This patch changes the exponent difference threshold in the exponent strategy decision function of the AC-3 encoder. I tested lowering in increments of 100. From 1000 down to 500 generally increased in quality with each step, but 400 was generally much worse. Signed-off-by: Mans Rullgard <mans@mansr.com> (cherry picked from commit c3beafa0f14fd81ab43083f61872cbd5426647cf)
		
			
				
	
	
		
			1865 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1865 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * The simplest AC-3 encoder
 | 
						|
 * Copyright (c) 2000 Fabrice Bellard
 | 
						|
 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 | 
						|
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * The simplest AC-3 encoder.
 | 
						|
 */
 | 
						|
 | 
						|
//#define DEBUG
 | 
						|
 | 
						|
#include "libavcore/audioconvert.h"
 | 
						|
#include "libavutil/crc.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "ac3.h"
 | 
						|
#include "audioconvert.h"
 | 
						|
 | 
						|
 | 
						|
#ifndef CONFIG_AC3ENC_FLOAT
 | 
						|
#define CONFIG_AC3ENC_FLOAT 0
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/** Maximum number of exponent groups. +1 for separate DC exponent. */
 | 
						|
#define AC3_MAX_EXP_GROUPS 85
 | 
						|
 | 
						|
/* stereo rematrixing algorithms */
 | 
						|
#define AC3_REMATRIXING_IS_STATIC 0x1
 | 
						|
#define AC3_REMATRIXING_SUMS    0
 | 
						|
#define AC3_REMATRIXING_NONE    1
 | 
						|
#define AC3_REMATRIXING_ALWAYS  3
 | 
						|
 | 
						|
/** Scale a float value by 2^bits and convert to an integer. */
 | 
						|
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
 | 
						|
 | 
						|
 | 
						|
#if CONFIG_AC3ENC_FLOAT
 | 
						|
#include "ac3enc_float.h"
 | 
						|
#else
 | 
						|
#include "ac3enc_fixed.h"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Data for a single audio block.
 | 
						|
 */
 | 
						|
typedef struct AC3Block {
 | 
						|
    uint8_t  **bap;                             ///< bit allocation pointers (bap)
 | 
						|
    CoefType **mdct_coef;                       ///< MDCT coefficients
 | 
						|
    int32_t  **fixed_coef;                      ///< fixed-point MDCT coefficients
 | 
						|
    uint8_t  **exp;                             ///< original exponents
 | 
						|
    uint8_t  **grouped_exp;                     ///< grouped exponents
 | 
						|
    int16_t  **psd;                             ///< psd per frequency bin
 | 
						|
    int16_t  **band_psd;                        ///< psd per critical band
 | 
						|
    int16_t  **mask;                            ///< masking curve
 | 
						|
    uint16_t **qmant;                           ///< quantized mantissas
 | 
						|
    int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
 | 
						|
    uint8_t  new_rematrixing_strategy;          ///< send new rematrixing flags in this block
 | 
						|
    uint8_t  rematrixing_flags[4];              ///< rematrixing flags
 | 
						|
} AC3Block;
 | 
						|
 | 
						|
/**
 | 
						|
 * AC-3 encoder private context.
