generation. Hard code Bessel I0 approximation iterations to 50. See thread for discussion: [FFmpeg-devel] [PATCH] Move Kaiser-Bessel Derived window to mdct.c Started on the 2008/01/10 Originally committed as revision 11520 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			1174 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1174 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AC-3 Audio Decoder
 | |
|  * This code is developed as part of Google Summer of Code 2006 Program.
 | |
|  *
 | |
|  * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
 | |
|  * Copyright (c) 2007 Justin Ruggles
 | |
|  *
 | |
|  * Portions of this code are derived from liba52
 | |
|  * http://liba52.sourceforge.net
 | |
|  * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
 | |
|  * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stddef.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "ac3_parser.h"
 | |
| #include "bitstream.h"
 | |
| #include "crc.h"
 | |
| #include "dsputil.h"
 | |
| #include "random.h"
 | |
| 
 | |
| /**
 | |
|  * Table of bin locations for rematrixing bands
 | |
|  * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
 | |
|  */
 | |
| static const uint8_t rematrix_band_tab[5] = { 13, 25, 37, 61, 253 };
 | |
| 
 | |
| /**
 | |
|  * table for exponent to scale_factor mapping
 | |
|  * scale_factors[i] = 2 ^ -i
 | |
|  */
 | |
| static float scale_factors[25];
 | |
| 
 | |
| /** table for grouping exponents */
 | |
| static uint8_t exp_ungroup_tab[128][3];
 | |
| 
 | |
| 
 | |
| /** tables for ungrouping mantissas */
 | |
| static float b1_mantissas[32][3];
 | |
| static float b2_mantissas[128][3];
 | |
| static float b3_mantissas[8];
 | |
| static float b4_mantissas[128][2];
 | |
| static float b5_mantissas[16];
 | |
| 
 | |
| /**
 | |
|  * Quantization table: levels for symmetric. bits for asymmetric.
 | |
|  * reference: Table 7.18 Mapping of bap to Quantizer
 | |
|  */
 | |
| static const uint8_t quantization_tab[16] = {
 | |
|     0, 3, 5, 7, 11, 15,
 | |
|     5, 6, 7, 8, 9, 10, 11, 12, 14, 16
 | |
| };
 | |
| 
 | |
| /** dynamic range table. converts codes to scale factors. */
 | |
| static float dynamic_range_tab[256];
 | |
| 
 | |
| /** Adjustments in dB gain */
 | |
| #define LEVEL_MINUS_3DB         0.7071067811865476
 | |
| #define LEVEL_MINUS_4POINT5DB   0.5946035575013605
 | |
| #define LEVEL_MINUS_6DB         0.5000000000000000
 | |
| #define LEVEL_MINUS_9DB         0.3535533905932738
 | |
| #define LEVEL_ZERO              0.0000000000000000
 | |
| #define LEVEL_ONE               1.0000000000000000
 | |
| 
 | |
| static const float gain_levels[6] = {
 | |
|     LEVEL_ZERO,
 | |
|     LEVEL_ONE,
 | |
|     LEVEL_MINUS_3DB,
 | |
|     LEVEL_MINUS_4POINT5DB,
 | |
|     LEVEL_MINUS_6DB,
 | |
|     LEVEL_MINUS_9DB
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Table for center mix levels
 | |
|  * reference: Section 5.4.2.4 cmixlev
 | |
|  */
 | |
| static const uint8_t center_levels[4] = { 2, 3, 4, 3 };
 | |
| 
 | |
| /**
 | |
|  * Table for surround mix levels
 | |
|  * reference: Section 5.4.2.5 surmixlev
 | |
|  */
 | |
| static const uint8_t surround_levels[4] = { 2, 4, 0, 4 };
 | |
| 
 | |
| /**
 | |
|  * Table for default stereo downmixing coefficients
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static const uint8_t ac3_default_coeffs[8][5][2] = {
 | |
|     { { 1, 0 }, { 0, 1 },                               },
 | |
|     { { 2, 2 },                                         },
 | |
|     { { 1, 0 }, { 0, 1 },                               },
 | |
|     { { 1, 0 }, { 3, 3 }, { 0, 1 },                     },
 | |
|     { { 1, 0 }, { 0, 1 }, { 4, 4 },                     },
 | |
|     { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 },           },
 | |
|     { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 },           },
 | |
|     { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
 | |
| };
 | |
| 
 | |
| /* override ac3.h to include coupling channel */
 | |
| #undef AC3_MAX_CHANNELS
 | |
| #define AC3_MAX_CHANNELS 7
 | |
| #define CPL_CH 0
 | |
| 
 | |
| #define AC3_OUTPUT_LFEON  8
 | |
| 
 | |
| typedef struct {
 | |
|     int channel_mode;                       ///< channel mode (acmod)
 | |
|     int block_switch[AC3_MAX_CHANNELS];     ///< block switch flags
 | |
|     int dither_flag[AC3_MAX_CHANNELS];      ///< dither flags
 | |
|     int dither_all;                         ///< true if all channels are dithered
 | |
|     int cpl_in_use;                         ///< coupling in use
 | |
|     int channel_in_cpl[AC3_MAX_CHANNELS];   ///< channel in coupling
 | |
|     int phase_flags_in_use;                 ///< phase flags in use
 | |
|     int phase_flags[18];                    ///< phase flags
 | |
|     int cpl_band_struct[18];                ///< coupling band structure
 | |
|     int num_rematrixing_bands;              ///< number of rematrixing bands
 | |
|     int rematrixing_flags[4];               ///< rematrixing flags
 | |
|     int exp_strategy[AC3_MAX_CHANNELS];     ///< exponent strategies
 | |
|     int snr_offset[AC3_MAX_CHANNELS];       ///< signal-to-noise ratio offsets
 | |
|     int fast_gain[AC3_MAX_CHANNELS];        ///< fast gain values (signal-to-mask ratio)
 | |
|     int dba_mode[AC3_MAX_CHANNELS];         ///< delta bit allocation mode
 | |
|     int dba_nsegs[AC3_MAX_CHANNELS];        ///< number of delta segments
 | |
|     uint8_t dba_offsets[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
 | |
|     uint8_t dba_lengths[AC3_MAX_CHANNELS][8]; ///< delta segment lengths
 | |
|     uint8_t dba_values[AC3_MAX_CHANNELS][8];  ///< delta values for each segment
 | |
| 
 | |
|     int sample_rate;                        ///< sample frequency, in Hz
 | |
|     int bit_rate;                           ///< stream bit rate, in bits-per-second
 | |
|     int frame_size;                         ///< current frame size, in bytes
 | |
| 
 | |
|     int channels;                           ///< number of total channels
 | |
|     int fbw_channels;                       ///< number of full-bandwidth channels
 | |
|     int lfe_on;                             ///< lfe channel in use
 | |
|     int lfe_ch;                             ///< index of LFE channel
 | |
|     int output_mode;                        ///< output channel configuration
 | |
|     int out_channels;                       ///< number of output channels
 | |
| 
 | |
