VP4 applies a loop filter during motion compensation, causing the block offset will often by unaligned. This produces a bus error on some platforms, namely ARMv7 NEON. This patch adds a unaligned version of the loop filter function pointer to VP3DSPContext. Reported-by: Mike Melanson <mike@multimedia.cx> Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			3308 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3308 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2003-2004 The FFmpeg project
 | 
						|
 * Copyright (C) 2019 Peter Ross
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * On2 VP3/VP4 Video Decoder
 | 
						|
 *
 | 
						|
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 | 
						|
 * For more information about the VP3 coding process, visit:
 | 
						|
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 | 
						|
 *
 | 
						|
 * Theora decoder by Alex Beregszaszi
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "libavutil/imgutils.h"
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "hpeldsp.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "mathops.h"
 | 
						|
#include "thread.h"
 | 
						|
#include "videodsp.h"
 | 
						|
#include "vp3data.h"
 | 
						|
#include "vp4data.h"
 | 
						|
#include "vp3dsp.h"
 | 
						|
#include "xiph.h"
 | 
						|
 | 
						|
#define FRAGMENT_PIXELS 8
 | 
						|
 | 
						|
// FIXME split things out into their own arrays
 | 
						|
typedef struct Vp3Fragment {
 | 
						|
    int16_t dc;
 | 
						|
    uint8_t coding_method;
 | 
						|
    uint8_t qpi;
 | 
						|
} Vp3Fragment;
 | 
						|
 | 
						|
#define SB_NOT_CODED        0
 | 
						|
#define SB_PARTIALLY_CODED  1
 | 
						|
#define SB_FULLY_CODED      2
 | 
						|
 | 
						|
// This is the maximum length of a single long bit run that can be encoded
 | 
						|
// for superblock coding or block qps. Theora special-cases this to read a
 | 
						|
// bit instead of flipping the current bit to allow for runs longer than 4129.
 | 
						|
#define MAXIMUM_LONG_BIT_RUN 4129
 | 
						|
 | 
						|
#define MODE_INTER_NO_MV      0
 | 
						|
#define MODE_INTRA            1
 | 
						|
#define MODE_INTER_PLUS_MV    2
 | 
						|
#define MODE_INTER_LAST_MV    3
 | 
						|
#define MODE_INTER_PRIOR_LAST 4
 | 
						|
#define MODE_USING_GOLDEN     5
 | 
						|
#define MODE_GOLDEN_MV        6
 | 
						|
#define MODE_INTER_FOURMV     7
 | 
						|
#define CODING_MODE_COUNT     8
 | 
						|
 | 
						|
/* special internal mode */
 | 
						|
#define MODE_COPY             8
 | 
						|
 | 
						|
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
 | 
						|
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
 | 
						|
 | 
						|
 | 
						|
/* There are 6 preset schemes, plus a free-form scheme */
 | 
						|
static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
 | 
						|
    /* scheme 1: Last motion vector dominates */
 | 
						|
    { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
      MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | 
						|
      MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 2 */
 | 
						|
    { MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
      MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | 
						|
      MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 3 */
 | 
						|
    { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | 
						|
      MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | 
						|
      MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 4 */
 | 
						|
    { MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | 
						|
      MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | 
						|
      MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 5: No motion vector dominates */
 | 
						|
    { MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
 | 
						|
      MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | 
						|
      MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 6 */
 | 
						|
    { MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
 | 
						|
      MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
      MODE_INTER_PLUS_MV,    MODE_INTRA,
 | 
						|
      MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
};
 | 
						|
 | 
						|
static const uint8_t hilbert_offset[16][2] = {
 | 
						|
    { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
 | 
						|
    { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
 | 
						|
    { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
 | 
						|
    { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
 | 
						|
};
 | 
						|
 | 
						|
enum {
 | 
						|
    VP4_DC_INTRA  = 0,
 | 
						|
    VP4_DC_INTER  = 1,
 | 
						|
    VP4_DC_GOLDEN = 2,
 | 
						|
    NB_VP4_DC_TYPES,
 | 
						|
    VP4_DC_UNDEFINED = NB_VP4_DC_TYPES
 | 
						|
};
 | 
						|
 | 
						|
static const uint8_t vp4_pred_block_type_map[8] = {
 | 
						|
    [MODE_INTER_NO_MV]      = VP4_DC_INTER,
 | 
						|
    [MODE_INTRA]            = VP4_DC_INTRA,
 | 
						|
    [MODE_INTER_PLUS_MV]    = VP4_DC_INTER,
 | 
						|
    [MODE_INTER_LAST_MV]    = VP4_DC_INTER,
 | 
						|
    [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER,
 | 
						|
    [MODE_USING_GOLDEN]     = VP4_DC_GOLDEN,
 | 
						|
    [MODE_GOLDEN_MV]        = VP4_DC_GOLDEN,
 | 
						|
    [MODE_INTER_FOURMV]     = VP4_DC_INTER,
 | 
						|
};
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    int dc;
 | 
						|
    int type;
 | 
						|
} VP4Predictor;
 | 
						|
 | 
						|
#define MIN_DEQUANT_VAL 2
 | 
						|
 | 
						|
typedef struct Vp3DecodeContext {
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    int theora, theora_tables, theora_header;
 | 
						|
    int version;
 | 
						|
    int width, height;
 | 
						|
    int chroma_x_shift, chroma_y_shift;
 | 
						|
    ThreadFrame golden_frame;
 | 
						|
    ThreadFrame last_frame;
 | 
						|
    ThreadFrame current_frame;
 | 
						|
    int keyframe;
 | 
						|
    uint8_t idct_permutation[64];
 | 
						|
    uint8_t idct_scantable[64];
 | 
						|
    HpelDSPContext hdsp;
 | 
						|
    VideoDSPContext vdsp;
 | 
						|
    VP3DSPContext vp3dsp;
 | 
						|
    DECLARE_ALIGNED(16, int16_t, block)[64];
 | 
						|
    int flipped_image;
 | 
						|
    int last_slice_end;
 | 
						|
    int skip_loop_filter;
 | 
						|
 | 
						|
    int qps[3];
 | 
						|
    int nqps;
 | 
						|
    int last_qps[3];
 | 
						|
 | 
						|
    int superblock_count;
 | 
						|
    int y_superblock_width;
 | 
						|
    int y_superblock_height;
 | 
						|
    int y_superblock_count;
 | 
						|
    int c_superblock_width;
 | 
						|
    int c_superblock_height;
 | 
						|
    int c_superblock_count;
 | 
						|
    int u_superblock_start;
 | 
						|
    int v_superblock_start;
 | 
						|
    unsigned char *superblock_coding;
 | 
						|
 | 
						|
    int macroblock_count; /* y macroblock count */
 | 
						|
    int macroblock_width;
 | 
						|
    int macroblock_height;
 | 
						|
    int c_macroblock_count;
 | 
						|
    int c_macroblock_width;
 | 
						|
    int c_macroblock_height;
 | 
						|
    int yuv_macroblock_count; /* y+u+v macroblock count */
 | 
						|
 | 
						|
    int fragment_count;
 | 
						|
    int fragment_width[2];
 | 
						|
    int fragment_height[2];
 | 
						|
 | 
						|
    Vp3Fragment *all_fragments;
 | 
						|
    int fragment_start[3];
 | 
						|
    int data_offset[3];
 | 
						|
    uint8_t offset_x;
 | 
						|
    uint8_t offset_y;
 | 
						|
    int offset_x_warned;
 | 
						|
 | 
						|
    int8_t (*motion_val[2])[2];
 | 
						|
 | 
						|
    /* tables */
 | 
						|
    uint16_t coded_dc_scale_factor[2][64];
 | 
						|
    uint32_t coded_ac_scale_factor[64];
 | 
						|
    uint8_t base_matrix[384][64];
 | 
						|
    uint8_t qr_count[2][3];
 | 
						|
    uint8_t qr_size[2][3][64];
 | 
						|
    uint16_t qr_base[2][3][64];
 | 
						|
 | 
						|
    /**
 | 
						|
     * This is a list of all tokens in bitstream order. Reordering takes place
 | 
						|
     * by pulling from each level during IDCT. As a consequence, IDCT must be
 | 
						|
     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
 | 
						|
     * otherwise. The 32 different tokens with up to 12 bits of extradata are
 | 
						|
     * collapsed into 3 types, packed as follows:
 | 
						|
     *   (from the low to high bits)
 | 
						|
     *
 | 
						|
     * 2 bits: type (0,1,2)
 | 
						|
     *   0: EOB run, 14 bits for run length (12 needed)
 | 
						|
     *   1: zero run, 7 bits for run length
 | 
						|
     *                7 bits for the next coefficient (3 needed)
 | 
						|
     *   2: coefficient, 14 bits (11 needed)
 | 
						|
     *
 | 
						|
     * Coefficients are signed, so are packed in the highest bits for automatic
 | 
						|
     * sign extension.
 | 
						|
     */
 | 
						|
    int16_t *dct_tokens[3][64];
 | 
						|
    int16_t *dct_tokens_base;
 | 
						|
#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
 | 
						|
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
 | 
						|
#define TOKEN_COEFF(coeff)              (((coeff) * 4) + 2)
 | 
						|
 | 
						|
    /**
 | 
						|
     * number of blocks that contain DCT coefficients at
 | 
						|
     * the given level or higher
 | 
						|
     */
 | 
						|
    int num_coded_frags[3][64];
 | 
						|
    int total_num_coded_frags;
 | 
						|
 | 
						|
    /* this is a list of indexes into the all_fragments array indicating
 | 
						|
     * which of the fragments are coded */
 | 
						|
    int *coded_fragment_list[3];
 | 
						|
 | 
						|
    int *kf_coded_fragment_list;
 | 
						|
    int *nkf_coded_fragment_list;
 | 
						|
    int num_kf_coded_fragment[3];
 | 
						|
 | 
						|
    VLC dc_vlc[16];
 | 
						|
    VLC ac_vlc_1[16];
 | 
						|
    VLC ac_vlc_2[16];
 | 
						|
    VLC ac_vlc_3[16];
 | 
						|
    VLC ac_vlc_4[16];
 | 
						|
 | 
						|
    VLC superblock_run_length_vlc; /* version < 2 */
 | 
						|
    VLC fragment_run_length_vlc; /* version < 2 */
 | 
						|
    VLC block_pattern_vlc[2]; /* version >= 2*/
 | 
						|
    VLC mode_code_vlc;
 | 
						|
    VLC motion_vector_vlc; /* version < 2 */
 | 
						|
    VLC vp4_mv_vlc[2][7]; /* version >=2 */
 | 
						|
 | 
						|
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | 
						|
     * index into them */
 | 
						|
    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     ///< qmat[qpi][is_inter][plane]
 | 
						|
 | 
						|
    /* This table contains superblock_count * 16 entries. Each set of 16
 | 
						|
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
 | 
						|
     * An entry will be -1 to indicate that no entry corresponds to that
 | 
						|
     * index. */
 | 
						|
    int *superblock_fragments;
 | 
						|
 | 
						|
    /* This is an array that indicates how a particular macroblock
 | 
						|
     * is coded. */
 | 
						|
    unsigned char *macroblock_coding;
 | 
						|
 | 
						|
    uint8_t *edge_emu_buffer;
 | 
						|
 | 
						|
    /* Huffman decode */
 | 
						|
    int hti;
 | 
						|
    unsigned int hbits;
 | 
						|
    int entries;
 | 
						|
    int huff_code_size;
 | 
						|
    uint32_t huffman_table[80][32][2];
 | 
						|
 | 
						|
    uint8_t filter_limit_values[64];
 | 
						|
    DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
 | 
						|
 | 
						|
    VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
 | 
						|
} Vp3DecodeContext;
 | 
						|
 | 
						|
/************************************************************************
 | 
						|
 * VP3 specific functions
 | 
						|
 ************************************************************************/
 | 
						|
 | 
						|
static av_cold void free_tables(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    av_freep(&s->superblock_coding);
 | 
						|
    av_freep(&s->all_fragments);
 | 
						|
    av_freep(&s->nkf_coded_fragment_list);
 | 
						|
    av_freep(&s->kf_coded_fragment_list);
 | 
						|
    av_freep(&s->dct_tokens_base);
 | 
						|
    av_freep(&s->superblock_fragments);
 | 
						|
    av_freep(&s->macroblock_coding);
 | 
						|
    av_freep(&s->dc_pred_row);
 | 
						|
    av_freep(&s->motion_val[0]);
 | 
						|
    av_freep(&s->motion_val[1]);
 | 
						|
}
 | 
						|
 | 
						|
static void vp3_decode_flush(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    if (s->golden_frame.f)
 | 
						|
        ff_thread_release_buffer(avctx, &s->golden_frame);
 | 
						|
    if (s->last_frame.f)
 | 
						|
        ff_thread_release_buffer(avctx, &s->last_frame);
 | 
						|
    if (s->current_frame.f)
 | 
						|
        ff_thread_release_buffer(avctx, &s->current_frame);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int vp3_decode_end(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    free_tables(avctx);
 | 
						|
    av_freep(&s->edge_emu_buffer);
 | 
						|
 | 
						|
    s->theora_tables = 0;
 | 
						|
 | 
						|
    /* release all frames */
 | 
						|
    vp3_decode_flush(avctx);
 | 
						|
    av_frame_free(&s->current_frame.f);
 | 
						|
    av_frame_free(&s->last_frame.f);
 | 
						|
    av_frame_free(&s->golden_frame.f);
 | 
						|
 | 
						|
    if (avctx->internal->is_copy)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        ff_free_vlc(&s->dc_vlc[i]);
 | 
						|
        ff_free_vlc(&s->ac_vlc_1[i]);
 | 
						|
        ff_free_vlc(&s->ac_vlc_2[i]);
 | 
						|
        ff_free_vlc(&s->ac_vlc_3[i]);
 | 
						|
        ff_free_vlc(&s->ac_vlc_4[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    ff_free_vlc(&s->superblock_run_length_vlc);
 | 
						|
    ff_free_vlc(&s->fragment_run_length_vlc);
 | 
						|
    ff_free_vlc(&s->mode_code_vlc);
 | 
						|
    ff_free_vlc(&s->motion_vector_vlc);
 | 
						|
 | 
						|
    for (j = 0; j < 2; j++)
 | 
						|
        for (i = 0; i < 7; i++)
 | 
						|
            ff_free_vlc(&s->vp4_mv_vlc[j][i]);
 | 
						|
 | 
						|
    for (i = 0; i < 2; i++)
 | 
						|
        ff_free_vlc(&s->block_pattern_vlc[i]);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * This function sets up all of the various blocks mappings:
 | 
						|
 * superblocks <-> fragments, macroblocks <-> fragments,
 | 
						|
 * superblocks <-> macroblocks
 | 
						|
 *
 | 
						|
 * @return 0 is successful; returns 1 if *anything* went wrong.
 | 
						|
 */
 | 
						|
static int init_block_mapping(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int sb_x, sb_y, plane;
 | 
						|
    int x, y, i, j = 0;
 | 
						|
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        int sb_width    = plane ? s->c_superblock_width
 | 
						|
                                : s->y_superblock_width;
 | 
						|
        int sb_height   = plane ? s->c_superblock_height
 | 
						|
                                : s->y_superblock_height;
 | 
						|
        int frag_width  = s->fragment_width[!!plane];
 | 
						|
        int frag_height = s->fragment_height[!!plane];
 | 
						|
 | 
						|
        for (sb_y = 0; sb_y < sb_height; sb_y++)
 | 
						|
            for (sb_x = 0; sb_x < sb_width; sb_x++)
 | 
						|
                for (i = 0; i < 16; i++) {
 | 
						|
                    x = 4 * sb_x + hilbert_offset[i][0];
 | 
						|
                    y = 4 * sb_y + hilbert_offset[i][1];
 | 
						|
 | 
						|
                    if (x < frag_width && y < frag_height)
 | 
						|
                        s->superblock_fragments[j++] = s->fragment_start[plane] +
 | 
						|
                                                       y * frag_width + x;
 | 
						|
                    else
 | 
						|
                        s->superblock_fragments[j++] = -1;
 | 
						|
                }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;  /* successful path out */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function sets up the dequantization tables used for a particular
 | 
						|
 * frame.