 | 
						|
 */
 | 
						|
typedef struct AC3EncodeContext {
 | 
						|
    PutBitContext pb;                       ///< bitstream writer context
 | 
						|
    DSPContext dsp;
 | 
						|
    AC3MDCTContext mdct;                    ///< MDCT context
 | 
						|
 | 
						|
    AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info
 | 
						|
 | 
						|
    int bitstream_id;                       ///< bitstream id                           (bsid)
 | 
						|
    int bitstream_mode;                     ///< bitstream mode                         (bsmod)
 | 
						|
 | 
						|
    int bit_rate;                           ///< target bit rate, in bits-per-second
 | 
						|
    int sample_rate;                        ///< sampling frequency, in Hz
 | 
						|
 | 
						|
    int frame_size_min;                     ///< minimum frame size in case rounding is necessary
 | 
						|
    int frame_size;                         ///< current frame size in bytes
 | 
						|
    int frame_size_code;                    ///< frame size code                        (frmsizecod)
 | 
						|
    uint16_t crc_inv[2];
 | 
						|
    int bits_written;                       ///< bit count    (used to avg. bitrate)
 | 
						|
    int samples_written;                    ///< sample count (used to avg. bitrate)
 | 
						|
 | 
						|
    int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
 | 
						|
    int channels;                           ///< total number of channels               (nchans)
 | 
						|
    int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
 | 
						|
    int lfe_channel;                        ///< channel index of the LFE channel
 | 
						|
    int channel_mode;                       ///< channel mode                           (acmod)
 | 
						|
    const uint8_t *channel_map;             ///< channel map used to reorder channels
 | 
						|
 | 
						|
    int cutoff;                             ///< user-specified cutoff frequency, in Hz
 | 
						|
    int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
 | 
						|
    int nb_coefs[AC3_MAX_CHANNELS];
 | 
						|
 | 
						|
    int rematrixing;                        ///< determines how rematrixing strategy is calculated
 | 
						|
 | 
						|
    /* bitrate allocation control */
 | 
						|
    int slow_gain_code;                     ///< slow gain code                         (sgaincod)
 | 
						|
    int slow_decay_code;                    ///< slow decay code                        (sdcycod)
 | 
						|
    int fast_decay_code;                    ///< fast decay code                        (fdcycod)
 | 
						|
    int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
 | 
						|
    int floor_code;                         ///< floor code                             (floorcod)
 | 
						|
    AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
 | 
						|
    int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
 | 
						|
    int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
 | 
						|
    int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
 | 
						|
    int frame_bits_fixed;                   ///< number of non-coefficient bits for fixed parameters
 | 
						|
    int frame_bits;                         ///< all frame bits except exponents and mantissas
 | 
						|
    int exponent_bits;                      ///< number of bits used for exponents
 | 
						|
 | 
						|
    /* mantissa encoding */
 | 
						|
    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
 | 
						|
    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
 | 
						|
 | 
						|
    SampleType **planar_samples;
 | 
						|
    uint8_t *bap_buffer;
 | 
						|
    uint8_t *bap1_buffer;
 | 
						|
    CoefType *mdct_coef_buffer;
 | 
						|
    int32_t *fixed_coef_buffer;
 | 
						|
    uint8_t *exp_buffer;
 | 
						|
    uint8_t *grouped_exp_buffer;
 | 
						|
    int16_t *psd_buffer;
 | 
						|
    int16_t *band_psd_buffer;
 | 
						|
    int16_t *mask_buffer;
 | 
						|
    uint16_t *qmant_buffer;
 | 
						|
 | 
						|
    uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; ///< exponent strategies
 | 
						|
 | 
						|
    DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
 | 
						|
} AC3EncodeContext;
 | 
						|
 | 
						|
 | 
						|
/* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */
 | 
						|
 | 
						|
static av_cold void mdct_end(AC3MDCTContext *mdct);
 | 
						|
 | 
						|
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
 | 
						|
                             int nbits);
 | 
						|
 | 
						|
static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in);
 | 
						|
 | 
						|
static void apply_window(DSPContext *dsp, SampleType *output, const SampleType *input,
 | 
						|
                         const SampleType *window, int n);
 | 
						|
 | 
						|
static int normalize_samples(AC3EncodeContext *s);
 | 
						|
 | 
						|
static void scale_coefficients(AC3EncodeContext *s);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * LUT for number of exponent groups.
 | 
						|
 * exponent_group_tab[exponent strategy-1][number of coefficients]
 | 
						|
 */
 | 
						|
static uint8_t exponent_group_tab[3][256];
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * List of supported channel layouts.