|     int center_mix_level;                   ///< Center mix level index
 | |
|     int surround_mix_level;                 ///< Surround mix level index
 | |
|     float downmix_coeffs[AC3_MAX_CHANNELS][2];  ///< stereo downmix coefficients
 | |
|     float dynamic_range[2];                 ///< dynamic range
 | |
|     float cpl_coords[AC3_MAX_CHANNELS][18]; ///< coupling coordinates
 | |
|     int   num_cpl_bands;                    ///< number of coupling bands
 | |
|     int   num_cpl_subbands;                 ///< number of coupling sub bands
 | |
|     int   start_freq[AC3_MAX_CHANNELS];     ///< start frequency bin
 | |
|     int   end_freq[AC3_MAX_CHANNELS];       ///< end frequency bin
 | |
|     AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
 | |
| 
 | |
|     int8_t  dexps[AC3_MAX_CHANNELS][256];   ///< decoded exponents
 | |
|     uint8_t bap[AC3_MAX_CHANNELS][256];     ///< bit allocation pointers
 | |
|     int16_t psd[AC3_MAX_CHANNELS][256];     ///< scaled exponents
 | |
|     int16_t band_psd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
 | |
|     int16_t mask[AC3_MAX_CHANNELS][50];     ///< masking curve values
 | |
| 
 | |
|     DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  ///< transform coefficients
 | |
| 
 | |
|     /* For IMDCT. */
 | |
|     MDCTContext imdct_512;                  ///< for 512 sample IMDCT
 | |
|     MDCTContext imdct_256;                  ///< for 256 sample IMDCT
 | |
|     DSPContext  dsp;                        ///< for optimization
 | |
|     float       add_bias;                   ///< offset for float_to_int16 conversion
 | |
|     float       mul_bias;                   ///< scaling for float_to_int16 conversion
 | |
| 
 | |
|     DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]);     ///< output after imdct transform and windowing
 | |
|     DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
 | |
|     DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]);      ///< delay - added to the next block
 | |
|     DECLARE_ALIGNED_16(float, tmp_imdct[256]);                      ///< temporary storage for imdct transform
 | |
|     DECLARE_ALIGNED_16(float, tmp_output[512]);                     ///< temporary storage for output before windowing
 | |
|     DECLARE_ALIGNED_16(float, window[256]);                         ///< window coefficients
 | |
| 
 | |
|     /* Miscellaneous. */
 | |
|     GetBitContext gbc;                      ///< bitstream reader
 | |
|     AVRandomState dith_state;               ///< for dither generation
 | |
|     AVCodecContext *avctx;                  ///< parent context
 | |
| } AC3DecodeContext;
 | |
| 
 | |
| /**
 | |
|  * Symmetrical Dequantization
 | |
|  * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 | |
|  *            Tables 7.19 to 7.23
 | |
|  */
 | |
| static inline float
 | |
| symmetric_dequant(int code, int levels)
 | |
| {
 | |
|     return (code - (levels >> 1)) * (2.0f / levels);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize tables at runtime.
 | |
|  */
 | |
| static void ac3_tables_init(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /* generate grouped mantissa tables
 | |
|        reference: Section 7.3.5 Ungrouping of Mantissas */
 | |
|     for(i=0; i<32; i++) {
 | |
|         /* bap=1 mantissas */
 | |
|         b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);
 | |
|         b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
 | |
|         b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
 | |
|     }
 | |
|     for(i=0; i<128; i++) {
 | |
|         /* bap=2 mantissas */
 | |
|         b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);
 | |
|         b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
 | |
|         b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
 | |
| 
 | |
|         /* bap=4 mantissas */
 | |
|         b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
 | |
|         b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
 | |
|     }
 | |
|     /* generate ungrouped mantissa tables
 | |
|        reference: Tables 7.21 and 7.23 */
 | |
|     for(i=0; i<7; i++) {
 | |
|         /* bap=3 mantissas */
 | |
|         b3_mantissas[i] = symmetric_dequant(i, 7);
 | |
|     }
 | |
|     for(i=0; i<15; i++) {
 | |
|         /* bap=5 mantissas */
 | |
|         b5_mantissas[i] = symmetric_dequant(i, 15);
 | |
|     }
 | |
| 
 | |
|     /* generate dynamic range table
 | |
|        reference: Section 7.7.1 Dynamic Range Control */
 | |
|     for(i=0; i<256; i++) {
 | |
|         int v = (i >> 5) - ((i >> 7) << 3) - 5;
 | |
|         dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
 | |
|     }
 | |
| 
 | |
|     /* generate scale factors for exponents and asymmetrical dequantization
 | |
|        reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
 | |
|     for (i = 0; i < 25; i++)
 | |
|         scale_factors[i] = pow(2.0, -i);
 | |
| 
 | |
|     /* generate exponent tables
 | |
|        reference: Section 7.1.3 Exponent Decoding */
 | |
|     for(i=0; i<128; i++) {
 | |
|         exp_ungroup_tab[i][0] =  i / 25;
 | |
|         exp_ungroup_tab[i][1] = (i % 25) / 5;
 | |
|         exp_ungroup_tab[i][2] = (i % 25) % 5;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * AVCodec initialization
 | |
|  */
 | |
| static int ac3_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     s->avctx = avctx;
 | |
| 
 | |
|     ac3_common_init();
 | |
|     ac3_tables_init();
 | |
|     ff_mdct_init(&s->imdct_256, 8, 1);
 | |
|     ff_mdct_init(&s->imdct_512, 9, 1);
 | |
|     ff_kbd_window_init(s->window, 5.0, 256);
 | |
|     dsputil_init(&s->dsp, avctx);
 | |
|     av_init_random(0, &s->dith_state);
 | |
| 
 | |
|     /* set bias values for float to int16 conversion */
 | |
|     if(s->dsp.float_to_int16 == ff_float_to_int16_c) {
 | |
|         s->add_bias = 385.0f;
 | |
|         s->mul_bias = 1.0f;
 | |
|     } else {
 | |
|         s->add_bias = 0.0f;
 | |
|         s->mul_bias = 32767.0f;
 | |
|     }
 | |
| 
 | |
|     /* allow downmixing to stereo or mono */
 | |
|     if (avctx->channels > 0 && avctx->request_channels > 0 &&
 | |
|             avctx->request_channels < avctx->channels &&
 | |
|             avctx->request_channels <= 2) {
 | |
|         avctx->channels = avctx->request_channels;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 | |
|  * GetBitContext within AC3DecodeContext must point to
 | |
|  * start of the synchronized ac3 bitstream.
