This is the remaining error, the output on the SPX samples, respectively csi_miami_stereo_128_spx.eac3 and csi_miami_5.1_256_spx.eac3, goes from: stddev: 8.71 PSNR: 77.52 MAXDIFF: 235 stddev:24270.51 PSNR: 22.17 MAXDIFF:47166 to: stddev: 0.12 PSNR:114.12 MAXDIFF: 1 stddev: 0.12 PSNR:114.73 MAXDIFF: 1 Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			613 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * E-AC-3 decoder
 | |
|  * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 | |
|  * Copyright (c) 2008 Justin Ruggles
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * There are several features of E-AC-3 that this decoder does not yet support.
 | |
|  *
 | |
|  * Enhanced Coupling
 | |
|  *     No known samples exist.  If any ever surface, this feature should not be
 | |
|  *     too difficult to implement.
 | |
|  *
 | |
|  * Reduced Sample Rates
 | |
|  *     No known samples exist.  The spec also does not give clear information
 | |
|  *     on how this is to be implemented.
 | |
|  *
 | |
|  * Dependent Streams
 | |
|  *     Only the independent stream is currently decoded. Any dependent
 | |
|  *     streams are skipped.  We have only come across two examples of this, and
 | |
|  *     they are both just test streams, one for HD-DVD and the other for
 | |
|  *     Blu-ray.
 | |
|  *
 | |
|  * Transient Pre-noise Processing
 | |
|  *     This is side information which a decoder should use to reduce artifacts
 | |
|  *     caused by transients.  There are samples which are known to have this
 | |
|  *     information, but this decoder currently ignores it.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "aac_ac3_parser.h"
 | |
| #include "ac3.h"
 | |
| #include "ac3_parser.h"
 | |
| #include "ac3dec.h"
 | |
| #include "ac3dec_data.h"
 | |
| #include "eac3_data.h"
 | |
| 
 | |
| /** gain adaptive quantization mode */
 | |
| typedef enum {
 | |
|     EAC3_GAQ_NO =0,
 | |
|     EAC3_GAQ_12,
 | |
|     EAC3_GAQ_14,
 | |
|     EAC3_GAQ_124
 | |
| } EAC3GaqMode;
 | |
| 
 | |
| #define EAC3_SR_CODE_REDUCED  3
 | |
| 
 | |
| static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
 | |
| {
 | |
|     int bin, bnd, ch, i;
 | |
|     uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
 | |
|     float rms_energy[SPX_MAX_BANDS];
 | |
| 
 | |
|     /* Set copy index mapping table. Set wrap flags to apply a notch filter at
 | |
|        wrap points later on. */
 | |
|     bin = s->spx_dst_start_freq;
 | |
|     num_copy_sections = 0;
 | |
|     for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | |
|         int copysize;
 | |
|         int bandsize = s->spx_band_sizes[bnd];
 | |
|         if (bin + bandsize > s->spx_src_start_freq) {
 | |
|             copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | |
|             bin = s->spx_dst_start_freq;
 | |
|             wrapflag[bnd] = 1;
 | |
|         }
 | |
|         for (i = 0; i < bandsize; i += copysize) {
 | |
|             if (bin == s->spx_src_start_freq) {
 | |
|                 copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | |
|                 bin = s->spx_dst_start_freq;
 | |
|             }
 | |
|             copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
 | |
|             bin += copysize;
 | |
|         }
 | |
|     }
 | |
|     copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
 | |
| 
 | |
|     for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|         if (!s->channel_uses_spx[ch])
 | |
|             continue;
 | |
| 
 | |
|         /* Copy coeffs from normal bands to extension bands */
 | |
|         bin = s->spx_src_start_freq;
 | |
|         for (i = 0; i < num_copy_sections; i++) {
 | |
|             memcpy(&s->transform_coeffs[ch][bin],
 | |
|                    &s->transform_coeffs[ch][s->spx_dst_start_freq],
 | |
|                    copy_sizes[i]*sizeof(INTFLOAT));
 | |
|             bin += copy_sizes[i];
 | |
|         }
 | |
| 
 | |
|         /* Calculate RMS energy for each SPX band. */
 | |
|         bin = s->spx_src_start_freq;
 | |
|         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | |
|             int bandsize = s->spx_band_sizes[bnd];
 | |
|             float accum = 0.0f;
 | |
|             for (i = 0; i < bandsize; i++) {
 | |
|                 float coeff = s->transform_coeffs[ch][bin++];
 | |
|                 accum += coeff * coeff;
 | |
|             }
 | |
|             rms_energy[bnd] = sqrtf(accum / bandsize);
 | |
|         }
 | |
| 
 | |
|         /* Apply a notch filter at transitions between normal and extension
 | |
|            bands and at all wrap points. */
 | |
|         if (s->spx_atten_code[ch] >= 0) {
