1076 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1076 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Atrac 3 compatible decoder
 | 
						|
 * Copyright (c) 2006-2008 Maxim Poliakovski
 | 
						|
 * Copyright (c) 2006-2008 Benjamin Larsson
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file atrac3.c
 | 
						|
 * Atrac 3 compatible decoder.
 | 
						|
 * This decoder handles Sony's ATRAC3 data.
 | 
						|
 *
 | 
						|
 * Container formats used to store atrac 3 data:
 | 
						|
 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
 | 
						|
 *
 | 
						|
 * To use this decoder, a calling application must supply the extradata
 | 
						|
 * bytes provided in the containers above.
 | 
						|
 */
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stddef.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "bitstream.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "bytestream.h"
 | 
						|
 | 
						|
#include "atrac3data.h"
 | 
						|
 | 
						|
#define JOINT_STEREO    0x12
 | 
						|
#define STEREO          0x2
 | 
						|
 | 
						|
 | 
						|
/* These structures are needed to store the parsed gain control data. */
 | 
						|
typedef struct {
 | 
						|
    int   num_gain_data;
 | 
						|
    int   levcode[8];
 | 
						|
    int   loccode[8];
 | 
						|
} gain_info;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    gain_info   gBlock[4];
 | 
						|
} gain_block;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    int     pos;
 | 
						|
    int     numCoefs;
 | 
						|
    float   coef[8];
 | 
						|
} tonal_component;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    int               bandsCoded;
 | 
						|
    int               numComponents;
 | 
						|
    tonal_component   components[64];
 | 
						|
    float             prevFrame[1024];
 | 
						|
    int               gcBlkSwitch;
 | 
						|
    gain_block        gainBlock[2];
 | 
						|
 | 
						|
    DECLARE_ALIGNED_16(float, spectrum[1024]);
 | 
						|
    DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
 | 
						|
 | 
						|
    float             delayBuf1[46]; ///<qmf delay buffers
 | 
						|
    float             delayBuf2[46];
 | 
						|
    float             delayBuf3[46];
 | 
						|
} channel_unit;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    GetBitContext       gb;
 | 
						|
    //@{
 | 
						|
    /** stream data */
 | 
						|
    int                 channels;
 | 
						|
    int                 codingMode;
 | 
						|
    int                 bit_rate;
 | 
						|
    int                 sample_rate;
 | 
						|
    int                 samples_per_channel;
 | 
						|
    int                 samples_per_frame;
 | 
						|
 | 
						|
    int                 bits_per_frame;
 | 
						|
    int                 bytes_per_frame;
 | 
						|
    int                 pBs;
 | 
						|
    channel_unit*       pUnits;
 | 
						|
    //@}
 | 
						|
    //@{
 | 
						|
    /** joint-stereo related variables */
 | 
						|
    int                 matrix_coeff_index_prev[4];
 | 
						|
    int                 matrix_coeff_index_now[4];
 | 
						|
    int                 matrix_coeff_index_next[4];
 | 
						|
    int                 weighting_delay[6];
 | 
						|
    //@}
 | 
						|
    //@{
 | 
						|
    /** data buffers */
 | 
						|
    float               outSamples[2048];
 | 
						|
    uint8_t*            decoded_bytes_buffer;
 | 
						|
    float               tempBuf[1070];
 | 
						|
    DECLARE_ALIGNED_16(float,mdct_tmp[512]);
 | 
						|
    //@}
 | 
						|
    //@{
 | 
						|
    /** extradata */
 | 
						|
    int                 atrac3version;
 | 
						|
    int                 delay;
 | 
						|
    int                 scrambled_stream;
 | 
						|
    int                 frame_factor;
 | 
						|
    //@}
 | 
						|
} ATRAC3Context;
 | 
						|
 | 
						|
static DECLARE_ALIGNED_16(float,mdct_window[512]);
 | 
						|
static float            qmf_window[48];
 | 
						|
static VLC              spectral_coeff_tab[7];
 | 
						|
static float            SFTable[64];
 | 
						|
static float            gain_tab1[16];
 | 
						|
static float            gain_tab2[31];
 | 
						|
static MDCTContext      mdct_ctx;
 | 
						|
static DSPContext       dsp;
 | 
						|
 | 
						|
 | 
						|
/* quadrature mirror synthesis filter */
 | 
						|
 | 
						|
/**
 | 
						|
 * Quadrature mirror synthesis filter.
