1; n < size; n++) {
 | |
|         num += (spectral[n] - spectral[0]) / n;
 | |
|         den += spectral[n];
 | |
|     }
 | |
| 
 | |
|     if (den <= FLT_EPSILON)
 | |
|         return 0.f;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| static float spectral_rolloff(const float *const spectral, int size, int max_freq)
 | |
| {
 | |
|     const float scale = max_freq / (float)size;
 | |
|     float norm = 0.f, sum = 0.f;
 | |
|     int idx = 0.f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++)
 | |
|         norm += spectral[n];
 | |
|     norm *= 0.85f;
 | |
| 
 | |
|     for (int n = 0; n < size; n++) {
 | |
|         sum += spectral[n];
 | |
|         if (sum >= norm) {
 | |
|             idx = n;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return idx * scale;
 | |
| }
 | |
| 
 | |
| static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     AudioSpectralStatsContext *s = ctx->priv;
 | |
|     const float *window_func_lut = s->window_func_lut;
 | |
|     AVFrame *in = arg;
 | |
|     const int channels = s->nb_channels;
 | |
|     const int start = (channels * jobnr) / nb_jobs;
 | |
|     const int end = (channels * (jobnr+1)) / nb_jobs;
 | |
|     const int offset = s->win_size - s->hop_size;
 | |
| 
 | |
|     for (int ch = start; ch < end; ch++) {
 | |
|         float *window = (float *)s->window->extended_data[ch];
 | |
|         ChannelSpectralStats *stats = &s->stats[ch];
 | |
|         AVComplexFloat *fft_out = s->fft_out[ch];
 | |
|         AVComplexFloat *fft_in = s->fft_in[ch];
 | |
|         float *magnitude = s->magnitude[ch];
 | |
|         float *prev_magnitude = s->prev_magnitude[ch];
 | |
|         const float scale = 1.f / s->win_size;
 | |
| 
 | |
|         memmove(window, &window[s->hop_size], offset * sizeof(float));
 | |
|         memcpy(&window[offset], in->extended_data[ch], in->nb_samples * sizeof(float));
 | |
|         memset(&window[offset + in->nb_samples], 0, (s->hop_size - in->nb_samples) * sizeof(float));
 | |
| 
 | |
|         for (int n = 0; n < s->win_size; n++) {
 | |
|             fft_in[n].re = window[n] * window_func_lut[n];
 | |
|             fft_in[n].im = 0;
 | |
|         }
 | |
| 
 | |
|         s->tx_fn(s->fft[ch], fft_out, fft_in, sizeof(*fft_in));
 | |
| 
 | |
|         for (int n = 0; n < s->win_size / 2; n++) {
 | |
|             fft_out[n].re *= scale;
 | |
|             fft_out[n].im *= scale;
 | |
|         }
 | |
| 
 | |
|         for (int n = 0; n < s->win_size / 2; n++)
 | |
|             magnitude[n] = hypotf(fft_out[n].re, fft_out[n].im);
 | |
| 
 | |
|         if (s->measure & (MEASURE_MEAN | MEASURE_VARIANCE))
 | |
|             stats->mean     = spectral_mean(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_VARIANCE)
 | |
|             stats->variance = spectral_variance(magnitude, s->win_size / 2, in->sample_rate / 2, stats->mean);
 | |
|         if (s->measure & (MEASURE_SPREAD | MEASURE_KURTOSIS | MEASURE_SKEWNESS | MEASURE_CENTROID))
 | |
|             stats->centroid = spectral_centroid(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & (MEASURE_SPREAD | MEASURE_KURTOSIS | MEASURE_SKEWNESS))
 | |
|             stats->spread   = spectral_spread(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid);
 | |
|         if (s->measure & MEASURE_SKEWNESS)
 | |
|             stats->skewness = spectral_skewness(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid, stats->spread);
 | |
|         if (s->measure & MEASURE_KURTOSIS)
 | |
|             stats->kurtosis = spectral_kurtosis(magnitude, s->win_size / 2, in->sample_rate / 2, stats->centroid, stats->spread);
 | |
|         if (s->measure & MEASURE_ENTROPY)
 | |
|             stats->entropy  = spectral_entropy(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_FLATNESS)
 | |
|             stats->flatness = spectral_flatness(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_CREST)
 | |
|             stats->crest    = spectral_crest(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_FLUX)
 | |
|             stats->flux     = spectral_flux(magnitude, prev_magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_SLOPE)
