559 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			559 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Real Audio 1.0 (14.4K) encoder
 | |
|  * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Real Audio 1.0 (14.4K) encoder
 | |
|  * @author Francesco Lavra <francescolavra@interfree.it>
 | |
|  */
 | |
| 
 | |
| #include <float.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "audio_frame_queue.h"
 | |
| #include "internal.h"
 | |
| #include "put_bits.h"
 | |
| #include "celp_filters.h"
 | |
| #include "ra144.h"
 | |
| 
 | |
| 
 | |
| static av_cold int ra144_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     RA144Context *ractx = avctx->priv_data;
 | |
|     ff_lpc_end(&ractx->lpc_ctx);
 | |
|     ff_af_queue_close(&ractx->afq);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int ra144_encode_init(AVCodecContext * avctx)
 | |
| {
 | |
|     RA144Context *ractx;
 | |
|     int ret;
 | |
| 
 | |
|     if (avctx->channels != 1) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
 | |
|                avctx->channels);
 | |
|         return -1;
 | |
|     }
 | |
|     avctx->frame_size = NBLOCKS * BLOCKSIZE;
 | |
|     avctx->delay      = avctx->frame_size;
 | |
|     avctx->bit_rate = 8000;
 | |
|     ractx = avctx->priv_data;
 | |
|     ractx->lpc_coef[0] = ractx->lpc_tables[0];
 | |
|     ractx->lpc_coef[1] = ractx->lpc_tables[1];
 | |
|     ractx->avctx = avctx;
 | |
|     ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
 | |
|                       FF_LPC_TYPE_LEVINSON);
 | |
|     if (ret < 0)
 | |
|         goto error;
 | |
| 
 | |
|     ff_af_queue_init(avctx, &ractx->afq);
 | |
| 
 | |
|     return 0;
 | |
| error:
 | |
|     ra144_encode_close(avctx);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Quantize a value by searching a sorted table for the element with the
 | |
|  * nearest value
 | |
|  *
 | |
|  * @param value value to quantize
 | |
|  * @param table array containing the quantization table
 | |
|  * @param size size of the quantization table
 | |
|  * @return index of the quantization table corresponding to the element with the
 | |
|  *         nearest value
 | |
|  */
 | |
| static int quantize(int value, const int16_t *table, unsigned int size)
 | |
| {
 | |
|     unsigned int low = 0, high = size - 1;
 | |
| 
 | |
|     while (1) {
 | |
|         int index = (low + high) >> 1;
 | |
|         int error = table[index] - value;
 | |
| 
 | |
|         if (index == low)
 | |
|             return table[high] + error > value ? low : high;
 | |
|         if (error > 0) {
 | |
|             high = index;
 | |
|         } else {
 | |
|             low = index;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Orthogonalize a vector to another vector
 | |
|  *
 | |
|  * @param v vector to orthogonalize
 | |
|  * @param u vector against which orthogonalization is performed
 | |
|  */
 | |
| static void orthogonalize(float *v, const float *u)
 | |
| {
 | |
|     int i;
 | |
|     float num = 0, den = 0;
 | |
| 
 | |
|     for (i = 0; i < BLOCKSIZE; i++) {
 | |
|         num += v[i] * u[i];
 | |
|         den += u[i] * u[i];
 | |
|     }
 | |
|     num /= den;
 | |
|     for (i = 0; i < BLOCKSIZE; i++)
 | |
|         v[i] -= num * u[i];
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Calculate match score and gain of an LPC-filtered vector with respect to
 | |
|  * input data, possibly othogonalizing it to up to 2 other vectors
 | |
|  *
 | |
|  * @param work array used to calculate the filtered vector
 | |
|  * @param coefs coefficients of the LPC filter
 | |
|  * @param vect original vector
 | |
|  * @param ortho1 first vector against which orthogonalization is performed
 | |
|  * @param ortho2 second vector against which orthogonalization is performed
 | |
|  * @param data input data
 | |
|  * @param score pointer to variable where match score is returned
 | |
|  * @param gain pointer to variable where gain is returned
 | |
|  */
 | |
| static void get_match_score(float *work, const float *coefs, float *vect,