 | 
						|
 *
 | 
						|
 * @param inlo      lower part of spectrum
 | 
						|
 * @param inhi      higher part of spectrum
 | 
						|
 * @param nIn       size of spectrum buffer
 | 
						|
 * @param pOut      out buffer
 | 
						|
 * @param delayBuf  delayBuf buffer
 | 
						|
 * @param temp      temp buffer
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
static void iqmf (float *inlo, float *inhi, unsigned int nIn, float *pOut, float *delayBuf, float *temp)
 | 
						|
{
 | 
						|
    int   i, j;
 | 
						|
    float   *p1, *p3;
 | 
						|
 | 
						|
    memcpy(temp, delayBuf, 46*sizeof(float));
 | 
						|
 | 
						|
    p3 = temp + 46;
 | 
						|
 | 
						|
    /* loop1 */
 | 
						|
    for(i=0; i<nIn; i+=2){
 | 
						|
        p3[2*i+0] = inlo[i  ] + inhi[i  ];
 | 
						|
        p3[2*i+1] = inlo[i  ] - inhi[i  ];
 | 
						|
        p3[2*i+2] = inlo[i+1] + inhi[i+1];
 | 
						|
        p3[2*i+3] = inlo[i+1] - inhi[i+1];
 | 
						|
    }
 | 
						|
 | 
						|
    /* loop2 */
 | 
						|
    p1 = temp;
 | 
						|
    for (j = nIn; j != 0; j--) {
 | 
						|
        float s1 = 0.0;
 | 
						|
        float s2 = 0.0;
 | 
						|
 | 
						|
        for (i = 0; i < 48; i += 2) {
 | 
						|
            s1 += p1[i] * qmf_window[i];
 | 
						|
            s2 += p1[i+1] * qmf_window[i+1];
 | 
						|
        }
 | 
						|
 | 
						|
        pOut[0] = s2;
 | 
						|
        pOut[1] = s1;
 | 
						|
 | 
						|
        p1 += 2;
 | 
						|
        pOut += 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Update the delay buffer. */
 | 
						|
    memcpy(delayBuf, temp + nIn*2, 46*sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
 | 
						|
 * caused by the reverse spectra of the QMF.
 | 
						|
 *
 | 
						|
 * @param pInput    float input
 | 
						|
 * @param pOutput   float output
 | 
						|
 * @param odd_band  1 if the band is an odd band
 | 
						|
 * @param mdct_tmp  aligned temporary buffer for the mdct
 | 
						|
 */
 | 
						|
 | 
						|
static void IMLT(float *pInput, float *pOutput, int odd_band, float* mdct_tmp)
 | 
						|
{
 | 
						|
    int     i;
 | 
						|
 | 
						|
    if (odd_band) {
 | 
						|
        /**
 | 
						|
        * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
 | 
						|
        * or it gives better compression to do it this way.
 | 
						|
        * FIXME: It should be possible to handle this in ff_imdct_calc
 | 
						|
        * for that to happen a modification of the prerotation step of
 | 
						|
        * all SIMD code and C code is needed.
 | 
						|
        * Or fix the functions before so they generate a pre reversed spectrum.
 | 
						|
        */
 | 
						|
 | 
						|
        for (i=0; i<128; i++)
 | 
						|
            FFSWAP(float, pInput[i], pInput[255-i]);
 | 
						|
    }
 | 
						|
 | 
						|
    mdct_ctx.fft.imdct_calc(&mdct_ctx,pOutput,pInput,mdct_tmp);
 | 
						|
 | 
						|
    /* Perform windowing on the output. */
 | 
						|
    dsp.vector_fmul(pOutput,mdct_window,512);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Atrac 3 indata descrambling, only used for data coming from the rm container
 | 
						|
 *
 | 
						|
 * @param in        pointer to 8 bit array of indata
 | 
						|
 * @param bits      amount of bits
 | 
						|
 * @param out       pointer to 8 bit array of outdata
 | 
						|
 */
 | 
						|
 | 
						|
static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
 | 
						|
    int i, off;
 | 
						|
    uint32_t c;
 | 
						|
    const uint32_t* buf;
 | 
						|
    uint32_t* obuf = (uint32_t*) out;
 | 
						|
 | 
						|
    off = (int)((long)inbuffer & 3);
 | 
						|
    buf = (const uint32_t*) (inbuffer - off);
 | 
						|
    c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
 | 
						|
    bytes += 3 + off;
 | 
						|
    for (i = 0; i < bytes/4; i++)
 | 
						|
        obuf[i] = c ^ buf[i];
 | 
						|
 | 
						|
    if (off)
 | 
						|
        av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
 | 
						|
 | 
						|
    return off;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void init_atrac3_transforms(ATRAC3Context *q) {
 | 
						|
    float enc_window[256];
 | 
						|
    float s;
 | 
						|
    int i;
 | 
						|
 | 
						|
    /* Generate the mdct window, for details see
 | 
						|
     * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
 | 
						|
    for (i=0 ; i<256; i++)
 | 
						|
        enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
 | 
						|
 | 
						|
    if (!mdct_window[0])
 | 
						|
        for (i=0 ; i<256; i++) {
 | 
						|
            mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
 | 
						|
            mdct_window[511-i] = mdct_window[i];
 | 
						|
        }
 | 
						|
 | 
						|
    /* Generate the QMF window. */
 | 
						|
    for (i=0 ; i<24; i++) {
 | 
						|
        s = qmf_48tap_half[i] * 2.0;
 | 
						|
        qmf_window[i] = s;
 | 
						|
        qmf_window[47 - i] = s;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialize the MDCT transform. */
 | 
						|
    ff_mdct_init(&mdct_ctx, 9, 1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Atrac3 uninit, free all allocated memory