 | 
						|
 */
 | 
						|
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
 | 
						|
{
 | 
						|
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
 | 
						|
    int i, plane, inter, qri, bmi, bmj, qistart;
 | 
						|
 | 
						|
    for (inter = 0; inter < 2; inter++) {
 | 
						|
        for (plane = 0; plane < 3; plane++) {
 | 
						|
            int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
 | 
						|
            int sum = 0;
 | 
						|
            for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
 | 
						|
                sum += s->qr_size[inter][plane][qri];
 | 
						|
                if (s->qps[qpi] <= sum)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            qistart = sum - s->qr_size[inter][plane][qri];
 | 
						|
            bmi     = s->qr_base[inter][plane][qri];
 | 
						|
            bmj     = s->qr_base[inter][plane][qri + 1];
 | 
						|
            for (i = 0; i < 64; i++) {
 | 
						|
                int coeff = (2 * (sum     - s->qps[qpi]) * s->base_matrix[bmi][i] -
 | 
						|
                             2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
 | 
						|
                             s->qr_size[inter][plane][qri]) /
 | 
						|
                            (2 * s->qr_size[inter][plane][qri]);
 | 
						|
 | 
						|
                int qmin   = 8 << (inter + !i);
 | 
						|
                int qscale = i ? ac_scale_factor : dc_scale_factor;
 | 
						|
                int qbias = (1 + inter) * 3;
 | 
						|
                s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
 | 
						|
                    (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
 | 
						|
                                               : (qscale * (coeff - qbias) / 100 + qbias) * 4;
 | 
						|
            }
 | 
						|
            /* all DC coefficients use the same quant so as not to interfere
 | 
						|
             * with DC prediction */
 | 
						|
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function initializes the loop filter boundary limits if the frame's
 | 
						|
 * quality index is different from the previous frame's.
 | 
						|
 *
 | 
						|
 * The filter_limit_values may not be larger than 127.
 | 
						|
 */
 | 
						|
static void init_loop_filter(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all of the superblock/macroblock/fragment coding
 | 
						|
 * information from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int superblock_starts[3] = {
 | 
						|
        0, s->u_superblock_start, s->v_superblock_start
 | 
						|
    };
 | 
						|
    int bit = 0;
 | 
						|
    int current_superblock = 0;
 | 
						|
    int current_run = 0;
 | 
						|
    int num_partial_superblocks = 0;
 | 
						|
 | 
						|
    int i, j;
 | 
						|
    int current_fragment;
 | 
						|
    int plane;
 | 
						|
    int plane0_num_coded_frags = 0;
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | 
						|
    } else {
 | 
						|
        /* unpack the list of partially-coded superblocks */
 | 
						|
        bit         = get_bits1(gb) ^ 1;
 | 
						|
        current_run = 0;
 | 
						|
 | 
						|
        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
 | 
						|
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | 
						|
                bit = get_bits1(gb);
 | 
						|
            else
 | 
						|
                bit ^= 1;
 | 
						|
 | 
						|
            current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
 | 
						|
                                   6, 2) + 1;
 | 
						|
            if (current_run == 34)
 | 
						|
                current_run += get_bits(gb, 12);
 | 
						|
 | 
						|
            if (current_run > s->superblock_count - current_superblock) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                       "Invalid partially coded superblock run length\n");
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
 | 
						|
            memset(s->superblock_coding + current_superblock, bit, current_run);
 | 
						|
 | 
						|
            current_superblock += current_run;
 | 
						|
            if (bit)
 | 
						|
                num_partial_superblocks += current_run;
 | 
						|
        }
 | 
						|
 | 
						|
        /* unpack the list of fully coded superblocks if any of the blocks were
 | 
						|
         * not marked as partially coded in the previous step */
 | 
						|
        if (num_partial_superblocks < s->superblock_count) {
 | 
						|
            int superblocks_decoded = 0;
 | 
						|
 | 
						|
            current_superblock = 0;
 | 
						|
            bit                = get_bits1(gb) ^ 1;
 | 
						|
            current_run        = 0;
 | 
						|
 | 
						|
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
 | 
						|
                   get_bits_left(gb) > 0) {
 | 
						|
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
 | 
						|
                    bit = get_bits1(gb);
 | 
						|
                else
 | 
						|
                    bit ^= 1;
 | 
						|
 | 
						|
                current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
 | 
						|
                                       6, 2) + 1;
 | 
						|
                if (current_run == 34)
 | 
						|
                    current_run += get_bits(gb, 12);
 | 
						|
 | 
						|
                for (j = 0; j < current_run; current_superblock++) {
 | 
						|
                    if (current_superblock >= s->superblock_count) {
 | 
						|
                        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                               "Invalid fully coded superblock run length\n");
 | 
						|
                        return -1;
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* skip any superblocks already marked as partially coded */
 | 
						|
                    if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | 
						|
                        s->superblock_coding[current_superblock] = 2 * bit;
 | 
						|
                        j++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                superblocks_decoded += current_run;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* if there were partial blocks, initialize bitstream for
 | 
						|
         * unpacking fragment codings */
 | 
						|
        if (num_partial_superblocks) {
 | 
						|
            current_run = 0;
 | 
						|
            bit         = get_bits1(gb);
 | 
						|
            /* toggle the bit because as soon as the first run length is
 | 
						|
             * fetched the bit will be toggled again */
 | 
						|
            bit ^= 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* figure out which fragments are coded; iterate through each
 | 
						|
     * superblock (all planes) */
 | 
						|
    s->total_num_coded_frags = 0;
 | 
						|
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | 
						|
 | 
						|
    s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list
 | 
						|
                                            : s->nkf_coded_fragment_list;
 | 
						|
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        int sb_start = superblock_starts[plane];
 | 
						|
        int sb_end   = sb_start + (plane ? s->c_superblock_count
 | 
						|
                                         : s->y_superblock_count);
 | 
						|
        int num_coded_frags = 0;
 | 
						|
 | 
						|
        if (s->keyframe) {
 | 
						|
            if (s->num_kf_coded_fragment[plane] == -1) {
 | 
						|
                for (i = sb_start; i < sb_end; i++) {
 | 
						|
                    /* iterate through all 16 fragments in a superblock */
 | 
						|
                    for (j = 0; j < 16; j++) {
 | 
						|
                        /* if the fragment is in bounds, check its coding status */
 | 
						|
                        current_fragment = s->superblock_fragments[i * 16 + j];
 | 
						|
                        if (current_fragment != -1) {
 | 
						|
                            s->coded_fragment_list[plane][num_coded_frags++] =
 | 
						|
                                current_fragment;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                s->num_kf_coded_fragment[plane] = num_coded_frags;
 | 
						|
            } else
 | 
						|
                num_coded_frags = s->num_kf_coded_fragment[plane];
 | 
						|
        } else {
 | 
						|
            for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
 | 
						|
                if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
                /* iterate through all 16 fragments in a superblock */
 | 
						|
                for (j = 0; j < 16; j++) {
 | 
						|
                    /* if the fragment is in bounds, check its coding status */
 | 
						|
                    current_fragment = s->superblock_fragments[i * 16 + j];
 | 
						|
                    if (current_fragment != -1) {
 | 
						|
                        int coded = s->superblock_coding[i];
 | 
						|
 | 
						|
                        if (coded == SB_PARTIALLY_CODED) {
 | 
						|
                            /* fragment may or may not be coded; this is the case
 | 
						|
                             * that cares about the fragment coding runs */
 | 
						|
                            if (current_run-- == 0) {
 | 
						|
                                bit        ^= 1;
 | 
						|
                                current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
 | 
						|
                            }
 | 
						|
                            coded = bit;
 | 
						|
                        }
 | 
						|
 | 
						|
                        if (coded) {
 | 
						|
                            /* default mode; actual mode will be decoded in
 | 
						|
                             * the next phase */
 | 
						|
                            s->all_fragments[current_fragment].coding_method =
 | 
						|
                                MODE_INTER_NO_MV;
 | 
						|
                            s->coded_fragment_list[plane][num_coded_frags++] =
 | 
						|
                                current_fragment;
 | 
						|
                        } else {
 | 
						|
                            /* not coded; copy this fragment from the prior frame */
 | 
						|
                            s->all_fragments[current_fragment].coding_method =
 | 
						|
                                MODE_COPY;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (!plane)
 | 
						|
            plane0_num_coded_frags = num_coded_frags;
 | 
						|
        s->total_num_coded_frags += num_coded_frags;
 | 
						|
        for (i = 0; i < 64; i++)
 | 
						|
            s->num_coded_frags[plane][i] = num_coded_frags;
 | 
						|
        if (plane < 2)
 | 
						|
            s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
 | 
						|
                                                num_coded_frags;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define BLOCK_X (2 * mb_x + (k & 1))
 | 
						|
#define BLOCK_Y (2 * mb_y + (k >> 1))
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
/**
 | 
						|
 * @return number of blocks, or > yuv_macroblock_count on error.
 | 
						|
 *         return value is always >= 1.
 | 
						|
 */
 | 
						|
static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int v = 1;
 | 
						|
    int bits;
 | 
						|
    while ((bits = show_bits(gb, 9)) == 0x1ff) {
 | 
						|
        skip_bits(gb, 9);
 | 
						|
        v += 256;
 | 
						|
        if (v > s->yuv_macroblock_count) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
 | 
						|
            return v;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#define body(n) { \
 | 
						|
    skip_bits(gb, 2 + n); \
 | 
						|
    v += (1 << n) + get_bits(gb, n); }
 | 
						|
#define thresh(n) (0x200 - (0x80 >> n))
 | 
						|
#define else_if(n) else if (bits < thresh(n)) body(n)
 | 
						|
    if (bits < 0x100) {
 | 
						|
        skip_bits(gb, 1);
 | 
						|
    } else if (bits < thresh(0)) {
 | 
						|
        skip_bits(gb, 2);
 | 
						|
        v += 1;
 | 
						|
    }
 | 
						|
    else_if(1)
 | 
						|
    else_if(2)
 | 
						|
    else_if(3)
 | 
						|
    else_if(4)
 | 
						|
    else_if(5)
 | 
						|
    else_if(6)
 | 
						|
    else body(7)
 | 
						|
#undef body
 | 
						|
#undef thresh
 | 
						|
#undef else_if
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
 | 
						|
{
 | 
						|
    int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
 | 
						|
    if (v == -1) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Invalid block pattern\n");
 | 
						|
        *next_block_pattern_table = 0;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    *next_block_pattern_table = vp4_block_pattern_table_selector[v];
 | 
						|
    return v + 1;
 | 
						|
}
 | 
						|
 | 
						|
static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int plane, i, j, k, fragment;
 | 
						|
    int next_block_pattern_table;
 | 
						|
    int bit, current_run, has_partial;
 | 
						|
 | 
						|
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | 
						|
 | 
						|
    if (s->keyframe)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    has_partial = 0;
 | 
						|
    bit         = get_bits1(gb);
 | 
						|
    for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
 | 
						|
        if (get_bits_left(gb) <= 0)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        current_run = vp4_get_mb_count(s, gb);
 | 
						|
        if (current_run > s->yuv_macroblock_count - i)
 | 
						|
            return -1;
 | 
						|
        memset(s->superblock_coding + i, 2 * bit, current_run);
 | 
						|
        bit ^= 1;
 | 
						|
        has_partial |= bit;
 | 
						|
    }
 | 
						|
 | 
						|
    if (has_partial) {
 | 
						|
        if (get_bits_left(gb) <= 0)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        bit  = get_bits1(gb);
 | 
						|
        current_run = vp4_get_mb_count(s, gb);
 | 
						|
        for (i = 0; i < s->yuv_macroblock_count; i++) {
 | 
						|
            if (!s->superblock_coding[i]) {
 | 
						|
                if (!current_run) {
 | 
						|
                    bit ^= 1;
 | 
						|
                    current_run = vp4_get_mb_count(s, gb);
 | 
						|
                }
 | 
						|
                s->superblock_coding[i] = bit;
 | 
						|
                current_run--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (current_run) /* handle situation when vp4_get_mb_count() fails */
 | 
						|
            return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    next_block_pattern_table = 0;
 | 
						|
    i = 0;
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        int sb_x, sb_y;
 | 
						|
        int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
 | 
						|
        int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
 | 
						|
        int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
 | 
						|
        int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
 | 
						|
        int fragment_width = s->fragment_width[!!plane];
 | 
						|
        int fragment_height = s->fragment_height[!!plane];
 | 
						|
 | 
						|
        for (sb_y = 0; sb_y < sb_height; sb_y++) {
 | 
						|
            for (sb_x = 0; sb_x < sb_width; sb_x++) {
 | 
						|
                for (j = 0; j < 4; j++) {
 | 
						|
                    int mb_x = 2 * sb_x + (j >> 1);
 | 
						|
                    int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
 | 
						|
                    int mb_coded, pattern, coded;
 | 
						|
 | 
						|
                    if (mb_x >= mb_width || mb_y >= mb_height)
 | 
						|
                        continue;
 | 
						|
 | 
						|
                    mb_coded = s->superblock_coding[i++];
 | 
						|
 | 
						|
                    if (mb_coded == SB_FULLY_CODED)
 | 
						|
                        pattern = 0xF;
 | 
						|
                    else if (mb_coded == SB_PARTIALLY_CODED)
 | 
						|
                        pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
 | 
						|
                    else
 | 
						|
                        pattern = 0;
 | 
						|
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
 | 
						|
                            continue;
 | 
						|
                        fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
 | 
						|
                        coded = pattern & (8 >> k);
 | 
						|
                        /* MODE_INTER_NO_MV is the default for coded fragments.