 | 
						|
 */
 | 
						|
static const int64_t ac3_channel_layouts[] = {
 | 
						|
     AV_CH_LAYOUT_MONO,
 | 
						|
     AV_CH_LAYOUT_STEREO,
 | 
						|
     AV_CH_LAYOUT_2_1,
 | 
						|
     AV_CH_LAYOUT_SURROUND,
 | 
						|
     AV_CH_LAYOUT_2_2,
 | 
						|
     AV_CH_LAYOUT_QUAD,
 | 
						|
     AV_CH_LAYOUT_4POINT0,
 | 
						|
     AV_CH_LAYOUT_5POINT0,
 | 
						|
     AV_CH_LAYOUT_5POINT0_BACK,
 | 
						|
    (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
 | 
						|
     AV_CH_LAYOUT_5POINT1,
 | 
						|
     AV_CH_LAYOUT_5POINT1_BACK,
 | 
						|
     0
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Adjust the frame size to make the average bit rate match the target bit rate.
 | 
						|
 * This is only needed for 11025, 22050, and 44100 sample rates.
 | 
						|
 */
 | 
						|
static void adjust_frame_size(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
 | 
						|
        s->bits_written    -= s->bit_rate;
 | 
						|
        s->samples_written -= s->sample_rate;
 | 
						|
    }
 | 
						|
    s->frame_size = s->frame_size_min +
 | 
						|
                    2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
 | 
						|
    s->bits_written    += s->frame_size * 8;
 | 
						|
    s->samples_written += AC3_FRAME_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Deinterleave input samples.
 | 
						|
 * Channels are reordered from FFmpeg's default order to AC-3 order.
 | 
						|
 */
 | 
						|
static void deinterleave_input_samples(AC3EncodeContext *s,
 | 
						|
                                       const SampleType *samples)
 | 
						|
{
 | 
						|
    int ch, i;
 | 
						|
 | 
						|
    /* deinterleave and remap input samples */
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        const SampleType *sptr;
 | 
						|
        int sinc;
 | 
						|
 | 
						|
        /* copy last 256 samples of previous frame to the start of the current frame */
 | 
						|
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
 | 
						|
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
 | 
						|
 | 
						|
        /* deinterleave */
 | 
						|
        sinc = s->channels;
 | 
						|
        sptr = samples + s->channel_map[ch];
 | 
						|
        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
 | 
						|
            s->planar_samples[ch][i] = *sptr;
 | 
						|
            sptr += sinc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Apply the MDCT to input samples to generate frequency coefficients.
 | 
						|
 * This applies the KBD window and normalizes the input to reduce precision
 | 
						|
 * loss due to fixed-point calculations.
 | 
						|
 */
 | 
						|
static void apply_mdct(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
 | 
						|
 | 
						|
            apply_window(&s->dsp, s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);
 | 
						|
 | 
						|
            block->exp_shift[ch] = normalize_samples(s);
 | 
						|
 | 
						|
            mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize stereo rematrixing.
 | 
						|
 * If the strategy does not change for each frame, set the rematrixing flags.
 | 
						|
 */
 | 
						|
static void rematrixing_init(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO)
 | 
						|
        s->rematrixing = AC3_REMATRIXING_SUMS;
 | 
						|
    else
 | 
						|
        s->rematrixing = AC3_REMATRIXING_NONE;
 | 
						|
    /* NOTE: AC3_REMATRIXING_ALWAYS might be used in
 | 
						|
             the future in conjunction with channel coupling. */
 | 
						|
 | 
						|
    if (s->rematrixing & AC3_REMATRIXING_IS_STATIC) {
 | 
						|
        int flag = (s->rematrixing == AC3_REMATRIXING_ALWAYS);
 | 
						|
        s->blocks[0].new_rematrixing_strategy = 1;
 | 
						|
        memset(s->blocks[0].rematrixing_flags, flag,
 | 
						|
               sizeof(s->blocks[0].rematrixing_flags));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Determine rematrixing flags for each block and band.