 | |
|                             const float *ortho1, const float *ortho2,
 | |
|                             const float *data, float *score, float *gain)
 | |
| {
 | |
|     float c, g;
 | |
|     int i;
 | |
| 
 | |
|     ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
 | |
|     if (ortho1)
 | |
|         orthogonalize(work, ortho1);
 | |
|     if (ortho2)
 | |
|         orthogonalize(work, ortho2);
 | |
|     c = g = 0;
 | |
|     for (i = 0; i < BLOCKSIZE; i++) {
 | |
|         g += work[i] * work[i];
 | |
|         c += data[i] * work[i];
 | |
|     }
 | |
|     if (c <= 0) {
 | |
|         *score = 0;
 | |
|         return;
 | |
|     }
 | |
|     *gain = c / g;
 | |
|     *score = *gain * c;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Create a vector from the adaptive codebook at a given lag value
 | |
|  *
 | |
|  * @param vect array where vector is stored
 | |
|  * @param cb adaptive codebook
 | |
|  * @param lag lag value
 | |
|  */
 | |
| static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     cb += BUFFERSIZE - lag;
 | |
|     for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
 | |
|         vect[i] = cb[i];
 | |
|     if (lag < BLOCKSIZE)
 | |
|         for (i = 0; i < BLOCKSIZE - lag; i++)
 | |
|             vect[lag + i] = cb[i];
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Search the adaptive codebook for the best entry and gain and remove its
 | |
|  * contribution from input data
 | |
|  *
 | |
|  * @param adapt_cb array from which the adaptive codebook is extracted
 | |
|  * @param work array used to calculate LPC-filtered vectors
 | |
|  * @param coefs coefficients of the LPC filter
 | |
|  * @param data input data
 | |
|  * @return index of the best entry of the adaptive codebook
 | |
|  */
 | |
| static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
 | |
|                               const float *coefs, float *data)
 | |
| {
 | |
|     int i, best_vect;
 | |
|     float score, gain, best_score, best_gain;
 | |
|     float exc[BLOCKSIZE];
 | |
| 
 | |
|     gain = best_score = 0;
 | |
|     for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
 | |
|         create_adapt_vect(exc, adapt_cb, i);
 | |
|         get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
 | |
|         if (score > best_score) {
 | |
|             best_score = score;
 | |
|             best_vect = i;
 | |
|             best_gain = gain;
 | |
|         }
 | |
|     }
 | |
|     if (!best_score)
 | |
|         return 0;
 | |
| 
 | |
|     /**
 | |
|      * Re-calculate the filtered vector from the vector with maximum match score
 | |
|      * and remove its contribution from input data.
 | |
|      */
 | |
|     create_adapt_vect(exc, adapt_cb, best_vect);
 | |
|     ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
 | |
|     for (i = 0; i < BLOCKSIZE; i++)
 | |
|         data[i] -= best_gain * work[i];
 | |
|     return best_vect - BLOCKSIZE / 2 + 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Find the best vector of a fixed codebook by applying an LPC filter to
 | |
|  * codebook entries, possibly othogonalizing them to up to 2 other vectors and
 | |
|  * matching the results with input data
 | |
|  *
 | |
|  * @param work array used to calculate the filtered vectors
 | |
|  * @param coefs coefficients of the LPC filter
 | |
|  * @param cb fixed codebook
 | |
|  * @param ortho1 first vector against which orthogonalization is performed
 | |
|  * @param ortho2 second vector against which orthogonalization is performed
 | |
|  * @param data input data
 | |
|  * @param idx pointer to variable where the index of the best codebook entry is
 | |
|  *        returned
 | |
|  * @param gain pointer to variable where the gain of the best codebook entry is
 | |
|  *        returned
 | |
|  */
 | |
| static void find_best_vect(float *work, const float *coefs,
 | |
|                            const int8_t cb[][BLOCKSIZE], const float *ortho1,
 | |
|                            const float *ortho2, float *data, int *idx,