 | |
|             stats->slope    = spectral_slope(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_DECREASE)
 | |
|             stats->decrease = spectral_decrease(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
|         if (s->measure & MEASURE_ROLLOFF)
 | |
|             stats->rolloff  = spectral_rolloff(magnitude, s->win_size / 2, in->sample_rate / 2);
 | |
| 
 | |
|         memcpy(prev_magnitude, magnitude, s->win_size * sizeof(float));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AudioSpectralStatsContext *s = ctx->priv;
 | |
|     AVDictionary **metadata;
 | |
|     AVFrame *out;
 | |
|     int ret;
 | |
| 
 | |
|     if (av_frame_is_writable(in)) {
 | |
|         out = in;
 | |
|     } else {
 | |
|         out = ff_get_audio_buffer(outlink, in->nb_samples);
 | |
|         if (!out) {
 | |
|             av_frame_free(&in);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|         ret = av_frame_copy_props(out, in);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|         ret = av_frame_copy(out, in);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|     }
 | |
| 
 | |
|     metadata = &out->metadata;
 | |
|     ff_filter_execute(ctx, filter_channel, in, NULL,
 | |
|                       FFMIN(inlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     set_metadata(s, metadata);
 | |
| 
 | |
|     if (out != in)
 | |
|         av_frame_free(&in);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| fail:
 | |
|     av_frame_free(&in);
 | |
|     av_frame_free(&out);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int activate(AVFilterContext *ctx)
 | |
| {
 | |
|     AudioSpectralStatsContext *s = ctx->priv;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     AVFrame *in;
 | |
|     int ret;
 | |
| 
 | |
|     FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
 | |
| 
 | |
|     ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &in);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
|     if (ret > 0)
 | |
|         ret = filter_frame(inlink, in);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (ff_inlink_queued_samples(inlink) >= s->hop_size) {
 | |
|         ff_filter_set_ready(ctx, 10);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     FF_FILTER_FORWARD_STATUS(inlink, outlink);
 | |
|     FF_FILTER_FORWARD_WANTED(outlink, inlink);
 | |
| 
 | |
|     return FFERROR_NOT_READY;
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     AudioSpectralStatsContext *s = ctx->priv;
 | |
| 
 | |
|     for (int ch = 0; ch < s->nb_channels; ch++) {
 | |
|         if (s->fft)
 | |
|             av_tx_uninit(&s->fft[ch]);
 | |
|         if (s->fft_in)
 | |
|             av_freep(&s->fft_in[ch]);
 | |
|         if (s->fft_out)
 | |
|             av_freep(&s->fft_out[ch]);
 | |
|         if (s->magnitude)
 | |
|             av_freep(&s->magnitude[ch]);
 | |
|         if (s->prev_magnitude)
 | |
|             av_freep(&s->prev_magnitude[ch]);
 | |
|     }
 | |
| 
 | |
|     av_freep(&s->fft);
 | |
|     av_freep(&s->magnitude);
 | |
|     av_freep(&s->prev_magnitude);
 | |
|     av_freep(&s->fft_in);
 | |
|     av_freep(&s->fft_out);
 | |
|     av_freep(&s->stats);
 | |
| 
 | |
|     av_freep(&s->window_func_lut);
 | |
|     av_frame_free(&s->window);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad aspectralstats_outputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_AUDIO,
 | |
|         .config_props = config_output,
 | |
|     },
 | |
| };
 | |
| 
 | |
| const AVFilter ff_af_aspectralstats = {
 | |
|     .name          = "aspectralstats",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Show frequency domain statistics about audio frames."),
 | |
|     .priv_size     = sizeof(AudioSpectralStatsContext),
 | |
|     .priv_class    = &aspectralstats_class,
 | |
|     .uninit        = uninit,
 | |
|     .activate      = activate,
 | |
|     FILTER_INPUTS(ff_audio_default_filterpad),
 | |
|     FILTER_OUTPUTS(aspectralstats_outputs),
 | |
|     FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
 | |
|     .flags         = AVFILTER_FLAG_SLICE_THREADS,
 | |
| };
 |