 | |
|  */
 | |
| static int ac3_parse_header(AC3DecodeContext *s)
 | |
| {
 | |
|     AC3HeaderInfo hdr;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int err, i;
 | |
| 
 | |
|     err = ff_ac3_parse_header(gbc->buffer, &hdr);
 | |
|     if(err)
 | |
|         return err;
 | |
| 
 | |
|     if(hdr.bitstream_id > 10)
 | |
|         return AC3_PARSE_ERROR_BSID;
 | |
| 
 | |
|     /* get decoding parameters from header info */
 | |
|     s->bit_alloc_params.sr_code     = hdr.sr_code;
 | |
|     s->channel_mode                 = hdr.channel_mode;
 | |
|     s->lfe_on                       = hdr.lfe_on;
 | |
|     s->bit_alloc_params.sr_shift    = hdr.sr_shift;
 | |
|     s->sample_rate                  = hdr.sample_rate;
 | |
|     s->bit_rate                     = hdr.bit_rate;
 | |
|     s->channels                     = hdr.channels;
 | |
|     s->fbw_channels                 = s->channels - s->lfe_on;
 | |
|     s->lfe_ch                       = s->fbw_channels + 1;
 | |
|     s->frame_size                   = hdr.frame_size;
 | |
| 
 | |
|     /* set default output to all source channels */
 | |
|     s->out_channels = s->channels;
 | |
|     s->output_mode = s->channel_mode;
 | |
|     if(s->lfe_on)
 | |
|         s->output_mode |= AC3_OUTPUT_LFEON;
 | |
| 
 | |
|     /* set default mix levels */
 | |
|     s->center_mix_level   = 3;  // -4.5dB
 | |
|     s->surround_mix_level = 4;  // -6.0dB
 | |
| 
 | |
|     /* skip over portion of header which has already been read */
 | |
|     skip_bits(gbc, 16); // skip the sync_word
 | |
|     skip_bits(gbc, 16); // skip crc1
 | |
|     skip_bits(gbc, 8);  // skip fscod and frmsizecod
 | |
|     skip_bits(gbc, 11); // skip bsid, bsmod, and acmod
 | |
|     if(s->channel_mode == AC3_CHMODE_STEREO) {
 | |
|         skip_bits(gbc, 2); // skip dsurmod
 | |
|     } else {
 | |
|         if((s->channel_mode & 1) && s->channel_mode != AC3_CHMODE_MONO)
 | |
|             s->center_mix_level = center_levels[get_bits(gbc, 2)];
 | |
|         if(s->channel_mode & 4)
 | |
|             s->surround_mix_level = surround_levels[get_bits(gbc, 2)];
 | |
|     }
 | |
|     skip_bits1(gbc); // skip lfeon
 | |
| 
 | |
|     /* read the rest of the bsi. read twice for dual mono mode. */
 | |
|     i = !(s->channel_mode);
 | |
|     do {
 | |
|         skip_bits(gbc, 5); // skip dialog normalization
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip compression
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 8); //skip language code
 | |
|         if (get_bits1(gbc))
 | |
|             skip_bits(gbc, 7); //skip audio production information
 | |
|     } while (i--);
 | |
| 
 | |
|     skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
 | |
| 
 | |
|     /* skip the timecodes (or extra bitstream information for Alternate Syntax)
 | |
|        TODO: read & use the xbsi1 downmix levels */
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode1 / xbsi1
 | |
|     if (get_bits1(gbc))
 | |
|         skip_bits(gbc, 14); //skip timecode2 / xbsi2
 | |
| 
 | |
|     /* skip additional bitstream info */
 | |
|     if (get_bits1(gbc)) {
 | |
|         i = get_bits(gbc, 6);
 | |
|         do {
 | |
|             skip_bits(gbc, 8);
 | |
|         } while(i--);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set stereo downmixing coefficients based on frame header info.
 | |
|  * reference: Section 7.8.2 Downmixing Into Two Channels
 | |
|  */
 | |
| static void set_downmix_coeffs(AC3DecodeContext *s)
 | |
| {
 | |
|     int i;
 | |
|     float cmix = gain_levels[s->center_mix_level];
 | |
|     float smix = gain_levels[s->surround_mix_level];
 | |
| 
 | |
|     for(i=0; i<s->fbw_channels; i++) {
 | |
|         s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
 | |
|         s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
 | |
|     }
 | |
|     if(s->channel_mode > 1 && s->channel_mode & 1) {
 | |
|         s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
 | |
|     }
 | |
|     if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
 | |
|         int nf = s->channel_mode - 2;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
 | |
|     }
 | |
|     if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
 | |
|         int nf = s->channel_mode - 4;
 | |
|         s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode the grouped exponents according to exponent strategy.