 | |
|                            float *gain)
 | |
| {
 | |
|     int i, j;
 | |
|     float g, score, best_score;
 | |
|     float vect[BLOCKSIZE];
 | |
| 
 | |
|     *idx = *gain = best_score = 0;
 | |
|     for (i = 0; i < FIXED_CB_SIZE; i++) {
 | |
|         for (j = 0; j < BLOCKSIZE; j++)
 | |
|             vect[j] = cb[i][j];
 | |
|         get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
 | |
|         if (score > best_score) {
 | |
|             best_score = score;
 | |
|             *idx = i;
 | |
|             *gain = g;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Search the two fixed codebooks for the best entry and gain
 | |
|  *
 | |
|  * @param work array used to calculate LPC-filtered vectors
 | |
|  * @param coefs coefficients of the LPC filter
 | |
|  * @param data input data
 | |
|  * @param cba_idx index of the best entry of the adaptive codebook
 | |
|  * @param cb1_idx pointer to variable where the index of the best entry of the
 | |
|  *        first fixed codebook is returned
 | |
|  * @param cb2_idx pointer to variable where the index of the best entry of the
 | |
|  *        second fixed codebook is returned
 | |
|  */
 | |
| static void fixed_cb_search(float *work, const float *coefs, float *data,
 | |
|                             int cba_idx, int *cb1_idx, int *cb2_idx)
 | |
| {
 | |
|     int i, ortho_cb1;
 | |
|     float gain;
 | |
|     float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
 | |
|     float vect[BLOCKSIZE];
 | |
| 
 | |
|     /**
 | |
|      * The filtered vector from the adaptive codebook can be retrieved from
 | |
|      * work, because this function is called just after adaptive_cb_search().
 | |
|      */
 | |
|     if (cba_idx)
 | |
|         memcpy(cba_vect, work, sizeof(cba_vect));
 | |
| 
 | |
|     find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
 | |
|                    data, cb1_idx, &gain);
 | |
| 
 | |
|     /**
 | |
|      * Re-calculate the filtered vector from the vector with maximum match score
 | |
|      * and remove its contribution from input data.
 | |
|      */
 | |
|     if (gain) {
 | |
|         for (i = 0; i < BLOCKSIZE; i++)
 | |
|             vect[i] = ff_cb1_vects[*cb1_idx][i];
 | |
|         ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
 | |
|         if (cba_idx)
 | |
|             orthogonalize(work, cba_vect);
 | |
|         for (i = 0; i < BLOCKSIZE; i++)
 | |
|             data[i] -= gain * work[i];
 | |
|         memcpy(cb1_vect, work, sizeof(cb1_vect));
 | |
|         ortho_cb1 = 1;
 | |
|     } else
 | |
|         ortho_cb1 = 0;
 | |
| 
 | |
|     find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
 | |
|                    ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Encode a subblock of the current frame
 | |
|  *
 | |
|  * @param ractx encoder context
 | |
|  * @param sblock_data input data of the subblock
 | |
|  * @param lpc_coefs coefficients of the LPC filter
 | |
|  * @param rms RMS of the reflection coefficients
 | |
|  * @param pb pointer to PutBitContext of the current frame
 | |
|  */
 | |
| static void ra144_encode_subblock(RA144Context *ractx,
 | |
|                                   const int16_t *sblock_data,
 | |
|                                   const int16_t *lpc_coefs, unsigned int rms,
 | |
|                                   PutBitContext *pb)
 | |
| {
 | |
|     float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
 | |
|     float coefs[LPC_ORDER];
 | |
|     float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
 | |
|     int16_t cba_vect[BLOCKSIZE];
 | |
|     int cba_idx, cb1_idx, cb2_idx, gain;
 | |
|     int i, n, m[3];
 | |
|     float g[3];
 | |
|     float error, best_error;
 | |
| 
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         work[i] = ractx->curr_sblock[BLOCKSIZE + i];
 | |
|         coefs[i] = lpc_coefs[i] * (1/4096.0);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Calculate the zero-input response of the LPC filter and subtract it from
 | |
|      * input data.