 | 
						|
                           the actual method is decoded in the next phase. */
 | 
						|
                        s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all the coding mode data for individual macroblocks
 | 
						|
 * from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i, j, k, sb_x, sb_y;
 | 
						|
    int scheme;
 | 
						|
    int current_macroblock;
 | 
						|
    int current_fragment;
 | 
						|
    int coding_mode;
 | 
						|
    int custom_mode_alphabet[CODING_MODE_COUNT];
 | 
						|
    const int *alphabet;
 | 
						|
    Vp3Fragment *frag;
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        for (i = 0; i < s->fragment_count; i++)
 | 
						|
            s->all_fragments[i].coding_method = MODE_INTRA;
 | 
						|
    } else {
 | 
						|
        /* fetch the mode coding scheme for this frame */
 | 
						|
        scheme = get_bits(gb, 3);
 | 
						|
 | 
						|
        /* is it a custom coding scheme? */
 | 
						|
        if (scheme == 0) {
 | 
						|
            for (i = 0; i < 8; i++)
 | 
						|
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
 | 
						|
            for (i = 0; i < 8; i++)
 | 
						|
                custom_mode_alphabet[get_bits(gb, 3)] = i;
 | 
						|
            alphabet = custom_mode_alphabet;
 | 
						|
        } else
 | 
						|
            alphabet = ModeAlphabet[scheme - 1];
 | 
						|
 | 
						|
        /* iterate through all of the macroblocks that contain 1 or more
 | 
						|
         * coded fragments */
 | 
						|
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | 
						|
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | 
						|
                if (get_bits_left(gb) <= 0)
 | 
						|
                    return -1;
 | 
						|
 | 
						|
                for (j = 0; j < 4; j++) {
 | 
						|
                    int mb_x = 2 * sb_x + (j >> 1);
 | 
						|
                    int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | 
						|
                    current_macroblock = mb_y * s->macroblock_width + mb_x;
 | 
						|
 | 
						|
                    if (mb_x >= s->macroblock_width ||
 | 
						|
                        mb_y >= s->macroblock_height)
 | 
						|
                        continue;
 | 
						|
 | 
						|
                    /* coding modes are only stored if the macroblock has
 | 
						|
                     * at least one luma block coded, otherwise it must be
 | 
						|
                     * INTER_NO_MV */
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        current_fragment = BLOCK_Y *
 | 
						|
                                           s->fragment_width[0] + BLOCK_X;
 | 
						|
                        if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
 | 
						|
                            break;
 | 
						|
                    }
 | 
						|
                    if (k == 4) {
 | 
						|
                        s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* mode 7 means get 3 bits for each coding mode */
 | 
						|
                    if (scheme == 7)
 | 
						|
                        coding_mode = get_bits(gb, 3);
 | 
						|
                    else
 | 
						|
                        coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
 | 
						|
 | 
						|
                    s->macroblock_coding[current_macroblock] = coding_mode;
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | 
						|
                        if (frag->coding_method != MODE_COPY)
 | 
						|
                            frag->coding_method = coding_mode;
 | 
						|
                    }
 | 
						|
 | 
						|
#define SET_CHROMA_MODES                                                      \
 | 
						|
    if (frag[s->fragment_start[1]].coding_method != MODE_COPY)                \
 | 
						|
        frag[s->fragment_start[1]].coding_method = coding_mode;               \
 | 
						|
    if (frag[s->fragment_start[2]].coding_method != MODE_COPY)                \
 | 
						|
        frag[s->fragment_start[2]].coding_method = coding_mode;
 | 
						|
 | 
						|
                    if (s->chroma_y_shift) {
 | 
						|
                        frag = s->all_fragments + mb_y *
 | 
						|
                               s->fragment_width[1] + mb_x;
 | 
						|
                        SET_CHROMA_MODES
 | 
						|
                    } else if (s->chroma_x_shift) {
 | 
						|
                        frag = s->all_fragments +
 | 
						|
                               2 * mb_y * s->fragment_width[1] + mb_x;
 | 
						|
                        for (k = 0; k < 2; k++) {
 | 
						|
                            SET_CHROMA_MODES
 | 
						|
                            frag += s->fragment_width[1];
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        for (k = 0; k < 4; k++) {
 | 
						|
                            frag = s->all_fragments +
 | 
						|
                                   BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | 
						|
                            SET_CHROMA_MODES
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
 | 
						|
{
 | 
						|
    int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table, 6, 2) - 31;
 | 
						|
    return last_motion < 0 ? -v : v;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all the motion vectors for the individual
 | 
						|
 * macroblocks from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int j, k, sb_x, sb_y;
 | 
						|
    int coding_mode;
 | 
						|
    int motion_x[4];
 | 
						|
    int motion_y[4];
 | 
						|
    int last_motion_x = 0;
 | 
						|
    int last_motion_y = 0;
 | 
						|
    int prior_last_motion_x = 0;
 | 
						|
    int prior_last_motion_y = 0;
 | 
						|
    int last_gold_motion_x = 0;
 | 
						|
    int last_gold_motion_y = 0;
 | 
						|
    int current_macroblock;
 | 
						|
    int current_fragment;
 | 
						|
    int frag;
 | 
						|
 | 
						|
    if (s->keyframe)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
 | 
						|
    coding_mode = s->version < 2 ? get_bits1(gb) : 2;
 | 
						|
 | 
						|
    /* iterate through all of the macroblocks that contain 1 or more
 | 
						|
     * coded fragments */
 | 
						|
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
 | 
						|
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
 | 
						|
            if (get_bits_left(gb) <= 0)
 | 
						|
                return -1;
 | 
						|
 | 
						|
            for (j = 0; j < 4; j++) {
 | 
						|
                int mb_x = 2 * sb_x + (j >> 1);
 | 
						|
                int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
 | 
						|
                current_macroblock = mb_y * s->macroblock_width + mb_x;
 | 
						|
 | 
						|
                if (mb_x >= s->macroblock_width  ||
 | 
						|
                    mb_y >= s->macroblock_height ||
 | 
						|
                    s->macroblock_coding[current_macroblock] == MODE_COPY)
 | 
						|
                    continue;
 | 
						|
 | 
						|
                switch (s->macroblock_coding[current_macroblock]) {
 | 
						|
                case MODE_GOLDEN_MV:
 | 
						|
                    if (coding_mode == 2) { /* VP4 */
 | 
						|
                        last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
 | 
						|
                        last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
 | 
						|
                        break;
 | 
						|
                    } /* otherwise fall through */
 | 
						|
                case MODE_INTER_PLUS_MV:
 | 
						|
                    /* all 6 fragments use the same motion vector */
 | 
						|
                    if (coding_mode == 0) {
 | 
						|
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                    } else if (coding_mode == 1) {
 | 
						|
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                    } else { /* VP4 */
 | 
						|
                        motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
 | 
						|
                        motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | 
						|
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
 | 
						|
                        prior_last_motion_x = last_motion_x;
 | 
						|
                        prior_last_motion_y = last_motion_y;
 | 
						|
                        last_motion_x       = motion_x[0];
 | 
						|
                        last_motion_y       = motion_y[0];
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
 | 
						|
                case MODE_INTER_FOURMV:
 | 
						|
                    /* vector maintenance */
 | 
						|
                    prior_last_motion_x = last_motion_x;
 | 
						|
                    prior_last_motion_y = last_motion_y;
 | 
						|
 | 
						|
                    /* fetch 4 vectors from the bitstream, one for each
 | 
						|
                     * Y fragment, then average for the C fragment vectors */
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | 
						|
                        if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
 | 
						|
                            if (coding_mode == 0) {
 | 
						|
                                motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                                motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                            } else if (coding_mode == 1) {
 | 
						|
                                motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                                motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                            } else { /* VP4 */
 | 
						|
                                motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
 | 
						|
                                motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
 | 
						|
                            }
 | 
						|
                            last_motion_x = motion_x[k];
 | 
						|
                            last_motion_y = motion_y[k];
 | 
						|
                        } else {
 | 
						|
                            motion_x[k] = 0;
 | 
						|
                            motion_y[k] = 0;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
 | 
						|
                case MODE_INTER_LAST_MV:
 | 
						|
                    /* all 6 fragments use the last motion vector */
 | 
						|
                    motion_x[0] = last_motion_x;
 | 
						|
                    motion_y[0] = last_motion_y;
 | 
						|
 | 
						|
                    /* no vector maintenance (last vector remains the
 | 
						|
                     * last vector) */
 | 
						|
                    break;
 | 
						|
 | 
						|
                case MODE_INTER_PRIOR_LAST:
 | 
						|
                    /* all 6 fragments use the motion vector prior to the
 | 
						|
                     * last motion vector */
 | 
						|
                    motion_x[0] = prior_last_motion_x;
 | 
						|
                    motion_y[0] = prior_last_motion_y;
 | 
						|
 | 
						|
                    /* vector maintenance */
 | 
						|
                    prior_last_motion_x = last_motion_x;
 | 
						|
                    prior_last_motion_y = last_motion_y;
 | 
						|
                    last_motion_x       = motion_x[0];
 | 
						|
                    last_motion_y       = motion_y[0];
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
                    /* covers intra, inter without MV, golden without MV */
 | 
						|
                    motion_x[0] = 0;
 | 
						|
                    motion_y[0] = 0;
 | 
						|
 | 
						|
                    /* no vector maintenance */
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
 | 
						|
                /* assign the motion vectors to the correct fragments */
 | 
						|
                for (k = 0; k < 4; k++) {
 | 
						|
                    current_fragment =
 | 
						|
                        BLOCK_Y * s->fragment_width[0] + BLOCK_X;
 | 
						|
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | 
						|
                        s->motion_val[0][current_fragment][0] = motion_x[k];
 | 
						|
                        s->motion_val[0][current_fragment][1] = motion_y[k];
 | 
						|
                    } else {
 | 
						|
                        s->motion_val[0][current_fragment][0] = motion_x[0];
 | 
						|
                        s->motion_val[0][current_fragment][1] = motion_y[0];
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (s->chroma_y_shift) {
 | 
						|
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | 
						|
                        motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
 | 
						|
                                             motion_x[2] + motion_x[3], 2);
 | 
						|
                        motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
 | 
						|
                                             motion_y[2] + motion_y[3], 2);
 | 
						|
                    }
 | 
						|
                    if (s->version <= 2) {
 | 
						|
                        motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | 
						|
                        motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
 | 
						|
                    }
 | 
						|
                    frag = mb_y * s->fragment_width[1] + mb_x;
 | 
						|
                    s->motion_val[1][frag][0] = motion_x[0];
 | 
						|
                    s->motion_val[1][frag][1] = motion_y[0];
 | 
						|
                } else if (s->chroma_x_shift) {
 | 
						|
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | 
						|
                        motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
 | 
						|
                        motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
 | 
						|
                        motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
 | 
						|
                        motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
 | 
						|
                    } else {
 | 
						|
                        motion_x[1] = motion_x[0];
 | 
						|
                        motion_y[1] = motion_y[0];
 | 
						|
                    }
 | 
						|
                    if (s->version <= 2) {
 | 
						|
                        motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
 | 
						|
                        motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
 | 
						|
                    }
 | 
						|
                    frag = 2 * mb_y * s->fragment_width[1] + mb_x;
 | 
						|
                    for (k = 0; k < 2; k++) {
 | 
						|
                        s->motion_val[1][frag][0] = motion_x[k];
 | 
						|
                        s->motion_val[1][frag][1] = motion_y[k];
 | 
						|
                        frag += s->fragment_width[1];
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
 | 
						|
                        if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
 | 
						|
                            s->motion_val[1][frag][0] = motion_x[k];
 | 
						|
                            s->motion_val[1][frag][1] = motion_y[k];
 | 
						|
                        } else {
 | 
						|
                            s->motion_val[1][frag][0] = motion_x[0];
 | 
						|
                            s->motion_val[1][frag][1] = motion_y[0];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
 | 
						|
    int num_blocks = s->total_num_coded_frags;
 | 
						|
 | 
						|
    for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
 | 
						|
        i = blocks_decoded = num_blocks_at_qpi = 0;
 | 
						|
 | 
						|
        bit        = get_bits1(gb) ^ 1;
 | 
						|
        run_length = 0;
 | 
						|
 | 
						|
        do {
 | 
						|
            if (run_length == MAXIMUM_LONG_BIT_RUN)
 | 
						|
                bit = get_bits1(gb);
 | 
						|
            else
 | 
						|
                bit ^= 1;
 | 
						|
 | 
						|
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
 | 
						|
            if (run_length == 34)
 | 
						|
                run_length += get_bits(gb, 12);
 | 
						|
            blocks_decoded += run_length;
 | 
						|
 | 
						|
            if (!bit)
 | 
						|
                num_blocks_at_qpi += run_length;
 | 
						|
 | 
						|
            for (j = 0; j < run_length; i++) {
 | 
						|
                if (i >= s->total_num_coded_frags)
 | 
						|
                    return -1;
 | 
						|
 | 
						|
                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
 | 
						|
                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
 | 
						|
                    j++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
 | 
						|
 | 
						|
        num_blocks -= num_blocks_at_qpi;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int get_eob_run(GetBitContext *gb, int token)
 | 
						|
{
 | 
						|
    int v = eob_run_table[token].base;
 | 
						|
    if (eob_run_table[token].bits)
 | 
						|
        v += get_bits(gb, eob_run_table[token].bits);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
 | 
						|
{
 | 
						|
    int bits_to_get, zero_run;
 | 
						|
 | 
						|
    bits_to_get = coeff_get_bits[token];
 | 
						|
    if (bits_to_get)
 | 
						|
        bits_to_get = get_bits(gb, bits_to_get);
 | 
						|
    *coeff = coeff_tables[token][bits_to_get];
 | 
						|
 | 
						|
    zero_run = zero_run_base[token];
 | 
						|
    if (zero_run_get_bits[token])
 | 
						|
        zero_run += get_bits(gb, zero_run_get_bits[token]);
 | 
						|
 | 
						|
    return zero_run;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | 
						|
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | 
						|
 * data. This function unpacks all the VLCs for either the Y plane or both
 | 
						|
 * C planes, and is called for DC coefficients or different AC coefficient
 | 
						|
 * levels (since different coefficient types require different VLC tables.
 | 
						|
 *
 | 
						|
 * This function returns a residual eob run. E.g, if a particular token gave
 | 
						|
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 | 
						|
 * left in the current fragment range, 3 would be returned so that it could
 | 
						|
 * be passed into the next call to this same function.
 | 
						|
 */
 | 
						|
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | 
						|
                       VLC *table, int coeff_index,
 | 
						|
                       int plane,
 | 
						|
                       int eob_run)
 | 
						|
{
 | 
						|
    int i, j = 0;
 | 
						|
    int token;
 | 
						|
    int zero_run  = 0;
 | 
						|
    int16_t coeff = 0;
 | 
						|
    int blocks_ended;
 | 
						|
    int coeff_i = 0;
 | 
						|
    int num_coeffs      = s->num_coded_frags[plane][coeff_index];
 | 
						|
    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
 | 
						|
 | 
						|
    /* local references to structure members to avoid repeated dereferences */
 | 
						|
    int *coded_fragment_list   = s->coded_fragment_list[plane];
 | 
						|
    Vp3Fragment *all_fragments = s->all_fragments;
 | 
						|
    VLC_TYPE(*vlc_table)[2] = table->table;
 | 
						|
 | 
						|
    if (num_coeffs < 0) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
               "Invalid number of coefficients at level %d\n", coeff_index);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (eob_run > num_coeffs) {
 | 
						|
        coeff_i      =
 | 
						|
        blocks_ended = num_coeffs;
 | 
						|
        eob_run     -= num_coeffs;
 | 
						|
    } else {
 | 
						|
        coeff_i      =
 | 
						|
        blocks_ended = eob_run;
 | 
						|
        eob_run      = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // insert fake EOB token to cover the split between planes or zzi
 | 
						|
    if (blocks_ended)
 | 
						|
        dct_tokens[j++] = blocks_ended << 2;
 | 
						|
 | 
						|
    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
 | 
						|
        /* decode a VLC into a token */
 | 
						|
        token = get_vlc2(gb, vlc_table, 11, 3);
 | 
						|
        /* use the token to get a zero run, a coefficient, and an eob run */
 | 
						|
        if ((unsigned) token <= 6U) {
 | 
						|
            eob_run = get_eob_run(gb, token);
 | 
						|
            if (!eob_run)
 | 
						|
                eob_run = INT_MAX;
 | 
						|
 | 
						|
            // record only the number of blocks ended in this plane,
 | 
						|
            // any spill will be recorded in the next plane.
 | 
						|
            if (eob_run > num_coeffs - coeff_i) {
 | 
						|
                dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
 | 
						|
                blocks_ended   += num_coeffs - coeff_i;
 | 
						|
                eob_run        -= num_coeffs - coeff_i;
 | 
						|
                coeff_i         = num_coeffs;
 | 
						|
            } else {
 | 
						|
                dct_tokens[j++] = TOKEN_EOB(eob_run);
 | 
						|
                blocks_ended   += eob_run;
 | 
						|
                coeff_i        += eob_run;
 | 
						|
                eob_run         = 0;
 | 
						|
            }
 | 
						|
        } else if (token >= 0) {
 | 
						|
            zero_run = get_coeff(gb, token, &coeff);
 | 
						|
 | 
						|
            if (zero_run) {
 | 
						|
                dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
 | 
						|
            } else {
 | 
						|
                // Save DC into the fragment structure. DC prediction is
 | 
						|
                // done in raster order, so the actual DC can't be in with
 | 
						|
                // other tokens. We still need the token in dct_tokens[]
 | 
						|
                // however, or else the structure collapses on itself.