 | 
						|
 */
 | 
						|
 | 
						|
static int atrac3_decode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    ATRAC3Context *q = avctx->priv_data;
 | 
						|
 | 
						|
    av_free(q->pUnits);
 | 
						|
    av_free(q->decoded_bytes_buffer);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
/ * Mantissa decoding
 | 
						|
 *
 | 
						|
 * @param gb            the GetBit context
 | 
						|
 * @param selector      what table is the output values coded with
 | 
						|
 * @param codingFlag    constant length coding or variable length coding
 | 
						|
 * @param mantissas     mantissa output table
 | 
						|
 * @param numCodes      amount of values to get
 | 
						|
 */
 | 
						|
 | 
						|
static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
 | 
						|
{
 | 
						|
    int   numBits, cnt, code, huffSymb;
 | 
						|
 | 
						|
    if (selector == 1)
 | 
						|
        numCodes /= 2;
 | 
						|
 | 
						|
    if (codingFlag != 0) {
 | 
						|
        /* constant length coding (CLC) */
 | 
						|
        numBits = CLCLengthTab[selector];
 | 
						|
 | 
						|
        if (selector > 1) {
 | 
						|
            for (cnt = 0; cnt < numCodes; cnt++) {
 | 
						|
                if (numBits)
 | 
						|
                    code = get_sbits(gb, numBits);
 | 
						|
                else
 | 
						|
                    code = 0;
 | 
						|
                mantissas[cnt] = code;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            for (cnt = 0; cnt < numCodes; cnt++) {
 | 
						|
                if (numBits)
 | 
						|
                    code = get_bits(gb, numBits); //numBits is always 4 in this case
 | 
						|
                else
 | 
						|
                    code = 0;
 | 
						|
                mantissas[cnt*2] = seTab_0[code >> 2];
 | 
						|
                mantissas[cnt*2+1] = seTab_0[code & 3];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* variable length coding (VLC) */
 | 
						|
        if (selector != 1) {
 | 
						|
            for (cnt = 0; cnt < numCodes; cnt++) {
 | 
						|
                huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
 | 
						|
                huffSymb += 1;
 | 
						|
                code = huffSymb >> 1;
 | 
						|
                if (huffSymb & 1)
 | 
						|
                    code = -code;
 | 
						|
                mantissas[cnt] = code;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            for (cnt = 0; cnt < numCodes; cnt++) {
 | 
						|
                huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
 | 
						|
                mantissas[cnt*2] = decTable1[huffSymb*2];
 | 
						|
                mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Restore the quantized band spectrum coefficients
 | 
						|
 *
 | 
						|
 * @param gb            the GetBit context
 | 
						|
 * @param pOut          decoded band spectrum
 | 
						|
 * @return outSubbands   subband counter, fix for broken specification/files
 | 
						|
 */
 | 
						|
 | 
						|
static int decodeSpectrum (GetBitContext *gb, float *pOut)
 | 
						|
{
 | 
						|
    int   numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
 | 
						|
    int   subband_vlc_index[32], SF_idxs[32];
 | 
						|
    int   mantissas[128];
 | 
						|
    float SF;
 | 
						|
 | 
						|
    numSubbands = get_bits(gb, 5); // number of coded subbands
 | 
						|
    codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
 | 
						|
 | 
						|
    /* Get the VLC selector table for the subbands, 0 means not coded. */
 | 
						|
    for (cnt = 0; cnt <= numSubbands; cnt++)
 | 
						|
        subband_vlc_index[cnt] = get_bits(gb, 3);
 | 
						|
 | 
						|
    /* Read the scale factor indexes from the stream. */
 | 
						|
    for (cnt = 0; cnt <= numSubbands; cnt++) {
 | 
						|
        if (subband_vlc_index[cnt] != 0)
 | 
						|
            SF_idxs[cnt] = get_bits(gb, 6);
 | 
						|
    }
 | 
						|
 | 
						|
    for (cnt = 0; cnt <= numSubbands; cnt++) {
 | 
						|
        first = subbandTab[cnt];
 | 
						|
        last = subbandTab[cnt+1];
 | 
						|
 | 
						|
        subbWidth = last - first;
 | 
						|
 | 
						|
        if (subband_vlc_index[cnt] != 0) {
 | 
						|
            /* Decode spectral coefficients for this subband. */
 | 
						|
            /* TODO: This can be done faster is several blocks share the
 | 
						|
             * same VLC selector (subband_vlc_index) */
 | 
						|
            readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
 | 
						|
 | 
						|
            /* Decode the scale factor for this subband. */
 | 
						|
            SF = SFTable[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
 | 
						|
 | 
						|
            /* Inverse quantize the coefficients. */
 | 
						|
            for (pIn=mantissas ; first<last; first++, pIn++)
 | 
						|
                pOut[first] = *pIn * SF;
 | 
						|
        } else {
 | 
						|
            /* This subband was not coded, so zero the entire subband. */
 | 
						|