 | |
|      */
 | |
|     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
 | |
|                                  LPC_ORDER);
 | |
|     for (i = 0; i < BLOCKSIZE; i++) {
 | |
|         zero[i] = work[LPC_ORDER + i];
 | |
|         data[i] = sblock_data[i] - zero[i];
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Codebook search is performed without taking into account the contribution
 | |
|      * of the previous subblock, since it has been just subtracted from input
 | |
|      * data.
 | |
|      */
 | |
|     memset(work, 0, LPC_ORDER * sizeof(*work));
 | |
| 
 | |
|     cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
 | |
|                                  data);
 | |
|     if (cba_idx) {
 | |
|         /**
 | |
|          * The filtered vector from the adaptive codebook can be retrieved from
 | |
|          * work, see implementation of adaptive_cb_search().
 | |
|          */
 | |
|         memcpy(cba, work + LPC_ORDER, sizeof(cba));
 | |
| 
 | |
|         ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
 | |
|         m[0] = (ff_irms(cba_vect) * rms) >> 12;
 | |
|     }
 | |
|     fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
 | |
|     for (i = 0; i < BLOCKSIZE; i++) {
 | |
|         cb1[i] = ff_cb1_vects[cb1_idx][i];
 | |
|         cb2[i] = ff_cb2_vects[cb2_idx][i];
 | |
|     }
 | |
|     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
 | |
|                                  LPC_ORDER);
 | |
|     memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
 | |
|     m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
 | |
|     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
 | |
|                                  LPC_ORDER);
 | |
|     memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
 | |
|     m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
 | |
|     best_error = FLT_MAX;
 | |
|     gain = 0;
 | |
|     for (n = 0; n < 256; n++) {
 | |
|         g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
 | |
|                (1/4096.0);
 | |
|         g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
 | |
|                (1/4096.0);
 | |
|         error = 0;
 | |
|         if (cba_idx) {
 | |
|             g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
 | |
|                    (1/4096.0);
 | |
|             for (i = 0; i < BLOCKSIZE; i++) {
 | |
|                 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
 | |
|                           g[2] * cb2[i];
 | |
|                 error += (data[i] - sblock_data[i]) *
 | |
|                          (data[i] - sblock_data[i]);
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < BLOCKSIZE; i++) {
 | |
|                 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
 | |
|                 error += (data[i] - sblock_data[i]) *
 | |
|                          (data[i] - sblock_data[i]);
 | |
|             }
 | |
|         }
 | |
|         if (error < best_error) {
 | |
|             best_error = error;
 | |
|             gain = n;
 | |
|         }
 | |
|     }
 | |
|     put_bits(pb, 7, cba_idx);
 | |
|     put_bits(pb, 8, gain);
 | |
|     put_bits(pb, 7, cb1_idx);
 | |
|     put_bits(pb, 7, cb2_idx);
 | |
|     ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
 | |
|                           gain);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | |
|                               const AVFrame *frame, int *got_packet_ptr)
 | |
| {
 | |
|     static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
 | |
|     static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
 | |
|     RA144Context *ractx = avctx->priv_data;
 | |
|     PutBitContext pb;
 | |
|     int32_t lpc_data[NBLOCKS * BLOCKSIZE];
 | |
|     int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
 | |
|     int shift[LPC_ORDER];
 | |
|     int16_t block_coefs[NBLOCKS][LPC_ORDER];
 | |
|     int lpc_refl[LPC_ORDER];    /**< reflection coefficients of the frame */
 | |
|     unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
 | |
|     const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
 | |
|     int energy = 0;
 | |
|     int i, idx, ret;
 | |
| 
 | |
|     if (ractx->last_frame)
 | |
|         return 0;
 | |
| 
 | |
|     if ((ret = ff_alloc_packet(avpkt, FRAMESIZE))) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Since the LPC coefficients are calculated on a frame centered over the
 | |
|      * fourth subframe, to encode a given frame, data from the next frame is
 | |
|      * needed. In each call to this function, the previous frame (whose data are
 | |
|      * saved in the encoder context) is encoded, and data from the current frame
 | |
|      * are saved in the encoder context to be used in the next function call.