 | 
						|
                if (!coeff_index)
 | 
						|
                    all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
 | 
						|
 | 
						|
                dct_tokens[j++] = TOKEN_COEFF(coeff);
 | 
						|
            }
 | 
						|
 | 
						|
            if (coeff_index + zero_run > 64) {
 | 
						|
                av_log(s->avctx, AV_LOG_DEBUG,
 | 
						|
                       "Invalid zero run of %d with %d coeffs left\n",
 | 
						|
                       zero_run, 64 - coeff_index);
 | 
						|
                zero_run = 64 - coeff_index;
 | 
						|
            }
 | 
						|
 | 
						|
            // zero runs code multiple coefficients,
 | 
						|
            // so don't try to decode coeffs for those higher levels
 | 
						|
            for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
 | 
						|
                s->num_coded_frags[plane][i]--;
 | 
						|
            coeff_i++;
 | 
						|
        } else {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
 | 
						|
 | 
						|
    // decrement the number of blocks that have higher coefficients for each
 | 
						|
    // EOB run at this level
 | 
						|
    if (blocks_ended)
 | 
						|
        for (i = coeff_index + 1; i < 64; i++)
 | 
						|
            s->num_coded_frags[plane][i] -= blocks_ended;
 | 
						|
 | 
						|
    // setup the next buffer
 | 
						|
    if (plane < 2)
 | 
						|
        s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
 | 
						|
    else if (coeff_index < 63)
 | 
						|
        s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
 | 
						|
 | 
						|
    return eob_run;
 | 
						|
}
 | 
						|
 | 
						|
static void reverse_dc_prediction(Vp3DecodeContext *s,
 | 
						|
                                  int first_fragment,
 | 
						|
                                  int fragment_width,
 | 
						|
                                  int fragment_height);
 | 
						|
/*
 | 
						|
 * This function unpacks all of the DCT coefficient data from the
 | 
						|
 * bitstream.
 | 
						|
 */
 | 
						|
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int dc_y_table;
 | 
						|
    int dc_c_table;
 | 
						|
    int ac_y_table;
 | 
						|
    int ac_c_table;
 | 
						|
    int residual_eob_run = 0;
 | 
						|
    VLC *y_tables[64];
 | 
						|
    VLC *c_tables[64];
 | 
						|
 | 
						|
    s->dct_tokens[0][0] = s->dct_tokens_base;
 | 
						|
 | 
						|
    if (get_bits_left(gb) < 16)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    /* fetch the DC table indexes */
 | 
						|
    dc_y_table = get_bits(gb, 4);
 | 
						|
    dc_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    /* unpack the Y plane DC coefficients */
 | 
						|
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
 | 
						|
                                   0, residual_eob_run);
 | 
						|
    if (residual_eob_run < 0)
 | 
						|
        return residual_eob_run;
 | 
						|
    if (get_bits_left(gb) < 8)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    /* reverse prediction of the Y-plane DC coefficients */
 | 
						|
    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
 | 
						|
 | 
						|
    /* unpack the C plane DC coefficients */
 | 
						|
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | 
						|
                                   1, residual_eob_run);
 | 
						|
    if (residual_eob_run < 0)
 | 
						|
        return residual_eob_run;
 | 
						|
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | 
						|
                                   2, residual_eob_run);
 | 
						|
    if (residual_eob_run < 0)
 | 
						|
        return residual_eob_run;
 | 
						|
 | 
						|
    /* reverse prediction of the C-plane DC coefficients */
 | 
						|
    if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
 | 
						|
        reverse_dc_prediction(s, s->fragment_start[1],
 | 
						|
                              s->fragment_width[1], s->fragment_height[1]);
 | 
						|
        reverse_dc_prediction(s, s->fragment_start[2],
 | 
						|
                              s->fragment_width[1], s->fragment_height[1]);
 | 
						|
    }
 | 
						|
 | 
						|
    if (get_bits_left(gb) < 8)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    /* fetch the AC table indexes */
 | 
						|
    ac_y_table = get_bits(gb, 4);
 | 
						|
    ac_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    /* build tables of AC VLC tables */
 | 
						|
    for (i = 1; i <= 5; i++) {
 | 
						|
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
 | 
						|
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 6; i <= 14; i++) {
 | 
						|
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
 | 
						|
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 15; i <= 27; i++) {
 | 
						|
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
 | 
						|
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 28; i <= 63; i++) {
 | 
						|
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
 | 
						|
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
 | 
						|
    }
 | 
						|
 | 
						|
    /* decode all AC coefficients */
 | 
						|
    for (i = 1; i <= 63; i++) {
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
 | 
						|
                                       0, residual_eob_run);
 | 
						|
        if (residual_eob_run < 0)
 | 
						|
            return residual_eob_run;
 | 
						|
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | 
						|
                                       1, residual_eob_run);
 | 
						|
        if (residual_eob_run < 0)
 | 
						|
            return residual_eob_run;
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
 | 
						|
                                       2, residual_eob_run);
 | 
						|
        if (residual_eob_run < 0)
 | 
						|
            return residual_eob_run;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
/**
 | 
						|
 * eob_tracker[] is instead of TOKEN_EOB(value)
 | 
						|
 * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
 | 
						|
 *
 | 
						|
 * @return < 0 on error
 | 
						|
 */
 | 
						|
static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | 
						|
                       VLC *vlc_tables[64],
 | 
						|
                       int plane, int eob_tracker[64], int fragment)
 | 
						|
{
 | 
						|
    int token;
 | 
						|
    int zero_run  = 0;
 | 
						|
    int16_t coeff = 0;
 | 
						|
    int coeff_i = 0;
 | 
						|
    int eob_run;
 | 
						|
 | 
						|
    while (!eob_tracker[coeff_i]) {
 | 
						|
        if (get_bits_left(gb) < 1)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
        token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);
 | 
						|
 | 
						|
        /* use the token to get a zero run, a coefficient, and an eob run */
 | 
						|
        if ((unsigned) token <= 6U) {
 | 
						|
            eob_run = get_eob_run(gb, token);
 | 
						|
            *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
 | 
						|
            eob_tracker[coeff_i] = eob_run - 1;
 | 
						|
            return 0;
 | 
						|
        } else if (token >= 0) {
 | 
						|
            zero_run = get_coeff(gb, token, &coeff);
 | 
						|
 | 
						|
            if (zero_run) {
 | 
						|
                if (coeff_i + zero_run > 64) {
 | 
						|
                    av_log(s->avctx, AV_LOG_DEBUG,
 | 
						|
                        "Invalid zero run of %d with %d coeffs left\n",
 | 
						|
                        zero_run, 64 - coeff_i);
 | 
						|
                    zero_run = 64 - coeff_i;
 | 
						|
                }
 | 
						|
                *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
 | 
						|
                coeff_i += zero_run;
 | 
						|
            } else {
 | 
						|
                if (!coeff_i)
 | 
						|
                    s->all_fragments[fragment].dc = coeff;
 | 
						|
 | 
						|
                *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
 | 
						|
            }
 | 
						|
            coeff_i++;
 | 
						|
            if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
 | 
						|
                return 0; /* stop */
 | 
						|
        } else {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
 | 
						|
    eob_tracker[coeff_i]--;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void vp4_dc_predictor_reset(VP4Predictor *p)
 | 
						|
{
 | 
						|
    p->dc = 0;
 | 
						|
    p->type = VP4_DC_UNDEFINED;
 | 
						|
}
 | 
						|
 | 
						|
static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = 0; i < 4; i++)
 | 
						|
        dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
 | 
						|
 | 
						|
    for (j = 1; j < 5; j++)
 | 
						|
        for (i = 0; i < 4; i++)
 | 
						|
            vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
 | 
						|
}
 | 
						|
 | 
						|
static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < 4; i++)
 | 
						|
        s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
 | 
						|
 | 
						|
    for (i = 1; i < 5; i++)
 | 
						|
        dc_pred[i][0] = dc_pred[i][4];
 | 
						|
}
 | 
						|
 | 
						|
/* note: dc_pred points to the current block */
 | 
						|
static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
 | 
						|
{
 | 
						|
    int count = 0;
 | 
						|
    int dc = 0;
 | 
						|
 | 
						|
    if (dc_pred[-6].type == type) {
 | 
						|
        dc += dc_pred[-6].dc;
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (dc_pred[6].type == type) {
 | 
						|
        dc += dc_pred[6].dc;
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (count != 2 && dc_pred[-1].type == type) {
 | 
						|
        dc += dc_pred[-1].dc;
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (count != 2 && dc_pred[1].type == type) {
 | 
						|
        dc += dc_pred[1].dc;
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* using division instead of shift to correctly handle negative values */
 | 
						|
    return count == 2 ? dc / 2 : last_dc[type];
 | 
						|
}
 | 
						|
 | 
						|
static void vp4_set_tokens_base(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int plane, i;
 | 
						|
    int16_t *base = s->dct_tokens_base;
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        for (i = 0; i < 64; i++) {
 | 
						|
            s->dct_tokens[plane][i] = base;
 | 
						|
            base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    int dc_y_table;
 | 
						|
    int dc_c_table;
 | 
						|
    int ac_y_table;
 | 
						|
    int ac_c_table;
 | 
						|
    VLC *tables[2][64];
 | 
						|
    int plane, sb_y, sb_x;
 | 
						|
    int eob_tracker[64];
 | 
						|
    VP4Predictor dc_pred[6][6];
 | 
						|
    int last_dc[NB_VP4_DC_TYPES];
 | 
						|
 | 
						|
    if (get_bits_left(gb) < 16)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    /* fetch the DC table indexes */
 | 
						|
    dc_y_table = get_bits(gb, 4);
 | 
						|
    dc_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    ac_y_table = get_bits(gb, 4);
 | 
						|
    ac_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    /* build tables of DC/AC VLC tables */
 | 
						|
 | 
						|
    tables[0][0] = &s->dc_vlc[dc_y_table];
 | 
						|
    tables[1][0] = &s->dc_vlc[dc_c_table];
 | 
						|
    for (i = 1; i <= 5; i++) {
 | 
						|
        tables[0][i] = &s->ac_vlc_1[ac_y_table];
 | 
						|
        tables[1][i] = &s->ac_vlc_1[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 6; i <= 14; i++) {
 | 
						|
        tables[0][i] = &s->ac_vlc_2[ac_y_table];
 | 
						|
        tables[1][i] = &s->ac_vlc_2[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 15; i <= 27; i++) {
 | 
						|
        tables[0][i] = &s->ac_vlc_3[ac_y_table];
 | 
						|
        tables[1][i] = &s->ac_vlc_3[ac_c_table];
 | 
						|
    }
 | 
						|
    for (i = 28; i <= 63; i++) {
 | 
						|
        tables[0][i] = &s->ac_vlc_4[ac_y_table];
 | 
						|
        tables[1][i] = &s->ac_vlc_4[ac_c_table];
 | 
						|
    }
 | 
						|
 | 
						|
    vp4_set_tokens_base(s);
 | 
						|
 | 
						|
    memset(last_dc, 0, sizeof(last_dc));
 | 
						|
 | 
						|
    for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
 | 
						|
        memset(eob_tracker, 0, sizeof(eob_tracker));
 | 
						|
 | 
						|
        /* initialise dc prediction */
 | 
						|
        for (i = 0; i < s->fragment_width[!!plane]; i++)
 | 
						|
            vp4_dc_predictor_reset(&s->dc_pred_row[i]);
 | 
						|
 | 
						|
        for (j = 0; j < 6; j++)
 | 
						|
            for (i = 0; i < 6; i++)
 | 
						|
                vp4_dc_predictor_reset(&dc_pred[j][i]);
 | 
						|
 | 
						|
        for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
 | 
						|
            for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
 | 
						|
                vp4_dc_pred_before(s, dc_pred, sb_x);
 | 
						|
                for (j = 0; j < 16; j++) {
 | 
						|
                        int hx = hilbert_offset[j][0];
 | 
						|
                        int hy = hilbert_offset[j][1];
 | 
						|
                        int x  = 4 * sb_x + hx;
 | 
						|
                        int y  = 4 * sb_y + hy;
 | 
						|
                        VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
 | 
						|
                        int fragment, dc_block_type;
 | 
						|
 | 
						|
                        if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
 | 
						|
                            continue;
 | 
						|
 | 
						|
                        fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
 | 
						|
 | 
						|
                        if (s->all_fragments[fragment].coding_method == MODE_COPY)
 | 
						|
                            continue;
 | 
						|
 | 
						|
                        if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
 | 
						|
                            return -1;
 | 
						|
 | 
						|
                        dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
 | 
						|
 | 
						|
                        s->all_fragments[fragment].dc +=
 | 
						|
                            vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
 | 
						|
 | 
						|
                        this_dc_pred->type = dc_block_type,
 | 
						|
                        this_dc_pred->dc   = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
 | 
						|
                }
 | 
						|
                vp4_dc_pred_after(s, dc_pred, sb_x);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    vp4_set_tokens_base(s);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This function reverses the DC prediction for each coded fragment in
 | 
						|
 * the frame. Much of this function is adapted directly from the original
 | 
						|
 * VP3 source code.