            memset(pOut+first, 0, subbWidth*sizeof(float));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clear the subbands that were not coded. */
 | 
						|
    first = subbandTab[cnt];
 | 
						|
    memset(pOut+first, 0, (1024 - first) * sizeof(float));
 | 
						|
    return numSubbands;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Restore the quantized tonal components
 | 
						|
 *
 | 
						|
 * @param gb            the GetBit context
 | 
						|
 * @param pComponent    tone component
 | 
						|
 * @param numBands      amount of coded bands
 | 
						|
 */
 | 
						|
 | 
						|
static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
 | 
						|
{
 | 
						|
    int i,j,k,cnt;
 | 
						|
    int   components, coding_mode_selector, coding_mode, coded_values_per_component;
 | 
						|
    int   sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
 | 
						|
    int   band_flags[4], mantissa[8];
 | 
						|
    float  *pCoef;
 | 
						|
    float  scalefactor;
 | 
						|
    int   component_count = 0;
 | 
						|
 | 
						|
    components = get_bits(gb,5);
 | 
						|
 | 
						|
    /* no tonal components */
 | 
						|
    if (components == 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    coding_mode_selector = get_bits(gb,2);
 | 
						|
    if (coding_mode_selector == 2)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    coding_mode = coding_mode_selector & 1;
 | 
						|
 | 
						|
    for (i = 0; i < components; i++) {
 | 
						|
        for (cnt = 0; cnt <= numBands; cnt++)
 | 
						|
            band_flags[cnt] = get_bits1(gb);
 | 
						|
 | 
						|
        coded_values_per_component = get_bits(gb,3);
 | 
						|
 | 
						|
        quant_step_index = get_bits(gb,3);
 | 
						|
        if (quant_step_index <= 1)
 | 
						|
            return -1;
 | 
						|
 | 
						|
        if (coding_mode_selector == 3)
 | 
						|
            coding_mode = get_bits1(gb);
 | 
						|
 | 
						|
        for (j = 0; j < (numBands + 1) * 4; j++) {
 | 
						|
            if (band_flags[j >> 2] == 0)
 | 
						|
                continue;
 | 
						|
 | 
						|
            coded_components = get_bits(gb,3);
 | 
						|
 | 
						|
            for (k=0; k<coded_components; k++) {
 | 
						|
                sfIndx = get_bits(gb,6);
 | 
						|
                pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
 | 
						|
                max_coded_values = 1024 - pComponent[component_count].pos;
 | 
						|
                coded_values = coded_values_per_component + 1;
 | 
						|
                coded_values = FFMIN(max_coded_values,coded_values);
 | 
						|
 | 
						|
                scalefactor = SFTable[sfIndx] * iMaxQuant[quant_step_index];
 | 
						|
 | 
						|
                readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
 | 
						|
 | 
						|
                pComponent[component_count].numCoefs = coded_values;
 | 
						|
 | 
						|
                /* inverse quant */
 | 
						|
                pCoef = pComponent[component_count].coef;
 | 
						|
                for (cnt = 0; cnt < coded_values; cnt++)
 | 
						|
                    pCoef[cnt] = mantissa[cnt] * scalefactor;
 | 
						|
 | 
						|
                component_count++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return component_count;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Decode gain parameters for the coded bands
 | 
						|
 *
 | 
						|
 * @param gb            the GetBit context
 | 
						|
 * @param pGb           the gainblock for the current band
 | 
						|
 * @param numBands      amount of coded bands
 | 
						|
 */
 | 
						|
 | 
						|
static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
 | 
						|
{
 | 
						|
    int   i, cf, numData;
 | 
						|
    int   *pLevel, *pLoc;
 | 
						|
 | 
						|
    gain_info   *pGain = pGb->gBlock;
 | 
						|
 | 
						|
    for (i=0 ; i<=numBands; i++)
 | 
						|
    {
 | 
						|
        numData = get_bits(gb,3);
 | 
						|
        pGain[i].num_gain_data = numData;
 | 
						|
        pLevel = pGain[i].levcode;
 | 
						|
        pLoc = pGain[i].loccode;
 | 
						|
 | 
						|
        for (cf = 0; cf < numData; cf++){
 | 
						|
            pLevel[cf]= get_bits(gb,4);
 | 
						|
            pLoc  [cf]= get_bits(gb,5);
 | 
						|
            if(cf && pLoc[cf] <= pLoc[cf-1])
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clear the unused blocks. */
 | 
						|
    for (; i<4 ; i++)
 | 
						|
        pGain[i].num_gain_data = 0;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Apply gain parameters and perform the MDCT overlapping part
 | 
						|
 *
 | 
						|
 * @param pIn           input float buffer
 | 
						|
 * @param pPrev         previous float buffer to perform overlap against
 | 
						|
 * @param pOut          output float buffer
 | 
						|
 * @param pGain1        current band gain info
 | 
						|
 * @param pGain2        next band gain info
 | 
						|
 */
 | 
						|
 | 
						|
static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
 | 
						|
{
 | 
						|
    /* gain compensation function */
 | 
						|
    float  gain1, gain2, gain_inc;
 | 
						|
    int   cnt, numdata, nsample, startLoc, endLoc;