 | 
						|
 */
 | 
						|
static void compute_rematrixing_strategy(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int nb_coefs;
 | 
						|
    int blk, bnd, i;
 | 
						|
    AC3Block *block, *block0;
 | 
						|
 | 
						|
    if (s->rematrixing & AC3_REMATRIXING_IS_STATIC)
 | 
						|
        return;
 | 
						|
 | 
						|
    nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]);
 | 
						|
 | 
						|
    s->blocks[0].new_rematrixing_strategy = 1;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        block = &s->blocks[blk];
 | 
						|
        for (bnd = 0; bnd < 4; bnd++) {
 | 
						|
            /* calculate calculate sum of squared coeffs for one band in one block */
 | 
						|
            int start = ff_ac3_rematrix_band_tab[bnd];
 | 
						|
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
 | 
						|
            CoefSumType sum[4] = {0,};
 | 
						|
            for (i = start; i < end; i++) {
 | 
						|
                CoefType lt = block->mdct_coef[0][i];
 | 
						|
                CoefType rt = block->mdct_coef[1][i];
 | 
						|
                CoefType md = lt + rt;
 | 
						|
                CoefType sd = lt - rt;
 | 
						|
                sum[0] += lt * lt;
 | 
						|
                sum[1] += rt * rt;
 | 
						|
                sum[2] += md * md;
 | 
						|
                sum[3] += sd * sd;
 | 
						|
            }
 | 
						|
 | 
						|
            /* compare sums to determine if rematrixing will be used for this band */
 | 
						|
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
 | 
						|
                block->rematrixing_flags[bnd] = 1;
 | 
						|
            else
 | 
						|
                block->rematrixing_flags[bnd] = 0;
 | 
						|
 | 
						|
            /* determine if new rematrixing flags will be sent */
 | 
						|
            if (blk &&
 | 
						|
                !block->new_rematrixing_strategy &&
 | 
						|
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
 | 
						|
                block->new_rematrixing_strategy = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        block0 = block;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Apply stereo rematrixing to coefficients based on rematrixing flags.
 | 
						|
 */
 | 
						|
static void apply_rematrixing(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int nb_coefs;
 | 
						|
    int blk, bnd, i;
 | 
						|
    int start, end;
 | 
						|
    uint8_t *flags;
 | 
						|
 | 
						|
    if (s->rematrixing == AC3_REMATRIXING_NONE)
 | 
						|
        return;
 | 
						|
 | 
						|
    nb_coefs = FFMIN(s->nb_coefs[0], s->nb_coefs[1]);
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        if (block->new_rematrixing_strategy)
 | 
						|
            flags = block->rematrixing_flags;
 | 
						|
        for (bnd = 0; bnd < 4; bnd++) {
 | 
						|
            if (flags[bnd]) {
 | 
						|
                start = ff_ac3_rematrix_band_tab[bnd];
 | 
						|
                end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
 | 
						|
                for (i = start; i < end; i++) {
 | 
						|
                    int32_t lt = block->fixed_coef[0][i];
 | 
						|
                    int32_t rt = block->fixed_coef[1][i];
 | 
						|
                    block->fixed_coef[0][i] = (lt + rt) >> 1;
 | 
						|
                    block->fixed_coef[1][i] = (lt - rt) >> 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize exponent tables.
 | 
						|
 */
 | 
						|
static av_cold void exponent_init(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = 73; i < 256; i++) {
 | 
						|
        exponent_group_tab[0][i] = (i - 1) /  3;
 | 
						|
        exponent_group_tab[1][i] = (i + 2) /  6;
 | 
						|
        exponent_group_tab[2][i] = (i + 8) / 12;
 | 
						|
    }
 | 
						|
    /* LFE */
 | 
						|
    exponent_group_tab[0][7] = 2;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Extract exponents from the MDCT coefficients.
 | 
						|
 * This takes into account the normalization that was done to the input samples
 | 
						|
 * by adjusting the exponents by the exponent shift values.
 | 
						|
 */
 | 
						|
static void extract_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch, i;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            uint8_t *exp   = block->exp[ch];
 | 
						|
            int32_t *coef = block->fixed_coef[ch];
 | 
						|
            int exp_shift  = block->exp_shift[ch];
 | 
						|
            for (i = 0; i < AC3_MAX_COEFS; i++) {
 | 
						|
                int e;
 | 
						|
                int v = abs(coef[i]);
 | 
						|
                if (v == 0)
 | 
						|
                    e = 24;
 | 
						|
                else {
 | 
						|
                    e = 23 - av_log2(v) + exp_shift;
 | 
						|
                    if (e >= 24) {
 | 
						|
                        e = 24;
 | 
						|
                        coef[i] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                exp[i] = e;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Exponent Difference Threshold.