 | |
|  * reference: Section 7.1.3 Exponent Decoding
 | |
|  */
 | |
| static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
 | |
|                              uint8_t absexp, int8_t *dexps)
 | |
| {
 | |
|     int i, j, grp, group_size;
 | |
|     int dexp[256];
 | |
|     int expacc, prevexp;
 | |
| 
 | |
|     /* unpack groups */
 | |
|     group_size = exp_strategy + (exp_strategy == EXP_D45);
 | |
|     for(grp=0,i=0; grp<ngrps; grp++) {
 | |
|         expacc = get_bits(gbc, 7);
 | |
|         dexp[i++] = exp_ungroup_tab[expacc][0];
 | |
|         dexp[i++] = exp_ungroup_tab[expacc][1];
 | |
|         dexp[i++] = exp_ungroup_tab[expacc][2];
 | |
|     }
 | |
| 
 | |
|     /* convert to absolute exps and expand groups */
 | |
|     prevexp = absexp;
 | |
|     for(i=0; i<ngrps*3; i++) {
 | |
|         prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
 | |
|         for(j=0; j<group_size; j++) {
 | |
|             dexps[(i*group_size)+j] = prevexp;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate transform coefficients for each coupled channel in the coupling
 | |
|  * range using the coupling coefficients and coupling coordinates.
 | |
|  * reference: Section 7.4.3 Coupling Coordinate Format
 | |
|  */
 | |
| static void uncouple_channels(AC3DecodeContext *s)
 | |
| {
 | |
|     int i, j, ch, bnd, subbnd;
 | |
| 
 | |
|     subbnd = -1;
 | |
|     i = s->start_freq[CPL_CH];
 | |
|     for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
 | |
|         do {
 | |
|             subbnd++;
 | |
|             for(j=0; j<12; j++) {
 | |
|                 for(ch=1; ch<=s->fbw_channels; ch++) {
 | |
|                     if(s->channel_in_cpl[ch]) {
 | |
|                         s->transform_coeffs[ch][i] = s->transform_coeffs[CPL_CH][i] * s->cpl_coords[ch][bnd] * 8.0f;
 | |
|                         if (ch == 2 && s->phase_flags[bnd])
 | |
|                             s->transform_coeffs[ch][i] = -s->transform_coeffs[ch][i];
 | |
|                     }
 | |
|                 }
 | |
|                 i++;
 | |
|             }
 | |
|         } while(s->cpl_band_struct[subbnd]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Grouped mantissas for 3-level 5-level and 11-level quantization
 | |
|  */
 | |
| typedef struct {
 | |
|     float b1_mant[3];
 | |
|     float b2_mant[3];
 | |
|     float b4_mant[2];
 | |
|     int b1ptr;
 | |
|     int b2ptr;
 | |
|     int b4ptr;
 | |
| } mant_groups;
 | |
| 
 | |
| /**
 | |
|  * Get the transform coefficients for a particular channel
 | |
|  * reference: Section 7.3 Quantization and Decoding of Mantissas
 | |
|  */
 | |
| static int get_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
 | |
| {
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int i, gcode, tbap, start, end;
 | |
|     uint8_t *exps;
 | |
|     uint8_t *bap;
 | |
|     float *coeffs;
 | |
| 
 | |
|     exps = s->dexps[ch_index];
 | |
|     bap = s->bap[ch_index];
 | |
|     coeffs = s->transform_coeffs[ch_index];
 | |
|     start = s->start_freq[ch_index];
 | |
|     end = s->end_freq[ch_index];
 | |
| 
 | |
|     for (i = start; i < end; i++) {
 | |
|         tbap = bap[i];
 | |
|         switch (tbap) {
 | |
|             case 0:
 | |
|                 coeffs[i] = ((av_random(&s->dith_state) & 0xFFFF) / 65535.0f) - 0.5f;
 | |
|                 break;
 | |
| 
 | |
|             case 1:
 | |
|                 if(m->b1ptr > 2) {
 | |
|                     gcode = get_bits(gbc, 5);
 | |
|                     m->b1_mant[0] = b1_mantissas[gcode][0];
 | |
|                     m->b1_mant[1] = b1_mantissas[gcode][1];
 | |
|                     m->b1_mant[2] = b1_mantissas[gcode][2];
 | |
|                     m->b1ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b1_mant[m->b1ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 2:
 | |
|                 if(m->b2ptr > 2) {
 | |
|                     gcode = get_bits(gbc, 7);
 | |
|                     m->b2_mant[0] = b2_mantissas[gcode][0];
 | |
|                     m->b2_mant[1] = b2_mantissas[gcode][1];
 | |
|                     m->b2_mant[2] = b2_mantissas[gcode][2];
 | |
|                     m->b2ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b2_mant[m->b2ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 3:
 | |
|                 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
 | |
|                 break;
 | |
| 
 | |
|             case 4:
 | |
|                 if(m->b4ptr > 1) {
 | |
|                     gcode = get_bits(gbc, 7);
 | |
|                     m->b4_mant[0] = b4_mantissas[gcode][0];
 | |
|                     m->b4_mant[1] = b4_mantissas[gcode][1];
 | |
|                     m->b4ptr = 0;
 | |
|                 }
 | |
|                 coeffs[i] = m->b4_mant[m->b4ptr++];
 | |
|                 break;
 | |
| 
 | |
|             case 5:
 | |
|                 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
 | |
|                 break;
 | |
| 
 | |
|             default:
 | |
|                 /* asymmetric dequantization */
 | |
|                 coeffs[i] = get_sbits(gbc, quantization_tab[tbap]) * scale_factors[quantization_tab[tbap]-1];
 | |
|                 break;
 | |
|         }
 | |
|         coeffs[i] *= scale_factors[exps[i]];
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Remove random dithering from coefficients with zero-bit mantissas
 | |
|  * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 | |
|  */
 | |
| static void remove_dithering(AC3DecodeContext *s) {
 | |
|     int ch, i;
 | |
|     int end=0;
 | |
|     float *coeffs;
 | |
|     uint8_t *bap;
 | |
| 
 | |
|     for(ch=1; ch<=s->fbw_channels; ch++) {
 | |
|         if(!s->dither_flag[ch]) {
 | |
|             coeffs = s->transform_coeffs[ch];
 | |
|             bap = s->bap[ch];
 | |
|             if(s->channel_in_cpl[ch])
 | |
|                 end = s->start_freq[CPL_CH];
 | |
|             else
 | |
|                 end = s->end_freq[ch];
 | |
|             for(i=0; i<end; i++) {
 | |
|                 if(!bap[i])
 | |
|                     coeffs[i] = 0.0f;
 | |
|             }
 | |
|             if(s->channel_in_cpl[ch]) {
 | |
|                 bap = s->bap[CPL_CH];
 | |
|                 for(; i<s->end_freq[CPL_CH]; i++) {
 | |
|                     if(!bap[i])
 | |
|                         coeffs[i] = 0.0f;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the transform coefficients.