 | 
						|
 | 
						|
 | 
						|
    if (pGain2->num_gain_data == 0)
 | 
						|
        gain1 = 1.0;
 | 
						|
    else
 | 
						|
        gain1 = gain_tab1[pGain2->levcode[0]];
 | 
						|
 | 
						|
    if (pGain1->num_gain_data == 0) {
 | 
						|
        for (cnt = 0; cnt < 256; cnt++)
 | 
						|
            pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
 | 
						|
    } else {
 | 
						|
        numdata = pGain1->num_gain_data;
 | 
						|
        pGain1->loccode[numdata] = 32;
 | 
						|
        pGain1->levcode[numdata] = 4;
 | 
						|
 | 
						|
        nsample = 0; // current sample = 0
 | 
						|
 | 
						|
        for (cnt = 0; cnt < numdata; cnt++) {
 | 
						|
            startLoc = pGain1->loccode[cnt] * 8;
 | 
						|
            endLoc = startLoc + 8;
 | 
						|
 | 
						|
            gain2 = gain_tab1[pGain1->levcode[cnt]];
 | 
						|
            gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
 | 
						|
 | 
						|
            /* interpolate */
 | 
						|
            for (; nsample < startLoc; nsample++)
 | 
						|
                pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
 | 
						|
 | 
						|
            /* interpolation is done over eight samples */
 | 
						|
            for (; nsample < endLoc; nsample++) {
 | 
						|
                pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
 | 
						|
                gain2 *= gain_inc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        for (; nsample < 256; nsample++)
 | 
						|
            pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Delay for the overlapping part. */
 | 
						|
    memcpy(pPrev, &pIn[256], 256*sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Combine the tonal band spectrum and regular band spectrum
 | 
						|
 * Return position of the last tonal coefficient
 | 
						|
 *
 | 
						|
 * @param pSpectrum     output spectrum buffer
 | 
						|
 * @param numComponents amount of tonal components
 | 
						|
 * @param pComponent    tonal components for this band
 | 
						|
 */
 | 
						|
 | 
						|
static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
 | 
						|
{
 | 
						|
    int   cnt, i, lastPos = -1;
 | 
						|
    float   *pIn, *pOut;
 | 
						|
 | 
						|
    for (cnt = 0; cnt < numComponents; cnt++){
 | 
						|
        lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
 | 
						|
        pIn = pComponent[cnt].coef;
 | 
						|
        pOut = &(pSpectrum[pComponent[cnt].pos]);
 | 
						|
 | 
						|
        for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
 | 
						|
            pOut[i] += pIn[i];
 | 
						|
    }
 | 
						|
 | 
						|
    return lastPos;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
 | 
						|
 | 
						|
static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
 | 
						|
{
 | 
						|
    int    i, band, nsample, s1, s2;
 | 
						|
    float    c1, c2;
 | 
						|
    float    mc1_l, mc1_r, mc2_l, mc2_r;
 | 
						|
 | 
						|
    for (i=0,band = 0; band < 4*256; band+=256,i++) {
 | 
						|
        s1 = pPrevCode[i];
 | 
						|
        s2 = pCurrCode[i];
 | 
						|
        nsample = 0;
 | 
						|
 | 
						|
        if (s1 != s2) {
 | 
						|
            /* Selector value changed, interpolation needed. */
 | 
						|
            mc1_l = matrixCoeffs[s1*2];
 | 
						|
            mc1_r = matrixCoeffs[s1*2+1];
 | 
						|
            mc2_l = matrixCoeffs[s2*2];
 | 
						|
            mc2_r = matrixCoeffs[s2*2+1];
 | 
						|
 | 
						|
            /* Interpolation is done over the first eight samples. */
 | 
						|
            for(; nsample < 8; nsample++) {
 | 
						|
                c1 = su1[band+nsample];
 | 
						|
                c2 = su2[band+nsample];
 | 
						|
                c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
 | 
						|
                su1[band+nsample] = c2;
 | 
						|
                su2[band+nsample] = c1 * 2.0 - c2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Apply the matrix without interpolation. */
 | 
						|
        switch (s2) {
 | 
						|
            case 0:     /* M/S decoding */
 | 
						|
                for (; nsample < 256; nsample++) {
 | 
						|
                    c1 = su1[band+nsample];
 | 
						|
                    c2 = su2[band+nsample];
 | 
						|
                    su1[band+nsample] = c2 * 2.0;
 | 
						|
                    su2[band+nsample] = (c1 - c2) * 2.0;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
 | 
						|
            case 1:
 | 
						|
                for (; nsample < 256; nsample++) {
 | 
						|
                    c1 = su1[band+nsample];
 | 
						|
                    c2 = su2[band+nsample];
 | 
						|
                    su1[band+nsample] = (c1 + c2) * 2.0;
 | 
						|
                    su2[band+nsample] = c2 * -2.0;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
            case 3:
 | 
						|
                for (; nsample < 256; nsample++) {
 | 
						|
                    c1 = su1[band+nsample];
 | 
						|
                    c2 = su2[band+nsample];
 | 
						|
                    su1[band+nsample] = c1 + c2;
 | 