 | |
|             const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
 | |
|             bin = s->spx_src_start_freq - 2;
 | |
|             for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | |
|                 if (wrapflag[bnd]) {
 | |
|                     INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
 | |
|                     coeffs[0] *= atten_tab[0];
 | |
|                     coeffs[1] *= atten_tab[1];
 | |
|                     coeffs[2] *= atten_tab[2];
 | |
|                     coeffs[3] *= atten_tab[1];
 | |
|                     coeffs[4] *= atten_tab[0];
 | |
|                 }
 | |
|                 bin += s->spx_band_sizes[bnd];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Apply noise-blended coefficient scaling based on previously
 | |
|            calculated RMS energy, blending factors, and SPX coordinates for
 | |
|            each band. */
 | |
|         bin = s->spx_src_start_freq;
 | |
|         for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
 | |
|             float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
 | |
|             float sscale = s->spx_signal_blend[ch][bnd];
 | |
| #if USE_FIXED
 | |
|             // spx_noise_blend and spx_signal_blend are both FP.23
 | |
|             nscale *= 1.0 / (1<<23);
 | |
|             sscale *= 1.0 / (1<<23);
 | |
| #endif
 | |
|             for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
 | |
|                 float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
 | |
|                 s->transform_coeffs[ch][bin]   *= sscale;
 | |
|                 s->transform_coeffs[ch][bin++] += noise;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
 | |
| #define COEFF_0 10273905LL
 | |
| 
 | |
| /** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
 | |
| #define COEFF_1 11863283LL
 | |
| 
 | |
| /** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
 | |
| #define COEFF_2  3070444LL
 | |
| 
 | |
| /**
 | |
|  * Calculate 6-point IDCT of the pre-mantissas.
 | |
|  * All calculations are 24-bit fixed-point.
 | |
|  */
 | |
| static void idct6(int pre_mant[6])
 | |
| {
 | |
|     int tmp;
 | |
|     int even0, even1, even2, odd0, odd1, odd2;
 | |
| 
 | |
|     odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];
 | |
| 
 | |
|     even2 = ( pre_mant[2]                * COEFF_0) >> 23;
 | |
|     tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
 | |
|     odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;
 | |
| 
 | |
|     even0 = pre_mant[0] + (tmp >> 1);
 | |
|     even1 = pre_mant[0] - tmp;
 | |
| 
 | |
|     tmp = even0;
 | |
|     even0 = tmp + even2;
 | |
|     even2 = tmp - even2;
 | |
| 
 | |
|     tmp = odd0;
 | |
|     odd0 = tmp + pre_mant[1] + pre_mant[3];
 | |
|     odd2 = tmp + pre_mant[5] - pre_mant[3];
 | |
| 
 | |
|     pre_mant[0] = even0 + odd0;
 | |
|     pre_mant[1] = even1 + odd1;
 | |
|     pre_mant[2] = even2 + odd2;
 | |
|     pre_mant[3] = even2 - odd2;
 | |
|     pre_mant[4] = even1 - odd1;
 | |
|     pre_mant[5] = even0 - odd0;
 | |
| }
 | |
| 
 | |
| static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
 | |
| {
 | |
|     int bin, blk, gs;
 | |
|     int end_bap, gaq_mode;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
|     int gaq_gain[AC3_MAX_COEFS];
 | |
| 
 | |
|     gaq_mode = get_bits(gbc, 2);
 | |
|     end_bap = (gaq_mode < 2) ? 12 : 17;
 | |
| 
 | |
|     /* if GAQ gain is used, decode gain codes for bins with hebap between
 | |
|        8 and end_bap */
 | |
|     gs = 0;
 | |
|     if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
 | |
|         /* read 1-bit GAQ gain codes */
 | |
|         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | |
|             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
 | |
|                 gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
 | |
|         }
 | |
|     } else if (gaq_mode == EAC3_GAQ_124) {
 | |
|         /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
 | |
|         int gc = 2;
 | |
|         for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | |
|             if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
 | |
|                 if (gc++ == 2) {
 | |
|                     int group_code = get_bits(gbc, 5);
 | |
|                     if (group_code > 26) {
 | |
|                         av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
 | |
|                         group_code = 26;
 | |
|                     }
 | |
|                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
 | |
|                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
 | |