 | |
|  */
 | |
| static int get_transform_coeffs(AC3DecodeContext *s)
 | |
| {
 | |
|     int ch, end;
 | |
|     int got_cplchan = 0;
 | |
|     mant_groups m;
 | |
| 
 | |
|     m.b1ptr = m.b2ptr = m.b4ptr = 3;
 | |
| 
 | |
|     for (ch = 1; ch <= s->channels; ch++) {
 | |
|         /* transform coefficients for full-bandwidth channel */
 | |
|         if (get_transform_coeffs_ch(s, ch, &m))
 | |
|             return -1;
 | |
|         /* tranform coefficients for coupling channel come right after the
 | |
|            coefficients for the first coupled channel*/
 | |
|         if (s->channel_in_cpl[ch])  {
 | |
|             if (!got_cplchan) {
 | |
|                 if (get_transform_coeffs_ch(s, CPL_CH, &m)) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
 | |
|                     return -1;
 | |
|                 }
 | |
|                 uncouple_channels(s);
 | |
|                 got_cplchan = 1;
 | |
|             }
 | |
|             end = s->end_freq[CPL_CH];
 | |
|         } else {
 | |
|             end = s->end_freq[ch];
 | |
|         }
 | |
|         do
 | |
|             s->transform_coeffs[ch][end] = 0;
 | |
|         while(++end < 256);
 | |
|     }
 | |
| 
 | |
|     /* if any channel doesn't use dithering, zero appropriate coefficients */
 | |
|     if(!s->dither_all)
 | |
|         remove_dithering(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Stereo rematrixing.
 | |
|  * reference: Section 7.5.4 Rematrixing : Decoding Technique
 | |
|  */
 | |
| static void do_rematrixing(AC3DecodeContext *s)
 | |
| {
 | |
|     int bnd, i;
 | |
|     int end, bndend;
 | |
|     float tmp0, tmp1;
 | |
| 
 | |
|     end = FFMIN(s->end_freq[1], s->end_freq[2]);
 | |
| 
 | |
|     for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
 | |
|         if(s->rematrixing_flags[bnd]) {
 | |
|             bndend = FFMIN(end, rematrix_band_tab[bnd+1]);
 | |
|             for(i=rematrix_band_tab[bnd]; i<bndend; i++) {
 | |
|                 tmp0 = s->transform_coeffs[1][i];
 | |
|                 tmp1 = s->transform_coeffs[2][i];
 | |
|                 s->transform_coeffs[1][i] = tmp0 + tmp1;
 | |
|                 s->transform_coeffs[2][i] = tmp0 - tmp1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform the 256-point IMDCT
 | |
|  */
 | |
| static void do_imdct_256(AC3DecodeContext *s, int chindex)
 | |
| {
 | |
|     int i, k;
 | |
|     DECLARE_ALIGNED_16(float, x[128]);
 | |
|     FFTComplex z[2][64];
 | |
|     float *o_ptr = s->tmp_output;
 | |
| 
 | |
|     for(i=0; i<2; i++) {
 | |
|         /* de-interleave coefficients */
 | |
|         for(k=0; k<128; k++) {
 | |
|             x[k] = s->transform_coeffs[chindex][2*k+i];
 | |
|         }
 | |
| 
 | |
|         /* run standard IMDCT */
 | |
|         s->imdct_256.fft.imdct_calc(&s->imdct_256, o_ptr, x, s->tmp_imdct);
 | |
| 
 | |
|         /* reverse the post-rotation & reordering from standard IMDCT */
 | |
|         for(k=0; k<32; k++) {
 | |
|             z[i][32+k].re = -o_ptr[128+2*k];
 | |
|             z[i][32+k].im = -o_ptr[2*k];
 | |
|             z[i][31-k].re =  o_ptr[2*k+1];
 | |
|             z[i][31-k].im =  o_ptr[128+2*k+1];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* apply AC-3 post-rotation & reordering */
 | |
|     for(k=0; k<64; k++) {
 | |
|         o_ptr[    2*k  ] = -z[0][   k].im;
 | |
|         o_ptr[    2*k+1] =  z[0][63-k].re;
 | |
|         o_ptr[128+2*k  ] = -z[0][   k].re;
 | |
|         o_ptr[128+2*k+1] =  z[0][63-k].im;
 | |
|         o_ptr[256+2*k  ] = -z[1][   k].re;
 | |
|         o_ptr[256+2*k+1] =  z[1][63-k].im;
 | |
|         o_ptr[384+2*k  ] =  z[1][   k].im;
 | |
|         o_ptr[384+2*k+1] = -z[1][63-k].re;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inverse MDCT Transform.
 | |
|  * Convert frequency domain coefficients to time-domain audio samples.