 | 
						|
 */
 | 
						|
#define COMPATIBLE_FRAME(x)                                                   \
 | 
						|
    (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | 
						|
#define DC_COEFF(u) s->all_fragments[u].dc
 | 
						|
 | 
						|
static void reverse_dc_prediction(Vp3DecodeContext *s,
 | 
						|
                                  int first_fragment,
 | 
						|
                                  int fragment_width,
 | 
						|
                                  int fragment_height)
 | 
						|
{
 | 
						|
#define PUL 8
 | 
						|
#define PU 4
 | 
						|
#define PUR 2
 | 
						|
#define PL 1
 | 
						|
 | 
						|
    int x, y;
 | 
						|
    int i = first_fragment;
 | 
						|
 | 
						|
    int predicted_dc;
 | 
						|
 | 
						|
    /* DC values for the left, up-left, up, and up-right fragments */
 | 
						|
    int vl, vul, vu, vur;
 | 
						|
 | 
						|
    /* indexes for the left, up-left, up, and up-right fragments */
 | 
						|
    int l, ul, u, ur;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The 6 fields mean:
 | 
						|
     *   0: up-left multiplier
 | 
						|
     *   1: up multiplier
 | 
						|
     *   2: up-right multiplier
 | 
						|
     *   3: left multiplier
 | 
						|
     */
 | 
						|
    static const int predictor_transform[16][4] = {
 | 
						|
        {    0,   0,   0,   0 },
 | 
						|
        {    0,   0,   0, 128 }, // PL
 | 
						|
        {    0,   0, 128,   0 }, // PUR
 | 
						|
        {    0,   0,  53,  75 }, // PUR|PL
 | 
						|
        {    0, 128,   0,   0 }, // PU
 | 
						|
        {    0,  64,   0,  64 }, // PU |PL
 | 
						|
        {    0, 128,   0,   0 }, // PU |PUR
 | 
						|
        {    0,   0,  53,  75 }, // PU |PUR|PL
 | 
						|
        {  128,   0,   0,   0 }, // PUL
 | 
						|
        {    0,   0,   0, 128 }, // PUL|PL
 | 
						|
        {   64,   0,  64,   0 }, // PUL|PUR
 | 
						|
        {    0,   0,  53,  75 }, // PUL|PUR|PL
 | 
						|
        {    0, 128,   0,   0 }, // PUL|PU
 | 
						|
        { -104, 116,   0, 116 }, // PUL|PU |PL
 | 
						|
        {   24,  80,  24,   0 }, // PUL|PU |PUR
 | 
						|
        { -104, 116,   0, 116 }  // PUL|PU |PUR|PL
 | 
						|
    };
 | 
						|
 | 
						|
    /* This table shows which types of blocks can use other blocks for
 | 
						|
     * prediction. For example, INTRA is the only mode in this table to
 | 
						|
     * have a frame number of 0. That means INTRA blocks can only predict
 | 
						|
     * from other INTRA blocks. There are 2 golden frame coding types;
 | 
						|
     * blocks encoding in these modes can only predict from other blocks
 | 
						|
     * that were encoded with these 1 of these 2 modes. */
 | 
						|
    static const unsigned char compatible_frame[9] = {
 | 
						|
        1,    /* MODE_INTER_NO_MV */
 | 
						|
        0,    /* MODE_INTRA */
 | 
						|
        1,    /* MODE_INTER_PLUS_MV */
 | 
						|
        1,    /* MODE_INTER_LAST_MV */
 | 
						|
        1,    /* MODE_INTER_PRIOR_MV */
 | 
						|
        2,    /* MODE_USING_GOLDEN */
 | 
						|
        2,    /* MODE_GOLDEN_MV */
 | 
						|
        1,    /* MODE_INTER_FOUR_MV */
 | 
						|
        3     /* MODE_COPY */
 | 
						|
    };
 | 
						|
    int current_frame_type;
 | 
						|
 | 
						|
    /* there is a last DC predictor for each of the 3 frame types */
 | 
						|
    short last_dc[3];
 | 
						|
 | 
						|
    int transform = 0;
 | 
						|
 | 
						|
    vul =
 | 
						|
    vu  =
 | 
						|
    vur =
 | 
						|
    vl  = 0;
 | 
						|
    last_dc[0] =
 | 
						|
    last_dc[1] =
 | 
						|
    last_dc[2] = 0;
 | 
						|
 | 
						|
    /* for each fragment row... */
 | 
						|
    for (y = 0; y < fragment_height; y++) {
 | 
						|
        /* for each fragment in a row... */
 | 
						|
        for (x = 0; x < fragment_width; x++, i++) {
 | 
						|
 | 
						|
            /* reverse prediction if this block was coded */
 | 
						|
            if (s->all_fragments[i].coding_method != MODE_COPY) {
 | 
						|
                current_frame_type =
 | 
						|
                    compatible_frame[s->all_fragments[i].coding_method];
 | 
						|
 | 
						|
                transform = 0;
 | 
						|
                if (x) {
 | 
						|
                    l  = i - 1;
 | 
						|
                    vl = DC_COEFF(l);
 | 
						|
                    if (COMPATIBLE_FRAME(l))
 | 
						|
                        transform |= PL;
 | 
						|
                }
 | 
						|
                if (y) {
 | 
						|
                    u  = i - fragment_width;
 | 
						|
                    vu = DC_COEFF(u);
 | 
						|
                    if (COMPATIBLE_FRAME(u))
 | 
						|
                        transform |= PU;
 | 
						|
                    if (x) {
 | 
						|
                        ul  = i - fragment_width - 1;
 | 
						|
                        vul = DC_COEFF(ul);
 | 
						|
                        if (COMPATIBLE_FRAME(ul))
 | 
						|
                            transform |= PUL;
 | 
						|
                    }
 | 
						|
                    if (x + 1 < fragment_width) {
 | 
						|
                        ur  = i - fragment_width + 1;
 | 
						|
                        vur = DC_COEFF(ur);
 | 
						|
                        if (COMPATIBLE_FRAME(ur))
 | 
						|
                            transform |= PUR;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (transform == 0) {
 | 
						|
                    /* if there were no fragments to predict from, use last
 | 
						|
                     * DC saved */
 | 
						|
                    predicted_dc = last_dc[current_frame_type];
 | 
						|
                } else {
 | 
						|
                    /* apply the appropriate predictor transform */
 | 
						|
                    predicted_dc =
 | 
						|
                        (predictor_transform[transform][0] * vul) +
 | 
						|
                        (predictor_transform[transform][1] * vu) +
 | 
						|
                        (predictor_transform[transform][2] * vur) +
 | 
						|
                        (predictor_transform[transform][3] * vl);
 | 
						|
 | 
						|
                    predicted_dc /= 128;
 | 
						|
 | 
						|
                    /* check for outranging on the [ul u l] and
 | 
						|
                     * [ul u ur l] predictors */
 | 
						|
                    if ((transform == 15) || (transform == 13)) {
 | 
						|
                        if (FFABS(predicted_dc - vu) > 128)
 | 
						|
                            predicted_dc = vu;
 | 
						|
                        else if (FFABS(predicted_dc - vl) > 128)
 | 
						|
                            predicted_dc = vl;
 | 
						|
                        else if (FFABS(predicted_dc - vul) > 128)
 | 
						|
                            predicted_dc = vul;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                /* at long last, apply the predictor */
 | 
						|
                DC_COEFF(i) += predicted_dc;
 | 
						|
                /* save the DC */
 | 
						|
                last_dc[current_frame_type] = DC_COEFF(i);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void apply_loop_filter(Vp3DecodeContext *s, int plane,
 | 
						|
                              int ystart, int yend)
 | 
						|
{
 | 
						|
    int x, y;
 | 
						|
    int *bounding_values = s->bounding_values_array + 127;
 | 
						|
 | 
						|
    int width           = s->fragment_width[!!plane];
 | 
						|
    int height          = s->fragment_height[!!plane];
 | 
						|
    int fragment        = s->fragment_start[plane] + ystart * width;
 | 
						|
    ptrdiff_t stride    = s->current_frame.f->linesize[plane];
 | 
						|
    uint8_t *plane_data = s->current_frame.f->data[plane];
 | 
						|
    if (!s->flipped_image)
 | 
						|
        stride = -stride;
 | 
						|
    plane_data += s->data_offset[plane] + 8 * ystart * stride;
 | 
						|
 | 
						|
    for (y = ystart; y < yend; y++) {
 | 
						|
        for (x = 0; x < width; x++) {
 | 
						|
            /* This code basically just deblocks on the edges of coded blocks.
 | 
						|
             * However, it has to be much more complicated because of the
 | 
						|
             * brain damaged deblock ordering used in VP3/Theora. Order matters
 | 
						|
             * because some pixels get filtered twice. */
 | 
						|
            if (s->all_fragments[fragment].coding_method != MODE_COPY) {
 | 
						|
                /* do not perform left edge filter for left columns frags */
 | 
						|
                if (x > 0) {
 | 
						|
                    s->vp3dsp.h_loop_filter(
 | 
						|
                        plane_data + 8 * x,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform top edge filter for top row fragments */
 | 
						|
                if (y > 0) {
 | 
						|
                    s->vp3dsp.v_loop_filter(
 | 
						|
                        plane_data + 8 * x,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform right edge filter for right column
 | 
						|
                 * fragments or if right fragment neighbor is also coded
 | 
						|
                 * in this frame (it will be filtered in next iteration) */
 | 
						|
                if ((x < width - 1) &&
 | 
						|
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
 | 
						|
                    s->vp3dsp.h_loop_filter(
 | 
						|
                        plane_data + 8 * x + 8,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform bottom edge filter for bottom row
 | 
						|
                 * fragments or if bottom fragment neighbor is also coded
 | 
						|
                 * in this frame (it will be filtered in the next row) */
 | 
						|
                if ((y < height - 1) &&
 | 
						|
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
 | 
						|
                    s->vp3dsp.v_loop_filter(
 | 
						|
                        plane_data + 8 * x + 8 * stride,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            fragment++;
 | 
						|
        }
 | 
						|
        plane_data += 8 * stride;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
 | 
						|
 * for the next block in coding order
 | 
						|
 */
 | 
						|
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
 | 
						|
                              int plane, int inter, int16_t block[64])
 | 
						|
{
 | 
						|
    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
 | 
						|
    uint8_t *perm = s->idct_scantable;
 | 
						|
    int i = 0;
 | 
						|
 | 
						|
    do {
 | 
						|
        int token = *s->dct_tokens[plane][i];
 | 
						|
        switch (token & 3) {
 | 
						|
        case 0: // EOB
 | 
						|
            if (--token < 4) // 0-3 are token types so the EOB run must now be 0
 | 
						|
                s->dct_tokens[plane][i]++;
 | 
						|
            else
 | 
						|
                *s->dct_tokens[plane][i] = token & ~3;
 | 
						|
            goto end;
 | 
						|
        case 1: // zero run
 | 
						|
            s->dct_tokens[plane][i]++;
 | 
						|
            i += (token >> 2) & 0x7f;
 | 
						|
            if (i > 63) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
 | 
						|
                return i;
 | 
						|
            }
 | 
						|
            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
 | 
						|
            i++;
 | 
						|
            break;
 | 
						|
        case 2: // coeff
 | 
						|
            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
 | 
						|
            s->dct_tokens[plane][i++]++;
 | 
						|
            break;
 | 
						|
        default: // shouldn't happen
 | 
						|
            return i;
 | 
						|
        }
 | 
						|
    } while (i < 64);
 | 
						|
    // return value is expected to be a valid level
 | 
						|
    i--;
 | 
						|
end:
 | 
						|
    // the actual DC+prediction is in the fragment structure
 | 
						|
    block[0] = frag->dc * s->qmat[0][inter][plane][0];
 | 
						|
    return i;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * called when all pixels up to row y are complete
 | 
						|
 */
 | 
						|
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
 | 
						|
{
 | 
						|
    int h, cy, i;
 | 
						|
    int offset[AV_NUM_DATA_POINTERS];
 | 
						|
 | 
						|
    if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) {
 | 
						|
        int y_flipped = s->flipped_image ? s->height - y : y;
 | 
						|
 | 
						|
        /* At the end of the frame, report INT_MAX instead of the height of
 | 
						|
         * the frame. This makes the other threads' ff_thread_await_progress()
 | 
						|
         * calls cheaper, because they don't have to clip their values. */
 | 
						|
        ff_thread_report_progress(&s->current_frame,
 | 
						|
                                  y_flipped == s->height ? INT_MAX
 | 
						|
                                                         : y_flipped - 1,
 | 
						|
                                  0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->avctx->draw_horiz_band)
 | 
						|
        return;
 | 
						|
 | 
						|
    h = y - s->last_slice_end;
 | 
						|
    s->last_slice_end = y;
 | 
						|
    y -= h;
 | 
						|
 | 
						|
    if (!s->flipped_image)
 | 
						|
        y = s->height - y - h;
 | 
						|
 | 
						|
    cy        = y >> s->chroma_y_shift;
 | 
						|
    offset[0] = s->current_frame.f->linesize[0] * y;
 | 
						|
    offset[1] = s->current_frame.f->linesize[1] * cy;
 | 
						|
    offset[2] = s->current_frame.f->linesize[2] * cy;
 | 
						|
    for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
 | 
						|
        offset[i] = 0;
 | 
						|
 | 
						|
    emms_c();
 | 
						|
    s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Wait for the reference frame of the current fragment.
 | 
						|
 * The progress value is in luma pixel rows.
 | 
						|
 */
 | 
						|
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment,
 | 
						|
                                int motion_y, int y)
 | 
						|
{
 | 
						|
    ThreadFrame *ref_frame;
 | 
						|
    int ref_row;
 | 
						|
    int border = motion_y & 1;
 | 
						|
 | 
						|
    if (fragment->coding_method == MODE_USING_GOLDEN ||
 | 
						|
        fragment->coding_method == MODE_GOLDEN_MV)
 | 
						|
        ref_frame = &s->golden_frame;
 | 
						|
    else
 | 
						|
        ref_frame = &s->last_frame;
 | 
						|
 | 
						|
    ref_row = y + (motion_y >> 1);
 | 
						|
    ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
 | 
						|
 | 
						|
    ff_thread_await_progress(ref_frame, ref_row, 0);
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
/**
 | 
						|
 * @return non-zero if temp (edge_emu_buffer) was populated
 | 
						|
 */
 | 
						|
static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
 | 
						|
       uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
 | 
						|
{
 | 
						|
    int motion_shift = plane ? 4 : 2;
 | 
						|
    int subpel_mask = plane ? 3 : 1;
 | 
						|
    int *bounding_values = s->bounding_values_array + 127;
 | 
						|
 | 
						|
    int i;
 | 
						|
    int x, y;
 | 
						|
    int x2, y2;
 | 
						|
    int x_subpel, y_subpel;
 | 
						|
    int x_offset, y_offset;
 | 
						|
 | 
						|
    int block_width = plane ? 8 : 16;
 | 
						|
    int plane_width  = s->width  >> (plane && s->chroma_x_shift);
 | 
						|
    int plane_height = s->height >> (plane && s->chroma_y_shift);
 | 
						|
 | 
						|
#define loop_stride 12
 | 
						|
    uint8_t loop[12 * loop_stride];
 | 
						|
 | 
						|
    /* using division instead of shift to correctly handle negative values */
 | 
						|
    x = 8 * bx + motion_x / motion_shift;
 | 
						|
    y = 8 * by + motion_y / motion_shift;
 | 
						|
 | 
						|
    x_subpel = motion_x & subpel_mask;
 | 
						|
    y_subpel = motion_y & subpel_mask;
 | 
						|
 | 
						|
    if (x_subpel || y_subpel) {
 | 
						|
        x--;
 | 
						|
        y--;
 | 
						|
 | 
						|
        if (x_subpel)
 | 
						|
            x = FFMIN(x, x + FFSIGN(motion_x));
 | 
						|
 | 
						|
        if (y_subpel)
 | 
						|
            y = FFMIN(y, y + FFSIGN(motion_y));
 | 
						|
 | 
						|
        x2 = x + block_width;
 | 
						|
        y2 = y + block_width;
 | 
						|
 | 
						|
        if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
 | 
						|
            return 0;
 | 
						|
 | 
						|
        x_offset = (-(x + 2) & 7) + 2;
 | 
						|
        y_offset = (-(y + 2) & 7) + 2;
 | 
						|
 | 
						|
        if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)
 | 
						|
            return 0;
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
 | 
						|
             loop_stride, stride,
 | 
						|
             12, 12, src_x - 1, src_y - 1,
 | 
						|
             plane_width,
 | 
						|
             plane_height);
 | 
						|
 | 
						|
        if (x_offset <= 8 + x_subpel)
 | 
						|
            ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
 | 
						|
 | 
						|
        if (y_offset <= 8 + y_subpel)
 | 
						|
            ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
        x_offset = -x & 7;
 | 
						|
        y_offset = -y & 7;
 | 
						|
 | 
						|
        if (!x_offset && !y_offset)
 | 
						|
            return 0;
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
 | 
						|
             loop_stride, stride,
 | 
						|
             12, 12, src_x - 1, src_y - 1,
 | 
						|
             plane_width,
 | 
						|
             plane_height);
 | 
						|
 | 
						|
#define safe_loop_filter(name, ptr, stride, bounding_values) \
 | 
						|
    if ((uintptr_t)(ptr) & 7) \
 | 
						|
        s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
 | 
						|
    else \
 | 
						|
        s->vp3dsp.name(ptr, stride, bounding_values);
 | 
						|
 | 
						|
        if (x_offset)
 | 
						|
            safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
 | 
						|
 | 
						|
        if (y_offset)
 | 
						|
            safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 9; i++)
 | 
						|
        memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform the final rendering for a particular slice of data.
 | 
						|
 * The slice number ranges from 0..(c_superblock_height - 1).