|                     gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
 | |
|                     gc = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gs=0;
 | |
|     for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
 | |
|         int hebap = s->bap[ch][bin];
 | |
|         int bits = ff_eac3_bits_vs_hebap[hebap];
 | |
|         if (!hebap) {
 | |
|             /* zero-mantissa dithering */
 | |
|             for (blk = 0; blk < 6; blk++) {
 | |
|                 s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
 | |
|             }
 | |
|         } else if (hebap < 8) {
 | |
|             /* Vector Quantization */
 | |
|             int v = get_bits(gbc, bits);
 | |
|             for (blk = 0; blk < 6; blk++) {
 | |
|                 s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8;
 | |
|             }
 | |
|         } else {
 | |
|             /* Gain Adaptive Quantization */
 | |
|             int gbits, log_gain;
 | |
|             if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
 | |
|                 log_gain = gaq_gain[gs++];
 | |
|             } else {
 | |
|                 log_gain = 0;
 | |
|             }
 | |
|             gbits = bits - log_gain;
 | |
| 
 | |
|             for (blk = 0; blk < 6; blk++) {
 | |
|                 int mant = get_sbits(gbc, gbits);
 | |
|                 if (log_gain && mant == -(1 << (gbits-1))) {
 | |
|                     /* large mantissa */
 | |
|                     int b;
 | |
|                     int mbits = bits - (2 - log_gain);
 | |
|                     mant = get_sbits(gbc, mbits);
 | |
|                     mant <<= (23 - (mbits - 1));
 | |
|                     /* remap mantissa value to correct for asymmetric quantization */
 | |
|                     if (mant >= 0)
 | |
|                         b = 1 << (23 - log_gain);
 | |
|                     else
 | |
|                         b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] << 8;
 | |
|                     mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
 | |
|                 } else {
 | |
|                     /* small mantissa, no GAQ, or Gk=1 */
 | |
|                     mant <<= 24 - bits;
 | |
|                     if (!log_gain) {
 | |
|                         /* remap mantissa value for no GAQ or Gk=1 */
 | |
|                         mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
 | |
|                     }
 | |
|                 }
 | |
|                 s->pre_mantissa[ch][bin][blk] = mant;
 | |
|             }
 | |
|         }
 | |
|         idct6(s->pre_mantissa[ch][bin]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ff_eac3_parse_header(AC3DecodeContext *s)
 | |
| {
 | |
|     int i, blk, ch;
 | |
|     int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
 | |
|     int parse_transient_proc_info;
 | |
|     int num_cpl_blocks;
 | |
|     GetBitContext *gbc = &s->gbc;
 | |
| 
 | |
|     /* An E-AC-3 stream can have multiple independent streams which the
 | |
|        application can select from. each independent stream can also contain
 | |
|        dependent streams which are used to add or replace channels. */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
 | |
|         avpriv_request_sample(s->avctx, "Dependent substream decoding");
 | |
|         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | |
|     } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
 | |
|         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | |
|     }
 | |
| 
 | |
|     /* The substream id indicates which substream this frame belongs to. each
 | |
|        independent stream has its own substream id, and the dependent streams
 | |
|        associated to an independent stream have matching substream id's. */
 | |
|     if (s->substreamid) {
 | |
|         /* only decode substream with id=0. skip any additional substreams. */
 | |
|         avpriv_request_sample(s->avctx, "Additional substreams");
 | |
|         return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
 | |
|     }
 | |
| 
 | |
|     if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
 | |
|         /* The E-AC-3 specification does not tell how to handle reduced sample
 | |
|            rates in bit allocation.  The best assumption would be that it is
 | |
|            handled like AC-3 DolbyNet, but we cannot be sure until we have a
 | |
|            sample which utilizes this feature. */
 | |
|         avpriv_request_sample(s->avctx, "Reduced sampling rate");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
|     skip_bits(gbc, 5); // skip bitstream id
 | |
| 
 | |
|     /* volume control params */