 | |
|  * reference: Section 7.9.4 Transformation Equations
 | |
|  */
 | |
| static inline void do_imdct(AC3DecodeContext *s)
 | |
| {
 | |
|     int ch;
 | |
|     int channels;
 | |
| 
 | |
|     /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
 | |
|     channels = s->fbw_channels;
 | |
|     if(s->output_mode & AC3_OUTPUT_LFEON)
 | |
|         channels++;
 | |
| 
 | |
|     for (ch=1; ch<=channels; ch++) {
 | |
|         if (s->block_switch[ch]) {
 | |
|             do_imdct_256(s, ch);
 | |
|         } else {
 | |
|             s->imdct_512.fft.imdct_calc(&s->imdct_512, s->tmp_output,
 | |
|                                         s->transform_coeffs[ch], s->tmp_imdct);
 | |
|         }
 | |
|         /* For the first half of the block, apply the window, add the delay
 | |
|            from the previous block, and send to output */
 | |
|         s->dsp.vector_fmul_add_add(s->output[ch-1], s->tmp_output,
 | |
|                                      s->window, s->delay[ch-1], 0, 256, 1);
 | |
|         /* For the second half of the block, apply the window and store the
 | |
|            samples to delay, to be combined with the next block */
 | |
|         s->dsp.vector_fmul_reverse(s->delay[ch-1], s->tmp_output+256,
 | |
|                                    s->window, 256);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Downmix the output to mono or stereo.
 | |
|  */
 | |
| static void ac3_downmix(AC3DecodeContext *s)
 | |
| {
 | |
|     int i, j;
 | |
|     float v0, v1, s0, s1;
 | |
| 
 | |
|     for(i=0; i<256; i++) {
 | |
|         v0 = v1 = s0 = s1 = 0.0f;
 | |
|         for(j=0; j<s->fbw_channels; j++) {
 | |
|             v0 += s->output[j][i] * s->downmix_coeffs[j][0];
 | |
|             v1 += s->output[j][i] * s->downmix_coeffs[j][1];
 | |
|             s0 += s->downmix_coeffs[j][0];
 | |
|             s1 += s->downmix_coeffs[j][1];
 | |
|         }
 | |
|         v0 /= s0;
 | |
|         v1 /= s1;
 | |
|         if(s->output_mode == AC3_CHMODE_MONO) {
 | |
|             s->output[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
 | |
|         } else if(s->output_mode == AC3_CHMODE_STEREO) {
 | |
|             s->output[0][i] = v0;
 | |
|             s->output[1][i] = v1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Parse an audio block from AC-3 bitstream.
 | |
|  */
 | |
| static int ac3_parse_audio_block(AC3DecodeContext *s, int blk)
 | |
| {
 | |
|     int fbw_channels = s->fbw_channels;
 | |
|     int channel_mode = s->channel_mode;
 | |
|     int i, bnd, seg, ch;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
 | |
| 
 | |
|     memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
 | |
| 
 | |
|     /* block switch flags */
 | |
|     for (ch = 1; ch <= fbw_channels; ch++)
 | |
|         s->block_switch[ch] = get_bits1(gbc);
 | |
| 
 | |
|     /* dithering flags */
 | |
|     s->dither_all = 1;
 | |
|     for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|         s->dither_flag[ch] = get_bits1(gbc);
 | |
|         if(!s->dither_flag[ch])
 | |
|             s->dither_all = 0;
 | |
|     }
 | |
| 
 | |
|     /* dynamic range */
 | |
|     i = !(s->channel_mode);
 | |
|     do {
 | |
|         if(get_bits1(gbc)) {
 | |
|             s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
 | |
|                                   s->avctx->drc_scale)+1.0;
 | |
|         } else if(blk == 0) {
 | |
|             s->dynamic_range[i] = 1.0f;
 | |
|         }
 | |
|     } while(i--);
 | |
| 
 | |
|     /* coupling strategy */
 | |
|     if (get_bits1(gbc)) {
 | |
|         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         s->cpl_in_use = get_bits1(gbc);
 | |
|         if (s->cpl_in_use) {
 | |
|             /* coupling in use */
 | |
|             int cpl_begin_freq, cpl_end_freq;
 | |
| 
 | |
|             /* determine which channels are coupled */
 | |
|             for (ch = 1; ch <= fbw_channels; ch++)
 | |
|                 s->channel_in_cpl[ch] = get_bits1(gbc);
 | |
| 
 | |
|             /* phase flags in use */
 | |
|             if (channel_mode == AC3_CHMODE_STEREO)
 | |
|                 s->phase_flags_in_use = get_bits1(gbc);
 | |
| 
 | |
|             /* coupling frequency range and band structure */
 | |
|             cpl_begin_freq = get_bits(gbc, 4);
 | |
|             cpl_end_freq = get_bits(gbc, 4);
 | |
|             if (3 + cpl_end_freq - cpl_begin_freq < 0) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
 | |
|                 return -1;
 | |
|             }
 | |
|             s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
 | |
|             s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
 | |
|             s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
 | |
|             for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
 | |
|                 if (get_bits1(gbc)) {
 | |
|                     s->cpl_band_struct[bnd] = 1;
 | |
|                     s->num_cpl_bands--;
 | |
|                 }
 | |
|             }
 | |
|             s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
 | |
|         } else {
 | |
|             /* coupling not in use */
 | |
|             for (ch = 1; ch <= fbw_channels; ch++)
 | |
|                 s->channel_in_cpl[ch] = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* coupling coordinates */
 | |
|     if (s->cpl_in_use) {
 | |
|         int cpl_coords_exist = 0;
 | |
| 
 | |
|         for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|             if (s->channel_in_cpl[ch]) {
 | |
|                 if (get_bits1(gbc)) {
 | |
|                     int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
 | |
|                     cpl_coords_exist = 1;
 | |
|                     master_cpl_coord = 3 * get_bits(gbc, 2);
 | |
|                     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                         cpl_coord_exp = get_bits(gbc, 4);
 | |
|                         cpl_coord_mant = get_bits(gbc, 4);
 | |
|                         if (cpl_coord_exp == 15)
 | |
|                             s->cpl_coords[ch][bnd] = cpl_coord_mant / 16.0f;
 | |
|                         else
 | |
|                             s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16.0f) / 32.0f;