 | |
|      */
 | |
|     for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
 | |
|         lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
 | |
|         energy += (lpc_data[i] * lpc_data[i]) >> 4;
 | |
|     }
 | |
|     if (frame) {
 | |
|         int j;
 | |
|         for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
 | |
|             lpc_data[i] = samples[j] >> 2;
 | |
|             energy += (lpc_data[i] * lpc_data[i]) >> 4;
 | |
|         }
 | |
|     }
 | |
|     if (i < NBLOCKS * BLOCKSIZE)
 | |
|         memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
 | |
|     energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
 | |
|                                     32)];
 | |
| 
 | |
|     ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
 | |
|                       LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
 | |
|                       0, ORDER_METHOD_EST, 12, 0);
 | |
|     for (i = 0; i < LPC_ORDER; i++)
 | |
|         block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] <<
 | |
|                                         (12 - shift[LPC_ORDER - 1]));
 | |
| 
 | |
|     /**
 | |
|      * TODO: apply perceptual weighting of the input speech through bandwidth
 | |
|      * expansion of the LPC filter.
 | |
|      */
 | |
| 
 | |
|     if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
 | |
|         /**
 | |
|          * The filter is unstable: use the coefficients of the previous frame.
 | |
|          */
 | |
|         ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
 | |
|         if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
 | |
|             /* the filter is still unstable. set reflection coeffs to zero. */
 | |
|             memset(lpc_refl, 0, sizeof(lpc_refl));
 | |
|         }
 | |
|     }
 | |
|     init_put_bits(&pb, avpkt->data, avpkt->size);
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
 | |
|         put_bits(&pb, bit_sizes[i], idx);
 | |
|         lpc_refl[i] = ff_lpc_refl_cb[i][idx];
 | |
|     }
 | |
|     ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
 | |
|     ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
 | |
|     refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
 | |
|     refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
 | |
|                             energy <= ractx->old_energy,
 | |
|                             ff_t_sqrt(energy * ractx->old_energy) >> 12);
 | |
|     refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
 | |
|     refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
 | |
|     ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
 | |
|     put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
 | |
|     for (i = 0; i < NBLOCKS; i++)
 | |
|         ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
 | |
|                               block_coefs[i], refl_rms[i], &pb);
 | |
|     flush_put_bits(&pb);
 | |
|     ractx->old_energy = energy;
 | |
|     ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
 | |
|     FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
 | |
| 
 | |
|     /* copy input samples to current block for processing in next call */
 | |
|     i = 0;
 | |
|     if (frame) {
 | |
|         for (; i < frame->nb_samples; i++)
 | |
|             ractx->curr_block[i] = samples[i] >> 2;
 | |
| 
 | |
|         if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
 | |
|             return ret;
 | |
|     } else
 | |
|         ractx->last_frame = 1;
 | |
|     memset(&ractx->curr_block[i], 0,
 | |
|            (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
 | |
| 
 | |
|     /* Get the next frame pts/duration */
 | |
|     ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
 | |
|                        &avpkt->duration);
 | |
| 
 | |
|     avpkt->size = FRAMESIZE;
 | |
|     *got_packet_ptr = 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| AVCodec ff_ra_144_encoder = {
 | |
|     .name           = "real_144",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_RA_144,
 | |
|     .priv_data_size = sizeof(RA144Context),
 | |
|     .init           = ra144_encode_init,
 | |
|     .encode2        = ra144_encode_frame,
 | |
|     .close          = ra144_encode_close,
 | |
|     .capabilities   = CODEC_CAP_DELAY | CODEC_CAP_SMALL_LAST_FRAME,
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
 | |
|                                                      AV_SAMPLE_FMT_NONE },
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
 | |
| };
 |