						|
                    su2[band+nsample] = c1 - c2;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                assert(0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void getChannelWeights (int indx, int flag, float ch[2]){
 | 
						|
 | 
						|
    if (indx == 7) {
 | 
						|
        ch[0] = 1.0;
 | 
						|
        ch[1] = 1.0;
 | 
						|
    } else {
 | 
						|
        ch[0] = (float)(indx & 7) / 7.0;
 | 
						|
        ch[1] = sqrt(2 - ch[0]*ch[0]);
 | 
						|
        if(flag)
 | 
						|
            FFSWAP(float, ch[0], ch[1]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void channelWeighting (float *su1, float *su2, int *p3)
 | 
						|
{
 | 
						|
    int   band, nsample;
 | 
						|
    /* w[x][y] y=0 is left y=1 is right */
 | 
						|
    float w[2][2];
 | 
						|
 | 
						|
    if (p3[1] != 7 || p3[3] != 7){
 | 
						|
        getChannelWeights(p3[1], p3[0], w[0]);
 | 
						|
        getChannelWeights(p3[3], p3[2], w[1]);
 | 
						|
 | 
						|
        for(band = 1; band < 4; band++) {
 | 
						|
            /* scale the channels by the weights */
 | 
						|
            for(nsample = 0; nsample < 8; nsample++) {
 | 
						|
                su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
 | 
						|
                su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
 | 
						|
            }
 | 
						|
 | 
						|
            for(; nsample < 256; nsample++) {
 | 
						|
                su1[band*256+nsample] *= w[1][0];
 | 
						|
                su2[band*256+nsample] *= w[1][1];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Decode a Sound Unit
 | 
						|
 *
 | 
						|
 * @param gb            the GetBit context
 | 
						|
 * @param pSnd          the channel unit to be used
 | 
						|
 * @param pOut          the decoded samples before IQMF in float representation
 | 
						|
 * @param channelNum    channel number
 | 
						|
 * @param codingMode    the coding mode (JOINT_STEREO or regular stereo/mono)
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
 | 
						|
{
 | 
						|
    int   band, result=0, numSubbands, lastTonal, numBands;
 | 
						|
 | 
						|
    if (codingMode == JOINT_STEREO && channelNum == 1) {
 | 
						|
        if (get_bits(gb,2) != 3) {
 | 
						|
            av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (get_bits(gb,6) != 0x28) {
 | 
						|
            av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* number of coded QMF bands */
 | 
						|
    pSnd->bandsCoded = get_bits(gb,2);
 | 
						|
 | 
						|
    result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
 | 
						|
    if (result) return result;
 | 
						|
 | 
						|
    pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
 | 
						|
    if (pSnd->numComponents == -1) return -1;
 | 
						|
 | 
						|
    numSubbands = decodeSpectrum (gb, pSnd->spectrum);
 | 
						|
 | 
						|
    /* Merge the decoded spectrum and tonal components. */
 | 
						|
    lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
 | 
						|
 | 
						|
 | 
						|
    /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
 | 
						|
    numBands = (subbandTab[numSubbands] - 1) >> 8;
 | 
						|
    if (lastTonal >= 0)
 | 
						|
        numBands = FFMAX((lastTonal + 256) >> 8, numBands);
 | 
						|
 | 
						|
 | 
						|
    /* Reconstruct time domain samples. */
 | 
						|
    for (band=0; band<4; band++) {
 | 
						|
        /* Perform the IMDCT step without overlapping. */
 | 
						|
        if (band <= numBands) {
 | 
						|
            IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1,q->mdct_tmp);
 | 
						|
        } else
 | 
						|
            memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
 | 
						|
 | 
						|
        /* gain compensation and overlapping */
 | 
						|
        gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
 | 
						|
                                    &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
 | 
						|
                                    &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Swap the gain control buffers for the next frame. */
 | 
						|
    pSnd->gcBlkSwitch ^= 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Frame handling
 | 
						|
 *
 | 
						|
 * @param q             Atrac3 private context
 | 
						|
 * @param databuf       the input data
 | 
						|
 */
 | 
						|
 | 
						|
static int decodeFrame(ATRAC3Context *q, uint8_t* databuf)
 | 
						|
{
 | 
						|
    int   result, i;
 | 
						|
    float   *p1, *p2, *p3, *p4;
 | 
						|
    uint8_t    *ptr1, *ptr2;
 | 
						|
 | 
						|
    if (q->codingMode == JOINT_STEREO) {
 | 
						|
 | 
						|
        /* channel coupling mode */
 | 
						|
        /* decode Sound Unit 1 */
 | 
						|
        init_get_bits(&q->gb,databuf,q->bits_per_frame);
 | 
						|
 | 
						|
        result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
 | 
						|
        if (result != 0)
 | 
						|
            return (result);
 | 
						|
 | 
						|
        /* Framedata of the su2 in the joint-stereo mode is encoded in
 | 
						|
         * reverse byte order so we need to swap it first. */