 | |
|                         s->cpl_coords[ch][bnd] *= scale_factors[cpl_coord_exp + master_cpl_coord];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         /* phase flags */
 | |
|         if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
 | |
|             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | |
|                 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* stereo rematrixing strategy and band structure */
 | |
|     if (channel_mode == AC3_CHMODE_STEREO) {
 | |
|         if (get_bits1(gbc)) {
 | |
|             s->num_rematrixing_bands = 4;
 | |
|             if(s->cpl_in_use && s->start_freq[CPL_CH] <= 61)
 | |
|                 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
 | |
|             for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
 | |
|                 s->rematrixing_flags[bnd] = get_bits1(gbc);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* exponent strategies for each channel */
 | |
|     s->exp_strategy[CPL_CH] = EXP_REUSE;
 | |
|     s->exp_strategy[s->lfe_ch] = EXP_REUSE;
 | |
|     for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if(ch == s->lfe_ch)
 | |
|             s->exp_strategy[ch] = get_bits(gbc, 1);
 | |
|         else
 | |
|             s->exp_strategy[ch] = get_bits(gbc, 2);
 | |
|         if(s->exp_strategy[ch] != EXP_REUSE)
 | |
|             bit_alloc_stages[ch] = 3;
 | |
|     }
 | |
| 
 | |
|     /* channel bandwidth */
 | |
|     for (ch = 1; ch <= fbw_channels; ch++) {
 | |
|         s->start_freq[ch] = 0;
 | |
|         if (s->exp_strategy[ch] != EXP_REUSE) {
 | |
|             int prev = s->end_freq[ch];
 | |
|             if (s->channel_in_cpl[ch])
 | |
|                 s->end_freq[ch] = s->start_freq[CPL_CH];
 | |
|             else {
 | |
|                 int bandwidth_code = get_bits(gbc, 6);
 | |
|                 if (bandwidth_code > 60) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
 | |
|                     return -1;
 | |
|                 }
 | |
|                 s->end_freq[ch] = bandwidth_code * 3 + 73;
 | |
|             }
 | |
|             if(blk > 0 && s->end_freq[ch] != prev)
 | |
|                 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|         }
 | |
|     }
 | |
|     s->start_freq[s->lfe_ch] = 0;
 | |
|     s->end_freq[s->lfe_ch] = 7;
 | |
| 
 | |
|     /* decode exponents for each channel */
 | |
|     for (ch = !s->cpl_in_use; ch <= s->channels; ch++) {
 | |
|         if (s->exp_strategy[ch] != EXP_REUSE) {
 | |
|             int group_size, num_groups;
 | |
|             group_size = 3 << (s->exp_strategy[ch] - 1);
 | |
|             if(ch == CPL_CH)
 | |
|                 num_groups = (s->end_freq[ch] - s->start_freq[ch]) / group_size;
 | |
|             else if(ch == s->lfe_ch)
 | |
|                 num_groups = 2;
 | |
|             else
 | |
|                 num_groups = (s->end_freq[ch] + group_size - 4) / group_size;
 | |
|             s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
 | |
|             decode_exponents(gbc, s->exp_strategy[ch], num_groups, s->dexps[ch][0],
 | |
|                              &s->dexps[ch][s->start_freq[ch]+!!ch]);
 | |
|             if(ch != CPL_CH && ch != s->lfe_ch)
 | |
|                 skip_bits(gbc, 2); /* skip gainrng */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* bit allocation information */
 | |
|     if (get_bits1(gbc)) {
 | |
|         s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|         s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
 | |
|         s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
 | |
|         s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
 | |
|         s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
 | |
|         for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
 | |
|             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
 | |
|     if (get_bits1(gbc)) {
 | |
|         int csnr;
 | |
|         csnr = (get_bits(gbc, 6) - 15) << 4;
 | |
|         for (ch = !s->cpl_in_use; ch <= s->channels; ch++) { /* snr offset and fast gain */
 | |
|             s->snr_offset[ch] = (csnr + get_bits(gbc, 4)) << 2;
 | |
|             s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
 | |
|         }
 | |
|         memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
 | |
|     }
 | |
| 
 | |
|     /* coupling leak information */
 | |
|     if (s->cpl_in_use && get_bits1(gbc)) {
 | |
|         s->bit_alloc_params.cpl_fast_leak = get_bits(gbc, 3);
 | |
|         s->bit_alloc_params.cpl_slow_leak = get_bits(gbc, 3);
 | |
|         bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
 | |
|     }
 | |
| 
 | |
|     /* delta bit allocation information */
 | |
|     if (get_bits1(gbc)) {
 | |
|         /* delta bit allocation exists (strategy) */
 | |
|         for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             s->dba_mode[ch] = get_bits(gbc, 2);
 | |
|             if (s->dba_mode[ch] == DBA_RESERVED) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
 | |
|                 return -1;
 | |
|             }
 | |
|             bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
 | |
|         }
 | |
|         /* channel delta offset, len and bit allocation */
 | |
|         for (ch = !s->cpl_in_use; ch <= fbw_channels; ch++) {
 | |
|             if (s->dba_mode[ch] == DBA_NEW) {
 | |
|                 s->dba_nsegs[ch] = get_bits(gbc, 3);
 | |
|                 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
 | |
|                     s->dba_offsets[ch][seg] = get_bits(gbc, 5);
 | |
|                     s->dba_lengths[ch][seg] = get_bits(gbc, 4);
 | |
|                     s->dba_values[ch][seg] = get_bits(gbc, 3);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if(blk == 0) {
 | |
|         for(ch=0; ch<=s->channels; ch++) {
 | |
|             s->dba_mode[ch] = DBA_NONE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Bit allocation */
 | |
|     for(ch=!s->cpl_in_use; ch<=s->channels; ch++) {
 | |
|         if(bit_alloc_stages[ch] > 2) {
 | |
|             /* Exponent mapping into PSD and PSD integration */
 | |
|             ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->psd[ch], s->band_psd[ch]);