 | 
						|
 */
 | 
						|
static void render_slice(Vp3DecodeContext *s, int slice)
 | 
						|
{
 | 
						|
    int x, y, i, j, fragment;
 | 
						|
    int16_t *block = s->block;
 | 
						|
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | 
						|
    int motion_halfpel_index;
 | 
						|
    uint8_t *motion_source;
 | 
						|
    int plane, first_pixel;
 | 
						|
 | 
						|
    if (slice >= s->c_superblock_height)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        uint8_t *output_plane = s->current_frame.f->data[plane] +
 | 
						|
                                s->data_offset[plane];
 | 
						|
        uint8_t *last_plane = s->last_frame.f->data[plane] +
 | 
						|
                              s->data_offset[plane];
 | 
						|
        uint8_t *golden_plane = s->golden_frame.f->data[plane] +
 | 
						|
                                s->data_offset[plane];
 | 
						|
        ptrdiff_t stride = s->current_frame.f->linesize[plane];
 | 
						|
        int plane_width  = s->width  >> (plane && s->chroma_x_shift);
 | 
						|
        int plane_height = s->height >> (plane && s->chroma_y_shift);
 | 
						|
        int8_t(*motion_val)[2] = s->motion_val[!!plane];
 | 
						|
 | 
						|
        int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
 | 
						|
        int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
 | 
						|
        int slice_width  = plane ? s->c_superblock_width
 | 
						|
                                 : s->y_superblock_width;
 | 
						|
 | 
						|
        int fragment_width  = s->fragment_width[!!plane];
 | 
						|
        int fragment_height = s->fragment_height[!!plane];
 | 
						|
        int fragment_start  = s->fragment_start[plane];
 | 
						|
 | 
						|
        int do_await = !plane && HAVE_THREADS &&
 | 
						|
                       (s->avctx->active_thread_type & FF_THREAD_FRAME);
 | 
						|
 | 
						|
        if (!s->flipped_image)
 | 
						|
            stride = -stride;
 | 
						|
        if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* for each superblock row in the slice (both of them)... */
 | 
						|
        for (; sb_y < slice_height; sb_y++) {
 | 
						|
            /* for each superblock in a row... */
 | 
						|
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
 | 
						|
                /* for each block in a superblock... */
 | 
						|
                for (j = 0; j < 16; j++) {
 | 
						|
                    x        = 4 * sb_x + hilbert_offset[j][0];
 | 
						|
                    y        = 4 * sb_y + hilbert_offset[j][1];
 | 
						|
                    fragment = y * fragment_width + x;
 | 
						|
 | 
						|
                    i = fragment_start + fragment;
 | 
						|
 | 
						|
                    // bounds check
 | 
						|
                    if (x >= fragment_width || y >= fragment_height)
 | 
						|
                        continue;
 | 
						|
 | 
						|
                    first_pixel = 8 * y * stride + 8 * x;
 | 
						|
 | 
						|
                    if (do_await &&
 | 
						|
                        s->all_fragments[i].coding_method != MODE_INTRA)
 | 
						|
                        await_reference_row(s, &s->all_fragments[i],
 | 
						|
                                            motion_val[fragment][1],
 | 
						|
                                            (16 * y) >> s->chroma_y_shift);
 | 
						|
 | 
						|
                    /* transform if this block was coded */
 | 
						|
                    if (s->all_fragments[i].coding_method != MODE_COPY) {
 | 
						|
                        if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | 
						|
                            (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | 
						|
                            motion_source = golden_plane;
 | 
						|
                        else
 | 
						|
                            motion_source = last_plane;
 | 
						|
 | 
						|
                        motion_source       += first_pixel;
 | 
						|
                        motion_halfpel_index = 0;
 | 
						|
 | 
						|
                        /* sort out the motion vector if this fragment is coded
 | 
						|
                         * using a motion vector method */
 | 
						|
                        if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | 
						|
                            (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | 
						|
                            int src_x, src_y;
 | 
						|
                            int standard_mc = 1;
 | 
						|
                            motion_x = motion_val[fragment][0];
 | 
						|
                            motion_y = motion_val[fragment][1];
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
                            if (plane && s->version >= 2) {
 | 
						|
                                motion_x = (motion_x >> 1) | (motion_x & 1);
 | 
						|
                                motion_y = (motion_y >> 1) | (motion_y & 1);
 | 
						|
                            }
 | 
						|
#endif
 | 
						|
 | 
						|
                            src_x = (motion_x >> 1) + 8 * x;
 | 
						|
                            src_y = (motion_y >> 1) + 8 * y;
 | 
						|
 | 
						|
                            motion_halfpel_index = motion_x & 0x01;
 | 
						|
                            motion_source       += (motion_x >> 1);
 | 
						|
 | 
						|
                            motion_halfpel_index |= (motion_y & 0x01) << 1;
 | 
						|
                            motion_source        += ((motion_y >> 1) * stride);
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
                            if (s->version >= 2) {
 | 
						|
                                uint8_t *temp = s->edge_emu_buffer;
 | 
						|
                                if (stride < 0)
 | 
						|
                                    temp -= 8 * stride;
 | 
						|
                                if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
 | 
						|
                                    motion_source = temp;
 | 
						|
                                    standard_mc = 0;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
#endif
 | 
						|
 | 
						|
                            if (standard_mc && (
 | 
						|
                                src_x < 0 || src_y < 0 ||
 | 
						|
                                src_x + 9 >= plane_width ||
 | 
						|
                                src_y + 9 >= plane_height)) {
 | 
						|
                                uint8_t *temp = s->edge_emu_buffer;
 | 
						|
                                if (stride < 0)
 | 
						|
                                    temp -= 8 * stride;
 | 
						|
 | 
						|
                                s->vdsp.emulated_edge_mc(temp, motion_source,
 | 
						|
                                                         stride, stride,
 | 
						|
                                                         9, 9, src_x, src_y,
 | 
						|
                                                         plane_width,
 | 
						|
                                                         plane_height);
 | 
						|
                                motion_source = temp;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        /* first, take care of copying a block from either the
 | 
						|
                         * previous or the golden frame */
 | 
						|
                        if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | 
						|
                            /* Note, it is possible to implement all MC cases
 | 
						|
                             * with put_no_rnd_pixels_l2 which would look more
 | 
						|
                             * like the VP3 source but this would be slower as
 | 
						|
                             * put_no_rnd_pixels_tab is better optimized */
 | 
						|
                            if (motion_halfpel_index != 3) {
 | 
						|
                                s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | 
						|
                                    output_plane + first_pixel,
 | 
						|
                                    motion_source, stride, 8);
 | 
						|
                            } else {
 | 
						|
                                /* d is 0 if motion_x and _y have the same sign,
 | 
						|
                                 * else -1 */
 | 
						|
                                int d = (motion_x ^ motion_y) >> 31;
 | 
						|
                                s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
 | 
						|
                                                               motion_source - d,
 | 
						|
                                                               motion_source + stride + 1 + d,
 | 
						|
                                                               stride, 8);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
 | 
						|
                        /* invert DCT and place (or add) in final output */
 | 
						|
 | 
						|
                        if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | 
						|
                            vp3_dequant(s, s->all_fragments + i,
 | 
						|
                                        plane, 0, block);
 | 
						|
                            s->vp3dsp.idct_put(output_plane + first_pixel,
 | 
						|
                                               stride,
 | 
						|
                                               block);
 | 
						|
                        } else {
 | 
						|
                            if (vp3_dequant(s, s->all_fragments + i,
 | 
						|
                                            plane, 1, block)) {
 | 
						|
                                s->vp3dsp.idct_add(output_plane + first_pixel,
 | 
						|
                                                   stride,
 | 
						|
                                                   block);
 | 
						|
                            } else {
 | 
						|
                                s->vp3dsp.idct_dc_add(output_plane + first_pixel,
 | 
						|
                                                      stride, block);
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        /* copy directly from the previous frame */
 | 
						|
                        s->hdsp.put_pixels_tab[1][0](
 | 
						|
                            output_plane + first_pixel,
 | 
						|
                            last_plane + first_pixel,
 | 
						|
                            stride, 8);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            // Filter up to the last row in the superblock row
 | 
						|
            if (s->version < 2 && !s->skip_loop_filter)
 | 
						|
                apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
 | 
						|
                                  FFMIN(4 * sb_y + 3, fragment_height - 1));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* this looks like a good place for slice dispatch... */
 | 
						|
    /* algorithm:
 | 
						|
     *   if (slice == s->macroblock_height - 1)
 | 
						|
     *     dispatch (both last slice & 2nd-to-last slice);
 | 
						|
     *   else if (slice > 0)
 | 
						|
     *     dispatch (slice - 1);
 | 
						|
     */
 | 
						|
 | 
						|
    vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
 | 
						|
                                 s->height - 16));
 | 
						|
}
 | 
						|
 | 
						|
/// Allocate tables for per-frame data in Vp3DecodeContext
 | 
						|
static av_cold int allocate_tables(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int y_fragment_count, c_fragment_count;
 | 
						|
 | 
						|
    free_tables(avctx);
 | 
						|
 | 
						|
    y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | 
						|
    c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | 
						|
 | 
						|
    /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
 | 
						|
    s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count));
 | 
						|
    s->all_fragments     = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment));
 | 
						|
 | 
						|
    s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
 | 
						|
    s->nkf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
 | 
						|
    memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
 | 
						|
 | 
						|
    s->dct_tokens_base = av_mallocz_array(s->fragment_count,
 | 
						|
                                          64 * sizeof(*s->dct_tokens_base));
 | 
						|
    s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
 | 
						|
    s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
 | 
						|
 | 
						|
    /* work out the block mapping tables */
 | 
						|
    s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
 | 
						|
    s->macroblock_coding    = av_mallocz(s->macroblock_count + 1);
 | 
						|
 | 
						|
    s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
 | 
						|
 | 
						|
    if (!s->superblock_coding    || !s->all_fragments          ||
 | 
						|
        !s->dct_tokens_base      || !s->kf_coded_fragment_list ||
 | 
						|
        !s->nkf_coded_fragment_list ||
 | 
						|
        !s->superblock_fragments || !s->macroblock_coding      ||
 | 
						|
        !s->dc_pred_row ||
 | 
						|
        !s->motion_val[0]        || !s->motion_val[1]) {
 | 
						|
        vp3_decode_end(avctx);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    init_block_mapping(s);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int init_frames(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    s->current_frame.f = av_frame_alloc();
 | 
						|
    s->last_frame.f    = av_frame_alloc();
 | 
						|
    s->golden_frame.f  = av_frame_alloc();
 | 
						|
 | 
						|
    if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
 | 
						|
        av_frame_free(&s->current_frame.f);
 | 
						|
        av_frame_free(&s->last_frame.f);
 | 
						|
        av_frame_free(&s->golden_frame.f);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int vp3_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i, inter, plane, ret;
 | 
						|
    int c_width;
 | 
						|
    int c_height;
 | 
						|
    int y_fragment_count, c_fragment_count;
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
    int j;
 | 
						|
#endif
 | 
						|
 | 
						|
    ret = init_frames(s);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    avctx->internal->allocate_progress = 1;
 | 
						|
 | 
						|
    if (avctx->codec_tag == MKTAG('V', 'P', '4', '0'))
 | 
						|
        s->version = 3;
 | 
						|
    else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
 | 
						|
        s->version = 0;
 | 
						|
    else
 | 
						|
        s->version = 1;
 | 
						|
 | 
						|
    s->avctx  = avctx;
 | 
						|
    s->width  = FFALIGN(avctx->coded_width, 16);
 | 
						|
    s->height = FFALIGN(avctx->coded_height, 16);
 | 
						|
    if (avctx->codec_id != AV_CODEC_ID_THEORA)
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | 
						|
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
 | 
						|
    ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT);
 | 
						|
    ff_videodsp_init(&s->vdsp, 8);
 | 
						|
    ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
 | 
						|
 | 
						|
    for (i = 0; i < 64; i++) {
 | 
						|
#define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
 | 
						|
        s->idct_permutation[i] = TRANSPOSE(i);
 | 
						|
        s->idct_scantable[i]   = TRANSPOSE(ff_zigzag_direct[i]);
 | 
						|
#undef TRANSPOSE
 | 
						|
    }
 | 
						|
 | 
						|
    /* initialize to an impossible value which will force a recalculation
 | 
						|
     * in the first frame decode */
 | 
						|
    for (i = 0; i < 3; i++)
 | 
						|
        s->qps[i] = -1;
 | 
						|
 | 
						|
    ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
 | 
						|
    if (ret)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->y_superblock_width  = (s->width  + 31) / 32;
 | 
						|
    s->y_superblock_height = (s->height + 31) / 32;
 | 
						|
    s->y_superblock_count  = s->y_superblock_width * s->y_superblock_height;
 | 
						|
 | 
						|
    /* work out the dimensions for the C planes */
 | 
						|
    c_width                = s->width >> s->chroma_x_shift;
 | 
						|
    c_height               = s->height >> s->chroma_y_shift;
 | 
						|
    s->c_superblock_width  = (c_width  + 31) / 32;
 | 
						|
    s->c_superblock_height = (c_height + 31) / 32;
 | 
						|
    s->c_superblock_count  = s->c_superblock_width * s->c_superblock_height;
 | 
						|
 | 
						|
    s->superblock_count   = s->y_superblock_count + (s->c_superblock_count * 2);
 | 
						|
    s->u_superblock_start = s->y_superblock_count;
 | 
						|
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
 | 
						|
 | 
						|
    s->macroblock_width  = (s->width  + 15) / 16;
 | 
						|
    s->macroblock_height = (s->height + 15) / 16;
 | 
						|
    s->macroblock_count  = s->macroblock_width * s->macroblock_height;
 | 
						|
    s->c_macroblock_width  = (c_width  + 15) / 16;
 | 
						|
    s->c_macroblock_height = (c_height + 15) / 16;
 | 
						|
    s->c_macroblock_count  = s->c_macroblock_width * s->c_macroblock_height;
 | 
						|
    s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count;
 | 
						|
 | 
						|
    s->fragment_width[0]  = s->width / FRAGMENT_PIXELS;
 | 
						|
    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
 | 
						|
    s->fragment_width[1]  = s->fragment_width[0] >> s->chroma_x_shift;
 | 
						|
    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
 | 
						|
 | 
						|
    /* fragment count covers all 8x8 blocks for all 3 planes */
 | 
						|
    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
 | 
						|
    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
 | 
						|
    s->fragment_count    = y_fragment_count + 2 * c_fragment_count;
 | 
						|
    s->fragment_start[1] = y_fragment_count;
 | 
						|
    s->fragment_start[2] = y_fragment_count + c_fragment_count;
 | 
						|
 | 