 | 
						|
        ptr1 = databuf;
 | 
						|
        ptr2 = databuf+q->bytes_per_frame-1;
 | 
						|
        for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
 | 
						|
            FFSWAP(uint8_t,*ptr1,*ptr2);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Skip the sync codes (0xF8). */
 | 
						|
        ptr1 = databuf;
 | 
						|
        for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
 | 
						|
            if (i >= q->bytes_per_frame)
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        /* set the bitstream reader at the start of the second Sound Unit*/
 | 
						|
        init_get_bits(&q->gb,ptr1,q->bits_per_frame);
 | 
						|
 | 
						|
        /* Fill the Weighting coeffs delay buffer */
 | 
						|
        memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
 | 
						|
        q->weighting_delay[4] = get_bits1(&q->gb);
 | 
						|
        q->weighting_delay[5] = get_bits(&q->gb,3);
 | 
						|
 | 
						|
        for (i = 0; i < 4; i++) {
 | 
						|
            q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
 | 
						|
            q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
 | 
						|
            q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Decode Sound Unit 2. */
 | 
						|
        result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
 | 
						|
        if (result != 0)
 | 
						|
            return (result);
 | 
						|
 | 
						|
        /* Reconstruct the channel coefficients. */
 | 
						|
        reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
 | 
						|
 | 
						|
        channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
 | 
						|
 | 
						|
    } else {
 | 
						|
        /* normal stereo mode or mono */
 | 
						|
        /* Decode the channel sound units. */
 | 
						|
        for (i=0 ; i<q->channels ; i++) {
 | 
						|
 | 
						|
            /* Set the bitstream reader at the start of a channel sound unit. */
 | 
						|
            init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
 | 
						|
 | 
						|
            result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
 | 
						|
            if (result != 0)
 | 
						|
                return (result);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Apply the iQMF synthesis filter. */
 | 
						|
    p1= q->outSamples;
 | 
						|
    for (i=0 ; i<q->channels ; i++) {
 | 
						|
        p2= p1+256;
 | 
						|
        p3= p2+256;
 | 
						|
        p4= p3+256;
 | 
						|
        iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
 | 
						|
        iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
 | 
						|
        iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
 | 
						|
        p1 +=1024;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Atrac frame decoding
 | 
						|
 *
 | 
						|
 * @param avctx     pointer to the AVCodecContext
 | 
						|
 */
 | 
						|
 | 
						|
static int atrac3_decode_frame(AVCodecContext *avctx,
 | 
						|
            void *data, int *data_size,
 | 
						|
            const uint8_t *buf, int buf_size) {
 | 
						|
    ATRAC3Context *q = avctx->priv_data;
 | 
						|
    int result = 0, i;
 | 
						|
    uint8_t* databuf;
 | 
						|
    int16_t* samples = data;
 | 
						|
 | 
						|
    if (buf_size < avctx->block_align)
 | 
						|
        return buf_size;
 | 
						|
 | 
						|
    /* Check if we need to descramble and what buffer to pass on. */
 | 
						|
    if (q->scrambled_stream) {
 | 
						|
        decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
 | 
						|
        databuf = q->decoded_bytes_buffer;
 | 
						|
    } else {
 | 
						|
        databuf = buf;
 | 
						|
    }
 | 
						|
 | 
						|
    result = decodeFrame(q, databuf);
 | 
						|
 | 
						|
    if (result != 0) {
 | 
						|
        av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (q->channels == 1) {
 | 
						|
        /* mono */
 | 
						|
        for (i = 0; i<1024; i++)
 | 
						|
            samples[i] = av_clip_int16(round(q->outSamples[i]));
 | 
						|
        *data_size = 1024 * sizeof(int16_t);
 | 
						|
    } else {
 | 
						|
        /* stereo */
 | 
						|
        for (i = 0; i < 1024; i++) {
 | 
						|
            samples[i*2] = av_clip_int16(round(q->outSamples[i]));
 | 
						|
            samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
 | 
						|
        }
 | 
						|
        *data_size = 2048 * sizeof(int16_t);
 | 
						|
    }
 | 
						|
 | 
						|
    return avctx->block_align;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Atrac3 initialization
 | 
						|
 *
 | 
						|
 * @param avctx     pointer to the AVCodecContext
 | 
						|
 */
 | 
						|
 | 
						|
static int atrac3_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    const uint8_t *edata_ptr = avctx->extradata;
 | 
						|
    ATRAC3Context *q = avctx->priv_data;
 | 
						|
 | 
						|
    /* Take data from the AVCodecContext (RM container). */
 | 
						|
    q->sample_rate = avctx->sample_rate;
 | 
						|
    q->channels = avctx->channels;
 | 
						|
    q->bit_rate = avctx->bit_rate;
 | 