 | |
|     for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | |
|         skip_bits(gbc, 5); // skip dialog normalization
 | |
|         if (get_bits1(gbc)) {
 | |
|             skip_bits(gbc, 8); // skip compression gain word
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* dependent stream channel map */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
 | |
|         if (get_bits1(gbc)) {
 | |
|             skip_bits(gbc, 16); // skip custom channel map
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* mixing metadata */
 | |
|     if (get_bits1(gbc)) {
 | |
|         /* center and surround mix levels */
 | |
|         if (s->channel_mode > AC3_CHMODE_STEREO) {
 | |
|             s->preferred_downmix = get_bits(gbc, 2);
 | |
|             if (s->channel_mode & 1) {
 | |
|                 /* if three front channels exist */
 | |
|                 s->center_mix_level_ltrt = get_bits(gbc, 3);
 | |
|                 s->center_mix_level      = get_bits(gbc, 3);
 | |
|             }
 | |
|             if (s->channel_mode & 4) {
 | |
|                 /* if a surround channel exists */
 | |
|                 s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
 | |
|                 s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* lfe mix level */
 | |
|         if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
 | |
|             s->lfe_mix_level = get_bits(gbc, 5);
 | |
|         }
 | |
| 
 | |
|         /* info for mixing with other streams and substreams */
 | |
|         if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
 | |
|             for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | |
|                 // TODO: apply program scale factor
 | |
|                 if (get_bits1(gbc)) {
 | |
|                     skip_bits(gbc, 6);  // skip program scale factor
 | |
|                 }
 | |
|             }
 | |
|             if (get_bits1(gbc)) {
 | |
|                 skip_bits(gbc, 6);  // skip external program scale factor
 | |
|             }
 | |
|             /* skip mixing parameter data */
 | |
|             switch(get_bits(gbc, 2)) {
 | |
|                 case 1: skip_bits(gbc, 5);  break;
 | |
|                 case 2: skip_bits(gbc, 12); break;
 | |
|                 case 3: {
 | |
|                     int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
 | |
|                     skip_bits_long(gbc, mix_data_size);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             /* skip pan information for mono or dual mono source */
 | |
|             if (s->channel_mode < AC3_CHMODE_STEREO) {
 | |
|                 for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | |
|                     if (get_bits1(gbc)) {
 | |
|                         /* note: this is not in the ATSC A/52B specification
 | |
|                            reference: ETSI TS 102 366 V1.1.1
 | |
|                                       section: E.1.3.1.25 */
 | |
|                         skip_bits(gbc, 8);  // skip pan mean direction index
 | |
|                         skip_bits(gbc, 6);  // skip reserved paninfo bits
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             /* skip mixing configuration information */
 | |
|             if (get_bits1(gbc)) {
 | |
|                 for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|                     if (s->num_blocks == 1 || get_bits1(gbc)) {
 | |
|                         skip_bits(gbc, 5);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* informational metadata */
 | |
|     if (get_bits1(gbc)) {
 | |
|         s->bitstream_mode = get_bits(gbc, 3);
 | |
|         skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
 | |
|         if (s->channel_mode == AC3_CHMODE_STEREO) {
 | |
|             s->dolby_surround_mode  = get_bits(gbc, 2);
 | |
|             s->dolby_headphone_mode = get_bits(gbc, 2);
 | |
|         }
 | |
|         if (s->channel_mode >= AC3_CHMODE_2F2R) {
 | |
|             s->dolby_surround_ex_mode = get_bits(gbc, 2);
 | |
|         }
 | |
|         for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
 | |
|             if (get_bits1(gbc)) {
 | |
|                 skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
 | |
|             }
 | |
|         }
 | |
|         if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
 | |
|             skip_bits1(gbc); // skip source sample rate code
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* converter synchronization flag
 | |
|        If frames are less than six blocks, this bit should be turned on
 | |
|        once every 6 blocks to indicate the start of a frame set.