						|
    if (!s->theora_tables) {
 | 
						|
        for (i = 0; i < 64; i++) {
 | 
						|
            s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i];
 | 
						|
            s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i];
 | 
						|
            s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i];
 | 
						|
            s->base_matrix[0][i]        = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i];
 | 
						|
            s->base_matrix[1][i]        = s->version < 2 ? vp31_intra_c_dequant[i] : vp4_generic_dequant[i];
 | 
						|
            s->base_matrix[2][i]        = s->version < 2 ? vp31_inter_dequant[i]   : vp4_generic_dequant[i];
 | 
						|
            s->filter_limit_values[i]   = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i];
 | 
						|
        }
 | 
						|
 | 
						|
        for (inter = 0; inter < 2; inter++) {
 | 
						|
            for (plane = 0; plane < 3; plane++) {
 | 
						|
                s->qr_count[inter][plane]   = 1;
 | 
						|
                s->qr_size[inter][plane][0] = 63;
 | 
						|
                s->qr_base[inter][plane][0] =
 | 
						|
                s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* init VLC tables */
 | 
						|
        if (s->version < 2) {
 | 
						|
        for (i = 0; i < 16; i++) {
 | 
						|
            /* DC histograms */
 | 
						|
            init_vlc(&s->dc_vlc[i], 11, 32,
 | 
						|
                     &dc_bias[i][0][1], 4, 2,
 | 
						|
                     &dc_bias[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 1 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_1[i], 11, 32,
 | 
						|
                     &ac_bias_0[i][0][1], 4, 2,
 | 
						|
                     &ac_bias_0[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 2 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_2[i], 11, 32,
 | 
						|
                     &ac_bias_1[i][0][1], 4, 2,
 | 
						|
                     &ac_bias_1[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 3 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_3[i], 11, 32,
 | 
						|
                     &ac_bias_2[i][0][1], 4, 2,
 | 
						|
                     &ac_bias_2[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 4 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_4[i], 11, 32,
 | 
						|
                     &ac_bias_3[i][0][1], 4, 2,
 | 
						|
                     &ac_bias_3[i][0][0], 4, 2, 0);
 | 
						|
        }
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
        } else { /* version >= 2 */
 | 
						|
            for (i = 0; i < 16; i++) {
 | 
						|
                /* DC histograms */
 | 
						|
                init_vlc(&s->dc_vlc[i], 11, 32,
 | 
						|
                         &vp4_dc_bias[i][0][1], 4, 2,
 | 
						|
                         &vp4_dc_bias[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
                /* group 1 AC histograms */
 | 
						|
                init_vlc(&s->ac_vlc_1[i], 11, 32,
 | 
						|
                         &vp4_ac_bias_0[i][0][1], 4, 2,
 | 
						|
                         &vp4_ac_bias_0[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
                /* group 2 AC histograms */
 | 
						|
                init_vlc(&s->ac_vlc_2[i], 11, 32,
 | 
						|
                         &vp4_ac_bias_1[i][0][1], 4, 2,
 | 
						|
                         &vp4_ac_bias_1[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
                /* group 3 AC histograms */
 | 
						|
                init_vlc(&s->ac_vlc_3[i], 11, 32,
 | 
						|
                         &vp4_ac_bias_2[i][0][1], 4, 2,
 | 
						|
                         &vp4_ac_bias_2[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
                /* group 4 AC histograms */
 | 
						|
                init_vlc(&s->ac_vlc_4[i], 11, 32,
 | 
						|
                         &vp4_ac_bias_3[i][0][1], 4, 2,
 | 
						|
                         &vp4_ac_bias_3[i][0][0], 4, 2, 0);
 | 
						|
            }
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < 16; i++) {
 | 
						|
            /* DC histograms */
 | 
						|
            if (init_vlc(&s->dc_vlc[i], 11, 32,
 | 
						|
                         &s->huffman_table[i][0][1], 8, 4,
 | 
						|
                         &s->huffman_table[i][0][0], 8, 4, 0) < 0)
 | 
						|
                goto vlc_fail;
 | 
						|
 | 
						|
            /* group 1 AC histograms */
 | 
						|
            if (init_vlc(&s->ac_vlc_1[i], 11, 32,
 | 
						|
                         &s->huffman_table[i + 16][0][1], 8, 4,
 | 
						|
                         &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
 | 
						|
                goto vlc_fail;
 | 
						|
 | 
						|
            /* group 2 AC histograms */
 | 
						|
            if (init_vlc(&s->ac_vlc_2[i], 11, 32,
 | 
						|
                         &s->huffman_table[i + 16 * 2][0][1], 8, 4,
 | 
						|
                         &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
 | 
						|
                goto vlc_fail;
 | 
						|
 | 
						|
            /* group 3 AC histograms */
 | 
						|
            if (init_vlc(&s->ac_vlc_3[i], 11, 32,
 | 
						|
                         &s->huffman_table[i + 16 * 3][0][1], 8, 4,
 | 
						|
                         &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
 | 
						|
                goto vlc_fail;
 | 
						|
 | 
						|
            /* group 4 AC histograms */
 | 
						|
            if (init_vlc(&s->ac_vlc_4[i], 11, 32,
 | 
						|
                         &s->huffman_table[i + 16 * 4][0][1], 8, 4,
 | 
						|
                         &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
 | 
						|
                goto vlc_fail;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
 | 
						|
             &superblock_run_length_vlc_table[0][1], 4, 2,
 | 
						|
             &superblock_run_length_vlc_table[0][0], 4, 2, 0);
 | 
						|
 | 
						|
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
 | 
						|
             &fragment_run_length_vlc_table[0][1], 4, 2,
 | 
						|
             &fragment_run_length_vlc_table[0][0], 4, 2, 0);
 | 
						|
 | 
						|
    init_vlc(&s->mode_code_vlc, 3, 8,
 | 
						|
             &mode_code_vlc_table[0][1], 2, 1,
 | 
						|
             &mode_code_vlc_table[0][0], 2, 1, 0);
 | 
						|
 | 
						|
    init_vlc(&s->motion_vector_vlc, 6, 63,
 | 
						|
             &motion_vector_vlc_table[0][1], 2, 1,
 | 
						|
             &motion_vector_vlc_table[0][0], 2, 1, 0);
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
    for (j = 0; j < 2; j++)
 | 
						|
        for (i = 0; i < 7; i++)
 | 
						|
            init_vlc(&s->vp4_mv_vlc[j][i], 6, 63,
 | 
						|
                 &vp4_mv_vlc[j][i][0][1], 4, 2,
 | 
						|
                 &vp4_mv_vlc[j][i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
    /* version >= 2 */
 | 
						|
    for (i = 0; i < 2; i++)
 | 
						|
        init_vlc(&s->block_pattern_vlc[i], 3, 14,
 | 
						|
             &vp4_block_pattern_vlc[i][0][1], 2, 1,
 | 
						|
             &vp4_block_pattern_vlc[i][0][0], 2, 1, 0);
 | 
						|
#endif
 | 
						|
 | 
						|
    return allocate_tables(avctx);
 | 
						|
 | 
						|
vlc_fail:
 | 
						|
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/// Release and shuffle frames after decode finishes
 | 
						|
static int update_frames(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    /* shuffle frames (last = current) */
 | 
						|
    ff_thread_release_buffer(avctx, &s->last_frame);
 | 
						|
    ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame);
 | 
						|
    if (ret < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        ff_thread_release_buffer(avctx, &s->golden_frame);
 | 
						|
        ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame);
 | 
						|
    }
 | 
						|
 | 
						|
fail:
 | 
						|
    ff_thread_release_buffer(avctx, &s->current_frame);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if HAVE_THREADS
 | 
						|
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
 | 
						|
{
 | 
						|
    ff_thread_release_buffer(s->avctx, dst);
 | 
						|
    if (src->f->data[0])
 | 
						|
        return ff_thread_ref_frame(dst, src);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
 | 
						|
        (ret = ref_frame(dst, &dst->golden_frame,  &src->golden_frame)) < 0  ||
 | 
						|
        (ret = ref_frame(dst, &dst->last_frame,    &src->last_frame)) < 0)
 | 
						|
        return ret;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
 | 
						|
    int qps_changed = 0, i, err;
 | 
						|
 | 
						|
#define copy_fields(to, from, start_field, end_field)                         \
 | 
						|
    memcpy(&to->start_field, &from->start_field,                              \
 | 
						|
           (char *) &to->end_field - (char *) &to->start_field)
 | 
						|
 | 
						|
    if (!s1->current_frame.f->data[0] ||
 | 
						|
        s->width != s1->width || s->height != s1->height) {
 | 
						|
        if (s != s1)
 | 
						|
            ref_frames(s, s1);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s != s1) {
 | 
						|
        if (!s->current_frame.f)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        // init tables if the first frame hasn't been decoded
 | 
						|
        if (!s->current_frame.f->data[0]) {
 | 
						|
            int y_fragment_count, c_fragment_count;
 | 
						|
            s->avctx = dst;
 | 
						|
            err = allocate_tables(dst);
 | 
						|
            if (err)
 | 
						|
                return err;
 | 
						|
            y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
 | 
						|
            c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
 | 
						|
            memcpy(s->motion_val[0], s1->motion_val[0],
 | 
						|
                   y_fragment_count * sizeof(*s->motion_val[0]));
 | 
						|
            memcpy(s->motion_val[1], s1->motion_val[1],
 | 
						|
                   c_fragment_count * sizeof(*s->motion_val[1]));
 | 
						|
        }
 | 
						|
 | 
						|
        // copy previous frame data
 | 
						|
        if ((err = ref_frames(s, s1)) < 0)
 | 
						|
            return err;
 | 
						|
 | 
						|
        s->keyframe = s1->keyframe;
 | 
						|
 | 
						|
        // copy qscale data if necessary
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            if (s->qps[i] != s1->qps[1]) {
 | 
						|
                qps_changed = 1;
 | 
						|
                memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->qps[0] != s1->qps[0])
 | 
						|
            memcpy(&s->bounding_values_array, &s1->bounding_values_array,
 | 
						|
                   sizeof(s->bounding_values_array));
 | 
						|
 | 
						|
        if (qps_changed)
 | 
						|
            copy_fields(s, s1, qps, superblock_count);
 | 
						|
#undef copy_fields
 | 
						|
    }
 | 
						|
 | 
						|
    return update_frames(dst);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static int vp3_decode_frame(AVCodecContext *avctx,
 | 
						|
                            void *data, int *got_frame,
 | 
						|
                            AVPacket *avpkt)
 | 
						|
{
 | 
						|
    AVFrame     *frame  = data;
 | 
						|
    const uint8_t *buf  = avpkt->data;
 | 
						|
    int buf_size        = avpkt->size;
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    GetBitContext gb;
 | 
						|
    int i, ret;
 | 
						|
 | 
						|
    if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
#if CONFIG_THEORA_DECODER
 | 
						|
    if (s->theora && get_bits1(&gb)) {
 | 
						|
        int type = get_bits(&gb, 7);
 | 
						|
        skip_bits_long(&gb, 6*8); /* "theora" */
 | 
						|
 | 
						|
        if (s->avctx->active_thread_type&FF_THREAD_FRAME) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
 | 
						|
            return AVERROR_PATCHWELCOME;
 | 
						|
        }
 | 
						|
        if (type == 0) {
 | 
						|
            vp3_decode_end(avctx);
 | 
						|
            ret = theora_decode_header(avctx, &gb);
 | 
						|
 | 
						|
            if (ret >= 0)
 | 
						|
                ret = vp3_decode_init(avctx);
 | 
						|
            if (ret < 0) {
 | 
						|
                vp3_decode_end(avctx);
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
            return buf_size;
 | 
						|
        } else if (type == 2) {
 | 
						|
            vp3_decode_end(avctx);
 | 
						|
            ret = theora_decode_tables(avctx, &gb);
 | 
						|
            if (ret >= 0)
 | 
						|
                ret = vp3_decode_init(avctx);
 | 
						|
            if (ret < 0) {
 | 
						|
                vp3_decode_end(avctx);
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
            return buf_size;
 | 
						|
        }
 | 
						|
 | 
						|
        av_log(avctx, AV_LOG_ERROR,
 | 
						|
               "Header packet passed to frame decoder, skipping\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    s->keyframe = !get_bits1(&gb);
 | 
						|
    if (!s->all_fragments) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (!s->theora)
 | 
						|
        skip_bits(&gb, 1);
 | 
						|
    for (i = 0; i < 3; i++)
 | 
						|
        s->last_qps[i] = s->qps[i];
 | 
						|
 | 
						|
    s->nqps = 0;
 | 
						|
    do {
 | 
						|
        s->qps[s->nqps++] = get_bits(&gb, 6);
 | 
						|
    } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
 | 
						|
    for (i = s->nqps; i < 3; i++)
 | 
						|
        s->qps[i] = -1;
 | 
						|
 | 
						|
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | 
						|
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
 | 
						|
               s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
 | 
						|
 | 
						|
    s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
 | 
						|
                          avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
 | 
						|
                                                                  : AVDISCARD_NONKEY);
 | 
						|
 | 
						|
    if (s->qps[0] != s->last_qps[0])
 | 
						|
        init_loop_filter(s);
 | 
						|
 | 
						|
    for (i = 0; i < s->nqps; i++)
 | 
						|
        // reinit all dequantizers if the first one changed, because
 | 
						|
        // the DC of the first quantizer must be used for all matrices
 | 
						|
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
 | 
						|
            init_dequantizer(s, i);
 | 
						|
 | 
						|
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
 | 
						|
        return buf_size;
 | 
						|
 | 
						|
    s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
 | 
						|
                                                : AV_PICTURE_TYPE_P;
 | 
						|
    s->current_frame.f->key_frame = s->keyframe;
 | 
						|
    if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0)
 | 
						|
        goto error;
 | 
						|
 | 
						|
    if (!s->edge_emu_buffer)
 | 
						|
        s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        if (!s->theora) {
 | 
						|
            skip_bits(&gb, 4); /* width code */
 | 
						|
            skip_bits(&gb, 4); /* height code */
 | 
						|
            if (s->version) {
 | 
						|
                s->version = get_bits(&gb, 5);
 | 
						|
                if (avctx->frame_number == 0)
 | 
						|
                    av_log(s->avctx, AV_LOG_DEBUG,
 | 
						|
                           "VP version: %d\n", s->version);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (s->version || s->theora) {
 | 
						|
            if (get_bits1(&gb))
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                       "Warning, unsupported keyframe coding type?!\n");
 | 
						|
            skip_bits(&gb, 2); /* reserved? */
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
            if (s->version >= 2) {
 | 
						|
                int mb_height, mb_width;
 | 
						|
                int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
 | 
						|
 | 
						|
                mb_height = get_bits(&gb, 8);
 | 
						|
                mb_width  = get_bits(&gb, 8);
 | 
						|
                if (mb_height != s->macroblock_height ||
 | 
						|
                    mb_width != s->macroblock_width)
 | 
						|
                    avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
 | 
						|
 | 
						|
                mb_width_mul = get_bits(&gb, 5);
 | 
						|
                mb_width_div = get_bits(&gb, 3);
 | 
						|
                mb_height_mul = get_bits(&gb, 5);
 | 
						|
                mb_height_div = get_bits(&gb, 3);
 | 
						|
                if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
 | 
						|
                    avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
 | 
						|
 | 
						|
                if (get_bits(&gb, 2))
 | 
						|
                    avpriv_request_sample(s->avctx, "unknown bits");
 | 
						|
            }
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (!s->golden_frame.f->data[0]) {
 | 
						|
            av_log(s->avctx, AV_LOG_WARNING,
 | 
						|
                   "vp3: first frame not a keyframe\n");
 | 
						|
 | 
						|
            s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
 | 
						|
            if (ff_thread_get_buffer(avctx, &s->golden_frame,
 | 
						|
                                     AV_GET_BUFFER_FLAG_REF) < 0)
 | 
						|
                goto error;
 | 
						|
            ff_thread_release_buffer(avctx, &s->last_frame);
 | 
						|
            if ((ret = ff_thread_ref_frame(&s->last_frame,
 | 
						|
                                           &s->golden_frame)) < 0)
 | 
						|
                goto error;
 | 
						|
            ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
 | 
						|
    ff_thread_finish_setup(avctx);
 | 
						|
 | 
						|
    if (s->version < 2) {
 | 
						|
    if (unpack_superblocks(s, &gb)) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
    } else {
 | 