						|
    q->bits_per_frame = avctx->block_align * 8;
 | 
						|
    q->bytes_per_frame = avctx->block_align;
 | 
						|
 | 
						|
    /* Take care of the codec-specific extradata. */
 | 
						|
    if (avctx->extradata_size == 14) {
 | 
						|
        /* Parse the extradata, WAV format */
 | 
						|
        av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown value always 1
 | 
						|
        q->samples_per_channel = bytestream_get_le32(&edata_ptr);
 | 
						|
        q->codingMode = bytestream_get_le16(&edata_ptr);
 | 
						|
        av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr));  //Dupe of coding mode
 | 
						|
        q->frame_factor = bytestream_get_le16(&edata_ptr);  //Unknown always 1
 | 
						|
        av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr));  //Unknown always 0
 | 
						|
 | 
						|
        /* setup */
 | 
						|
        q->samples_per_frame = 1024 * q->channels;
 | 
						|
        q->atrac3version = 4;
 | 
						|
        q->delay = 0x88E;
 | 
						|
        if (q->codingMode)
 | 
						|
            q->codingMode = JOINT_STEREO;
 | 
						|
        else
 | 
						|
            q->codingMode = STEREO;
 | 
						|
 | 
						|
        q->scrambled_stream = 0;
 | 
						|
 | 
						|
        if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
 | 
						|
        } else {
 | 
						|
            av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
    } else if (avctx->extradata_size == 10) {
 | 
						|
        /* Parse the extradata, RM format. */
 | 
						|
        q->atrac3version = bytestream_get_be32(&edata_ptr);
 | 
						|
        q->samples_per_frame = bytestream_get_be16(&edata_ptr);
 | 
						|
        q->delay = bytestream_get_be16(&edata_ptr);
 | 
						|
        q->codingMode = bytestream_get_be16(&edata_ptr);
 | 
						|
 | 
						|
        q->samples_per_channel = q->samples_per_frame / q->channels;
 | 
						|
        q->scrambled_stream = 1;
 | 
						|
 | 
						|
    } else {
 | 
						|
        av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
 | 
						|
    }
 | 
						|
    /* Check the extradata. */
 | 
						|
 | 
						|
    if (q->atrac3version != 4) {
 | 
						|
        av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
 | 
						|
        av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (q->delay != 0x88E) {
 | 
						|
        av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (q->codingMode == STEREO) {
 | 
						|
        av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
 | 
						|
    } else if (q->codingMode == JOINT_STEREO) {
 | 
						|
        av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
 | 
						|
    } else {
 | 
						|
        av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
 | 
						|
        av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if(avctx->block_align >= UINT_MAX/2)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
 | 
						|
     * this is for the bitstream reader. */
 | 
						|
    if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)))  == NULL)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
 | 
						|
    /* Initialize the VLC tables. */
 | 
						|
    for (i=0 ; i<7 ; i++) {
 | 
						|
        init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
 | 
						|
            huff_bits[i], 1, 1,
 | 
						|
            huff_codes[i], 1, 1, INIT_VLC_USE_STATIC);
 | 
						|
    }
 | 
						|
 | 
						|
    init_atrac3_transforms(q);
 | 
						|
 | 
						|
    /* Generate the scale factors. */
 | 
						|
    for (i=0 ; i<64 ; i++)
 | 
						|
        SFTable[i] = pow(2.0, (i - 15) / 3.0);
 | 
						|
 | 
						|
    /* Generate gain tables. */
 | 
						|
    for (i=0 ; i<16 ; i++)
 | 
						|
        gain_tab1[i] = powf (2.0, (4 - i));
 | 
						|
 | 
						|
    for (i=-15 ; i<16 ; i++)
 | 
						|
        gain_tab2[i+15] = powf (2.0, i * -0.125);
 | 
						|
 | 
						|
    /* init the joint-stereo decoding data */
 | 
						|
    q->weighting_delay[0] = 0;
 | 
						|
    q->weighting_delay[1] = 7;
 | 
						|
    q->weighting_delay[2] = 0;
 | 
						|
    q->weighting_delay[3] = 7;
 | 
						|
    q->weighting_delay[4] = 0;
 | 
						|
    q->weighting_delay[5] = 7;
 | 
						|
 | 
						|
    for (i=0; i<4; i++) {
 | 
						|
        q->matrix_coeff_index_prev[i] = 3;
 | 
						|
        q->matrix_coeff_index_now[i] = 3;
 | 
						|
        q->matrix_coeff_index_next[i] = 3;
 | 
						|
    }
 | 
						|
 | 
						|
    dsputil_init(&dsp, avctx);
 | 
						|
 | 
						|
    q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
 | 
						|
    if (!q->pUnits) {
 | 
						|
        av_free(q->decoded_bytes_buffer);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
AVCodec atrac3_decoder =
 | 
						|
{
 | 
						|
    .name = "atrac3",
 | 
						|
    .type = CODEC_TYPE_AUDIO,
 | 
						|
    .id = CODEC_ID_ATRAC3,
 | 
						|
    .priv_data_size = sizeof(ATRAC3Context),
 | 
						|
    .init = atrac3_decode_init,
 | 
						|
    .close = atrac3_decode_close,
 | 
						|
    .decode = atrac3_decode_frame,
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),
 | 
						|
};
 |