 | |
|         }
 | |
|         if(bit_alloc_stages[ch] > 1) {
 | |
|             /* Compute excitation function, Compute masking curve, and
 | |
|                Apply delta bit allocation */
 | |
|             ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
 | |
|                                        s->start_freq[ch], s->end_freq[ch],
 | |
|                                        s->fast_gain[ch], (ch == s->lfe_ch),
 | |
|                                        s->dba_mode[ch], s->dba_nsegs[ch],
 | |
|                                        s->dba_offsets[ch], s->dba_lengths[ch],
 | |
|                                        s->dba_values[ch], s->mask[ch]);
 | |
|         }
 | |
|         if(bit_alloc_stages[ch] > 0) {
 | |
|             /* Compute bit allocation */
 | |
|             ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
 | |
|                                       s->start_freq[ch], s->end_freq[ch],
 | |
|                                       s->snr_offset[ch],
 | |
|                                       s->bit_alloc_params.floor,
 | |
|                                       s->bap[ch]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* unused dummy data */
 | |
|     if (get_bits1(gbc)) {
 | |
|         int skipl = get_bits(gbc, 9);
 | |
|         while(skipl--)
 | |
|             skip_bits(gbc, 8);
 | |
|     }
 | |
| 
 | |
|     /* unpack the transform coefficients
 | |
|        this also uncouples channels if coupling is in use. */
 | |
|     if (get_transform_coeffs(s)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* recover coefficients if rematrixing is in use */
 | |
|     if(s->channel_mode == AC3_CHMODE_STEREO)
 | |
|         do_rematrixing(s);
 | |
| 
 | |
|     /* apply scaling to coefficients (headroom, dynrng) */
 | |
|     for(ch=1; ch<=s->channels; ch++) {
 | |
|         float gain = 2.0f * s->mul_bias;
 | |
|         if(s->channel_mode == AC3_CHMODE_DUALMONO) {
 | |
|             gain *= s->dynamic_range[ch-1];
 | |
|         } else {
 | |
|             gain *= s->dynamic_range[0];
 | |
|         }
 | |
|         for(i=0; i<s->end_freq[ch]; i++) {
 | |
|             s->transform_coeffs[ch][i] *= gain;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     do_imdct(s);
 | |
| 
 | |
|     /* downmix output if needed */
 | |
|     if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|             s->fbw_channels == s->out_channels)) {
 | |
|         ac3_downmix(s);
 | |
|     }
 | |
| 
 | |
|     /* convert float to 16-bit integer */
 | |
|     for(ch=0; ch<s->out_channels; ch++) {
 | |
|         for(i=0; i<256; i++) {
 | |
|             s->output[ch][i] += s->add_bias;
 | |
|         }
 | |
|         s->dsp.float_to_int16(s->int_output[ch], s->output[ch], 256);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decode a single AC-3 frame.
 | |
|  */
 | |
| static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     int16_t *out_samples = (int16_t *)data;
 | |
|     int i, blk, ch, err;
 | |
| 
 | |
|     /* initialize the GetBitContext with the start of valid AC-3 Frame */
 | |
|     init_get_bits(&s->gbc, buf, buf_size * 8);
 | |
| 
 | |
|     /* parse the syncinfo */
 | |
|     err = ac3_parse_header(s);
 | |
|     if(err) {
 | |
|         switch(err) {
 | |
|             case AC3_PARSE_ERROR_SYNC:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_BSID:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_SAMPLE_RATE:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | |
|                 break;
 | |
|             case AC3_PARSE_ERROR_FRAME_SIZE:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
 | |
|                 break;
 | |
|             default:
 | |
|                 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
 | |
|                 break;
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* check that reported frame size fits in input buffer */
 | |
|     if(s->frame_size > buf_size) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* check for crc mismatch */
 | |
|     if(avctx->error_resilience >= FF_ER_CAREFUL) {
 | |
|         if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
 | |
|             return -1;
 | |
|         }
 | |
|         /* TODO: error concealment */
 | |
|     }
 | |
| 
 | |
|     avctx->sample_rate = s->sample_rate;
 | |
|     avctx->bit_rate = s->bit_rate;
 | |
| 
 | |
|     /* channel config */
 | |
|     s->out_channels = s->channels;
 | |
|     if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
 | |
|             avctx->request_channels < s->channels) {
 | |
|         s->out_channels = avctx->request_channels;
 | |
|         s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
 | |
|     }
 | |
|     avctx->channels = s->out_channels;
 | |
| 
 | |
|     /* set downmixing coefficients if needed */
 | |
|     if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
 | |
|             s->fbw_channels == s->out_channels)) {
 | |
|         set_downmix_coeffs(s);
 | |
|     }
 | |
| 
 | |
|     /* parse the audio blocks */
 | |
|     for (blk = 0; blk < NB_BLOCKS; blk++) {
 | |
|         if (ac3_parse_audio_block(s, blk)) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
 | |
|             *data_size = 0;
 | |
|             return s->frame_size;
 | |
|         }
 | |
|         for (i = 0; i < 256; i++)
 | |
|             for (ch = 0; ch < s->out_channels; ch++)
 | |
|                 *(out_samples++) = s->int_output[ch][i];
 | |
|     }
 | |
|     *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
 | |
|     return s->frame_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Uninitialize the AC-3 decoder.
 | |
|  */
 | |
| static int ac3_decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     AC3DecodeContext *s = avctx->priv_data;
 | |
|     ff_mdct_end(&s->imdct_512);
 | |
|     ff_mdct_end(&s->imdct_256);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ac3_decoder = {
 | |
|     .name = "ac3",
 | |
|     .type = CODEC_TYPE_AUDIO,
 | |
|     .id = CODEC_ID_AC3,
 | |
|     .priv_data_size = sizeof (AC3DecodeContext),
 | |
|     .init = ac3_decode_init,
 | |
|     .close = ac3_decode_end,
 | |
|     .decode = ac3_decode_frame,
 | |
| };
 |