						|
        if (vp4_unpack_macroblocks(s, &gb)) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
 | 
						|
            goto error;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    if (unpack_modes(s, &gb)) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (unpack_vectors(s, &gb)) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
    if (unpack_block_qpis(s, &gb)) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->version < 2) {
 | 
						|
    if (unpack_dct_coeffs(s, &gb)) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
    } else {
 | 
						|
        if (vp4_unpack_dct_coeffs(s, &gb)) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        int height = s->height >> (i && s->chroma_y_shift);
 | 
						|
        if (s->flipped_image)
 | 
						|
            s->data_offset[i] = 0;
 | 
						|
        else
 | 
						|
            s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
 | 
						|
    }
 | 
						|
 | 
						|
    s->last_slice_end = 0;
 | 
						|
    for (i = 0; i < s->c_superblock_height; i++)
 | 
						|
        render_slice(s, i);
 | 
						|
 | 
						|
    // filter the last row
 | 
						|
    if (s->version < 2)
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
 | 
						|
        apply_loop_filter(s, i, row, row + 1);
 | 
						|
    }
 | 
						|
    vp3_draw_horiz_band(s, s->height);
 | 
						|
 | 
						|
    /* output frame, offset as needed */
 | 
						|
    if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    frame->crop_left   = s->offset_x;
 | 
						|
    frame->crop_right  = avctx->coded_width - avctx->width - s->offset_x;
 | 
						|
    frame->crop_top    = s->offset_y;
 | 
						|
    frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
 | 
						|
 | 
						|
    *got_frame = 1;
 | 
						|
 | 
						|
    if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
 | 
						|
        ret = update_frames(avctx);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return buf_size;
 | 
						|
 | 
						|
error:
 | 
						|
    ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
 | 
						|
 | 
						|
    if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
 | 
						|
        av_frame_unref(s->current_frame.f);
 | 
						|
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    if (get_bits1(gb)) {
 | 
						|
        int token;
 | 
						|
        if (s->entries >= 32) { /* overflow */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        token = get_bits(gb, 5);
 | 
						|
        ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
 | 
						|
                s->hti, s->hbits, token, s->entries, s->huff_code_size);
 | 
						|
        s->huffman_table[s->hti][token][0] = s->hbits;
 | 
						|
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
 | 
						|
        s->entries++;
 | 
						|
    } else {
 | 
						|
        if (s->huff_code_size >= 32) { /* overflow */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->huff_code_size++;
 | 
						|
        s->hbits <<= 1;
 | 
						|
        if (read_huffman_tree(avctx, gb))
 | 
						|
            return -1;
 | 
						|
        s->hbits |= 1;
 | 
						|
        if (read_huffman_tree(avctx, gb))
 | 
						|
            return -1;
 | 
						|
        s->hbits >>= 1;
 | 
						|
        s->huff_code_size--;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if HAVE_THREADS
 | 
						|
static int vp3_init_thread_copy(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    s->superblock_coding      = NULL;
 | 
						|
    s->all_fragments          = NULL;
 | 
						|
    s->coded_fragment_list[0] = NULL;
 | 
						|
    s-> kf_coded_fragment_list= NULL;
 | 
						|
    s->nkf_coded_fragment_list= NULL;
 | 
						|
    s->dct_tokens_base        = NULL;
 | 
						|
    s->superblock_fragments   = NULL;
 | 
						|
    s->macroblock_coding      = NULL;
 | 
						|
    s->motion_val[0]          = NULL;
 | 
						|
    s->motion_val[1]          = NULL;
 | 
						|
    s->edge_emu_buffer        = NULL;
 | 
						|
    s->dc_pred_row            = NULL;
 | 
						|
 | 
						|
    return init_frames(s);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_THEORA_DECODER
 | 
						|
static const enum AVPixelFormat theora_pix_fmts[4] = {
 | 
						|
    AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P
 | 
						|
};
 | 
						|
 | 
						|
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int visible_width, visible_height, colorspace;
 | 
						|
    uint8_t offset_x = 0, offset_y = 0;
 | 
						|
    int ret;
 | 
						|
    AVRational fps, aspect;
 | 
						|
 | 
						|
    s->theora_header = 0;
 | 
						|
    s->theora = get_bits_long(gb, 24);
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
 | 
						|
    if (!s->theora) {
 | 
						|
        s->theora = 1;
 | 
						|
        avpriv_request_sample(s->avctx, "theora 0");
 | 
						|
    }
 | 
						|
 | 
						|
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
 | 
						|
     * but previous versions have the image flipped relative to vp3 */
 | 
						|
    if (s->theora < 0x030200) {
 | 
						|
        s->flipped_image = 1;
 | 
						|
        av_log(avctx, AV_LOG_DEBUG,
 | 
						|
               "Old (<alpha3) Theora bitstream, flipped image\n");
 | 
						|
    }
 | 
						|
 | 
						|
    visible_width  =
 | 
						|
    s->width       = get_bits(gb, 16) << 4;
 | 
						|
    visible_height =
 | 
						|
    s->height      = get_bits(gb, 16) << 4;
 | 
						|
 | 
						|
    if (s->theora >= 0x030200) {
 | 
						|
        visible_width  = get_bits_long(gb, 24);
 | 
						|
        visible_height = get_bits_long(gb, 24);
 | 
						|
 | 
						|
        offset_x = get_bits(gb, 8); /* offset x */
 | 
						|
        offset_y = get_bits(gb, 8); /* offset y, from bottom */
 | 
						|
    }
 | 
						|
 | 
						|
    /* sanity check */
 | 
						|
    if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
 | 
						|
        visible_width  + offset_x > s->width ||
 | 
						|
        visible_height + offset_y > s->height) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR,
 | 
						|
               "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
 | 
						|
               visible_width, visible_height, offset_x, offset_y,
 | 
						|
               s->width, s->height);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    fps.num = get_bits_long(gb, 32);
 | 
						|
    fps.den = get_bits_long(gb, 32);
 | 
						|
    if (fps.num && fps.den) {
 | 
						|
        if (fps.num < 0 || fps.den < 0) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        av_reduce(&avctx->framerate.den, &avctx->framerate.num,
 | 
						|
                  fps.den, fps.num, 1 << 30);
 | 
						|
    }
 | 
						|
 | 
						|
    aspect.num = get_bits_long(gb, 24);
 | 
						|
    aspect.den = get_bits_long(gb, 24);
 | 
						|
    if (aspect.num && aspect.den) {
 | 
						|
        av_reduce(&avctx->sample_aspect_ratio.num,
 | 
						|
                  &avctx->sample_aspect_ratio.den,
 | 
						|
                  aspect.num, aspect.den, 1 << 30);
 | 
						|
        ff_set_sar(avctx, avctx->sample_aspect_ratio);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->theora < 0x030200)
 | 
						|
        skip_bits(gb, 5); /* keyframe frequency force */
 | 
						|
    colorspace = get_bits(gb, 8);
 | 
						|
    skip_bits(gb, 24); /* bitrate */
 | 
						|
 | 
						|
    skip_bits(gb, 6); /* quality hint */
 | 
						|
 | 
						|
    if (s->theora >= 0x030200) {
 | 
						|
        skip_bits(gb, 5); /* keyframe frequency force */
 | 
						|
        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
 | 
						|
        if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        skip_bits(gb, 3); /* reserved */
 | 
						|
    } else
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | 
						|
 | 
						|
    ret = ff_set_dimensions(avctx, s->width, s->height);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
    if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
 | 
						|
        avctx->width  = visible_width;
 | 
						|
        avctx->height = visible_height;
 | 
						|
        // translate offsets from theora axis ([0,0] lower left)
 | 
						|
        // to normal axis ([0,0] upper left)
 | 
						|
        s->offset_x = offset_x;
 | 
						|
        s->offset_y = s->height - visible_height - offset_y;
 | 
						|
    }
 | 
						|
 | 
						|
    if (colorspace == 1)
 | 
						|
        avctx->color_primaries = AVCOL_PRI_BT470M;
 | 
						|
    else if (colorspace == 2)
 | 
						|
        avctx->color_primaries = AVCOL_PRI_BT470BG;
 | 
						|
 | 
						|
    if (colorspace == 1 || colorspace == 2) {
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT470BG;
 | 
						|
        avctx->color_trc  = AVCOL_TRC_BT709;
 | 
						|
    }
 | 
						|
 | 
						|
    s->theora_header = 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i, n, matrices, inter, plane;
 | 
						|
 | 
						|
    if (!s->theora_header)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    if (s->theora >= 0x030200) {
 | 
						|
        n = get_bits(gb, 3);
 | 
						|
        /* loop filter limit values table */
 | 
						|
        if (n)
 | 
						|
            for (i = 0; i < 64; i++)
 | 
						|
                s->filter_limit_values[i] = get_bits(gb, n);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        n = get_bits(gb, 4) + 1;
 | 
						|
    else
 | 
						|
        n = 16;
 | 
						|
    /* quality threshold table */
 | 
						|
    for (i = 0; i < 64; i++)
 | 
						|
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        n = get_bits(gb, 4) + 1;
 | 
						|
    else
 | 
						|
        n = 16;
 | 
						|
    /* dc scale factor table */
 | 
						|
    for (i = 0; i < 64; i++)
 | 
						|
        s->coded_dc_scale_factor[0][i] =
 | 
						|
        s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        matrices = get_bits(gb, 9) + 1;
 | 
						|
    else
 | 
						|
        matrices = 3;
 | 
						|
 | 
						|
    if (matrices > 384) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (n = 0; n < matrices; n++)
 | 
						|
        for (i = 0; i < 64; i++)
 | 
						|
            s->base_matrix[n][i] = get_bits(gb, 8);
 | 
						|
 | 
						|
    for (inter = 0; inter <= 1; inter++) {
 | 
						|
        for (plane = 0; plane <= 2; plane++) {
 | 
						|
            int newqr = 1;
 | 
						|
            if (inter || plane > 0)
 | 
						|
                newqr = get_bits1(gb);
 | 
						|
            if (!newqr) {
 | 
						|
                int qtj, plj;
 | 
						|
                if (inter && get_bits1(gb)) {
 | 
						|
                    qtj = 0;
 | 
						|
                    plj = plane;
 | 
						|
                } else {
 | 
						|
                    qtj = (3 * inter + plane - 1) / 3;
 | 
						|
                    plj = (plane + 2) % 3;
 | 
						|
                }
 | 
						|
                s->qr_count[inter][plane] = s->qr_count[qtj][plj];
 | 
						|
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
 | 
						|
                       sizeof(s->qr_size[0][0]));
 | 
						|
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
 | 
						|
                       sizeof(s->qr_base[0][0]));
 | 
						|
            } else {
 | 
						|
                int qri = 0;
 | 
						|
                int qi  = 0;
 | 
						|
 | 
						|
                for (;;) {
 | 
						|
                    i = get_bits(gb, av_log2(matrices - 1) + 1);
 | 
						|
                    if (i >= matrices) {
 | 
						|
                        av_log(avctx, AV_LOG_ERROR,
 | 
						|
                               "invalid base matrix index\n");
 | 
						|
                        return -1;
 | 
						|
                    }
 | 
						|
                    s->qr_base[inter][plane][qri] = i;
 | 
						|
                    if (qi >= 63)
 | 
						|
                        break;
 | 
						|
                    i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
 | 
						|
                    s->qr_size[inter][plane][qri++] = i;
 | 
						|
                    qi += i;
 | 
						|
                }
 | 
						|
 | 
						|
                if (qi > 63) {
 | 
						|
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
 | 
						|
                    return -1;
 | 
						|
                }
 | 
						|
                s->qr_count[inter][plane] = qri;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Huffman tables */
 | 
						|
    for (s->hti = 0; s->hti < 80; s->hti++) {
 | 
						|
        s->entries        = 0;
 | 
						|
        s->huff_code_size = 1;
 | 
						|
        if (!get_bits1(gb)) {
 | 
						|
            s->hbits = 0;
 | 
						|
            if (read_huffman_tree(avctx, gb))
 | 
						|
                return -1;
 | 
						|
            s->hbits = 1;
 | 
						|
            if (read_huffman_tree(avctx, gb))
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->theora_tables = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int theora_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    GetBitContext gb;
 | 
						|
    int ptype;
 | 
						|
    const uint8_t *header_start[3];
 | 
						|
    int header_len[3];
 | 
						|
    int i;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | 
						|
 | 
						|
    s->theora = 1;
 | 
						|
 | 
						|
    if (!avctx->extradata_size) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size,
 | 
						|
                                  42, header_start, header_len) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        if (header_len[i] <= 0)
 | 
						|
            continue;
 | 
						|
        ret = init_get_bits8(&gb, header_start[i], header_len[i]);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
 | 
						|
        ptype = get_bits(&gb, 8);
 | 
						|
 | 
						|
        if (!(ptype & 0x80)) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
 | 
						|
//          return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        // FIXME: Check for this as well.
 | 
						|
        skip_bits_long(&gb, 6 * 8); /* "theora" */
 | 
						|
 | 
						|
        switch (ptype) {
 | 
						|
        case 0x80:
 | 
						|
            if (theora_decode_header(avctx, &gb) < 0)
 | 
						|
                return -1;
 | 
						|
            break;
 | 
						|
        case 0x81:
 | 
						|
// FIXME: is this needed? it breaks sometimes
 | 
						|
//            theora_decode_comments(avctx, gb);
 | 
						|
            break;
 | 
						|
        case 0x82:
 | 
						|
            if (theora_decode_tables(avctx, &gb))
 | 
						|
                return -1;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_log(avctx, AV_LOG_ERROR,
 | 
						|
                   "Unknown Theora config packet: %d\n", ptype & ~0x80);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
 | 
						|
            av_log(avctx, AV_LOG_WARNING,
 | 
						|
                   "%d bits left in packet %X\n",
 | 
						|
                   8 * header_len[i] - get_bits_count(&gb), ptype);
 | 
						|
        if (s->theora < 0x030200)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    return vp3_decode_init(avctx);
 | 
						|
}
 | 
						|
 | 
						|
AVCodec ff_theora_decoder = {
 | 
						|
    .name                  = "theora",
 | 
						|
    .long_name             = NULL_IF_CONFIG_SMALL("Theora"),
 | 
						|
    .type                  = AVMEDIA_TYPE_VIDEO,
 | 
						|
    .id                    = AV_CODEC_ID_THEORA,
 | 
						|
    .priv_data_size        = sizeof(Vp3DecodeContext),
 | 
						|
    .init                  = theora_decode_init,
 | 
						|
    .close                 = vp3_decode_end,
 | 
						|
    .decode                = vp3_decode_frame,
 | 
						|
    .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | 
						|
                             AV_CODEC_CAP_FRAME_THREADS,
 | 
						|
    .flush                 = vp3_decode_flush,
 | 
						|
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | 
						|
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
 | 
						|
    .caps_internal         = FF_CODEC_CAP_EXPORTS_CROPPING,
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
AVCodec ff_vp3_decoder = {
 | 
						|
    .name                  = "vp3",
 | 
						|
    .long_name             = NULL_IF_CONFIG_SMALL("On2 VP3"),
 | 
						|
    .type                  = AVMEDIA_TYPE_VIDEO,
 | 
						|
    .id                    = AV_CODEC_ID_VP3,
 | 
						|
    .priv_data_size        = sizeof(Vp3DecodeContext),
 | 
						|
    .init                  = vp3_decode_init,
 | 
						|
    .close                 = vp3_decode_end,
 | 
						|
    .decode                = vp3_decode_frame,
 | 
						|
    .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | 
						|
                             AV_CODEC_CAP_FRAME_THREADS,
 | 
						|
    .flush                 = vp3_decode_flush,
 | 
						|
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | 
						|
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
 | 
						|
};
 | 
						|
 | 
						|
#if CONFIG_VP4_DECODER
 | 
						|
AVCodec ff_vp4_decoder = {
 | 
						|
    .name                  = "vp4",
 | 
						|
    .long_name             = NULL_IF_CONFIG_SMALL("On2 VP4"),
 | 
						|
    .type                  = AVMEDIA_TYPE_VIDEO,
 | 
						|
    .id                    = AV_CODEC_ID_VP4,
 | 
						|
    .priv_data_size        = sizeof(Vp3DecodeContext),
 | 
						|
    .init                  = vp3_decode_init,
 | 
						|
    .close                 = vp3_decode_end,
 | 
						|
    .decode                = vp3_decode_frame,
 | 
						|
    .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND |
 | 
						|
                             AV_CODEC_CAP_FRAME_THREADS,
 | 
						|
    .flush                 = vp3_decode_flush,
 | 
						|
    .init_thread_copy      = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
 | 
						|
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
 | 
						|
};
 | 
						|
#endif
 |