 | |
|        reference: RFC 4598, Section 2.1.3  Frame Sets */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
 | |
|         skip_bits1(gbc); // skip converter synchronization flag
 | |
|     }
 | |
| 
 | |
|     /* original frame size code if this stream was converted from AC-3 */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
 | |
|             (s->num_blocks == 6 || get_bits1(gbc))) {
 | |
|         skip_bits(gbc, 6); // skip frame size code
 | |
|     }
 | |
| 
 | |
|     /* additional bitstream info */
 | |
|     if (get_bits1(gbc)) {
 | |
|         int addbsil = get_bits(gbc, 6);
 | |
|         for (i = 0; i < addbsil + 1; i++) {
 | |
|             skip_bits(gbc, 8); // skip additional bit stream info
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* audio frame syntax flags, strategy data, and per-frame data */
 | |
| 
 | |
|     if (s->num_blocks == 6) {
 | |
|         ac3_exponent_strategy = get_bits1(gbc);
 | |
|         parse_aht_info        = get_bits1(gbc);
 | |
|     } else {
 | |
|         /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
 | |
|            do not use AHT */
 | |
|         ac3_exponent_strategy = 1;
 | |
|         parse_aht_info = 0;
 | |
|     }
 | |
| 
 | |
|     s->snr_offset_strategy    = get_bits(gbc, 2);
 | |
|     parse_transient_proc_info = get_bits1(gbc);
 | |
| 
 | |
|     s->block_switch_syntax = get_bits1(gbc);
 | |
|     if (!s->block_switch_syntax)
 | |
|         memset(s->block_switch, 0, sizeof(s->block_switch));
 | |
| 
 | |
|     s->dither_flag_syntax = get_bits1(gbc);
 | |
|     if (!s->dither_flag_syntax) {
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++)
 | |
|             s->dither_flag[ch] = 1;
 | |
|     }
 | |
|     s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;
 | |
| 
 | |
|     s->bit_allocation_syntax = get_bits1(gbc);
 | |
|     if (!s->bit_allocation_syntax) {
 | |
|         /* set default bit allocation parameters */
 | |
|         s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
 | |
|         s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
 | |
|         s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
 | |
|         s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
 | |
|         s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
 | |
|     }
 | |
| 
 | |
|     s->fast_gain_syntax  = get_bits1(gbc);
 | |
|     s->dba_syntax        = get_bits1(gbc);
 | |
|     s->skip_syntax       = get_bits1(gbc);
 | |
|     parse_spx_atten_data = get_bits1(gbc);
 | |
| 
 | |
|     /* coupling strategy occurrence and coupling use per block */
 | |
|     num_cpl_blocks = 0;
 | |
|     if (s->channel_mode > 1) {
 | |
|         for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|             s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
 | |
|             if (s->cpl_strategy_exists[blk]) {
 | |
|                 s->cpl_in_use[blk] = get_bits1(gbc);
 | |
|             } else {
 | |
|                 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
 | |
|             }
 | |
|             num_cpl_blocks += s->cpl_in_use[blk];
 | |
|         }
 | |
|     } else {
 | |
|         memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
 | |
|     }
 | |
| 
 | |
|     /* exponent strategy data */
 | |
|     if (ac3_exponent_strategy) {
 | |
|         /* AC-3-style exponent strategy syntax */
 | |
|         for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|             for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
 | |
|                 s->exp_strategy[blk][ch] = get_bits(gbc, 2);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* LUT-based exponent strategy syntax */
 | |
|         for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
 | |
|             int frmchexpstr = get_bits(gbc, 5);
 | |
|             for (blk = 0; blk < 6; blk++) {
 | |
|                 s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* LFE exponent strategy */
 | |
|     if (s->lfe_on) {
 | |
|         for (blk = 0; blk < s->num_blocks; blk++) {
 | |
|             s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
 | |
|         }
 | |
|     }
 | |
|     /* original exponent strategies if this stream was converted from AC-3 */
 | |
|     if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
 | |
|             (s->num_blocks == 6 || get_bits1(gbc))) {
 | |
|         skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
 | |
|     }
 | |
| 
 | |
|     /* determine which channels use AHT */
 | |
|     if (parse_aht_info) {
 | |
|         /* For AHT to be used, all non-zero blocks must reuse exponents from
 | |
|            the first block.  Furthermore, for AHT to be used in the coupling
 | |
|            channel, all blocks must use coupling and use the same coupling
 | |
|            strategy. */
 | |
|         s->channel_uses_aht[CPL_CH]=0;
 | |
|         for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
 | |
|             int use_aht = 1;
 | |
|             for (blk = 1; blk < 6; blk++) {
 | |
|                 if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
 | |
|                         (!ch && s->cpl_strategy_exists[blk])) {
 | |
|                     use_aht = 0;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
 | |
|         }
 | |
|     } else {
 | |
|         memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
 | |
|     }
 | |
| 
 | |
|     /* per-frame SNR offset */
 | |
|     if (!s->snr_offset_strategy) {
 | |
|         int csnroffst = (get_bits(gbc, 6) - 15) << 4;
 | |
|         int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
 | |
|         for (ch = 0; ch <= s->channels; ch++)
 | |
|             s->snr_offset[ch] = snroffst;
 | |
|     }
 | |
| 
 | |
|     /* transient pre-noise processing data */
 | |
|     if (parse_transient_proc_info) {
 | |
|         for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|             if (get_bits1(gbc)) { // channel in transient processing
 | |
|                 skip_bits(gbc, 10); // skip transient processing location
 | |
|                 skip_bits(gbc, 8);  // skip transient processing length
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* spectral extension attenuation data */
 | |
|     for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|         if (parse_spx_atten_data && get_bits1(gbc)) {
 | |
|             s->spx_atten_code[ch] = get_bits(gbc, 5);
 | |
|         } else {
 | |
|             s->spx_atten_code[ch] = -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* block start information */
 | |
|     if (s->num_blocks > 1 && get_bits1(gbc)) {
 | |
|         /* reference: Section E2.3.2.27
 | |
|            nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
 | |
|            The spec does not say what this data is or what it's used for.
 | |
|            It is likely the offset of each block within the frame. */
 | |
|         int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
 | |
|         skip_bits_long(gbc, block_start_bits);
 | |
|         avpriv_request_sample(s->avctx, "Block start info");
 | |
|     }
 | |
| 
 | |
|     /* syntax state initialization */
 | |
|     for (ch = 1; ch <= s->fbw_channels; ch++) {
 | |
|         s->first_spx_coords[ch] = 1;
 | |
|         s->first_cpl_coords[ch] = 1;
 | |
|     }
 | |
|     s->first_cpl_leak = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 |