 | 
						|
 * New exponents are sent if their SAD exceed this number.
 | 
						|
 */
 | 
						|
#define EXP_DIFF_THRESHOLD 500
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate exponent strategies for all blocks in a single channel.
 | 
						|
 */
 | 
						|
static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
 | 
						|
                                    uint8_t *exp)
 | 
						|
{
 | 
						|
    int blk, blk1;
 | 
						|
    int exp_diff;
 | 
						|
 | 
						|
    /* estimate if the exponent variation & decide if they should be
 | 
						|
       reused in the next frame */
 | 
						|
    exp_strategy[0] = EXP_NEW;
 | 
						|
    exp += AC3_MAX_COEFS;
 | 
						|
    for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
 | 
						|
        if (exp_diff > EXP_DIFF_THRESHOLD)
 | 
						|
            exp_strategy[blk] = EXP_NEW;
 | 
						|
        else
 | 
						|
            exp_strategy[blk] = EXP_REUSE;
 | 
						|
        exp += AC3_MAX_COEFS;
 | 
						|
    }
 | 
						|
    emms_c();
 | 
						|
 | 
						|
    /* now select the encoding strategy type : if exponents are often
 | 
						|
       recoded, we use a coarse encoding */
 | 
						|
    blk = 0;
 | 
						|
    while (blk < AC3_MAX_BLOCKS) {
 | 
						|
        blk1 = blk + 1;
 | 
						|
        while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
 | 
						|
            blk1++;
 | 
						|
        switch (blk1 - blk) {
 | 
						|
        case 1:  exp_strategy[blk] = EXP_D45; break;
 | 
						|
        case 2:
 | 
						|
        case 3:  exp_strategy[blk] = EXP_D25; break;
 | 
						|
        default: exp_strategy[blk] = EXP_D15; break;
 | 
						|
        }
 | 
						|
        blk = blk1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate exponent strategies for all channels.
 | 
						|
 * Array arrangement is reversed to simplify the per-channel calculation.
 | 
						|
 */
 | 
						|
static void compute_exp_strategy(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, blk;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        compute_exp_strategy_ch(s, s->exp_strategy[ch], s->blocks[0].exp[ch]);
 | 
						|
    }
 | 
						|
    if (s->lfe_on) {
 | 
						|
        ch = s->lfe_channel;
 | 
						|
        s->exp_strategy[ch][0] = EXP_D15;
 | 
						|
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->exp_strategy[ch][blk] = EXP_REUSE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set each encoded exponent in a block to the minimum of itself and the
 | 
						|
 * exponents in the same frequency bin of up to 5 following blocks.
 | 
						|
 */
 | 
						|
static void exponent_min(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
 | 
						|
{
 | 
						|
    int blk, i;
 | 
						|
 | 
						|
    if (!num_reuse_blocks)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (i = 0; i < nb_coefs; i++) {
 | 
						|
        uint8_t min_exp = *exp;
 | 
						|
        uint8_t *exp1 = exp + AC3_MAX_COEFS;
 | 
						|
        for (blk = 0; blk < num_reuse_blocks; blk++) {
 | 
						|
            uint8_t next_exp = *exp1;
 | 
						|
            if (next_exp < min_exp)
 | 
						|
                min_exp = next_exp;
 | 
						|
            exp1 += AC3_MAX_COEFS;
 | 
						|
        }
 | 
						|
        *exp++ = min_exp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Update the exponents so that they are the ones the decoder will decode.
 | 
						|
 */
 | 
						|
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
 | 
						|
{
 | 
						|
    int nb_groups, i, k;
 | 
						|
 | 
						|
    nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;
 | 
						|
 | 
						|
    /* for each group, compute the minimum exponent */
 | 
						|
    switch(exp_strategy) {
 | 
						|
    case EXP_D25:
 | 
						|
        for (i = 1, k = 1; i <= nb_groups; i++) {
 | 
						|
            uint8_t exp_min = exp[k];
 | 
						|
            if (exp[k+1] < exp_min)
 | 
						|
                exp_min = exp[k+1];
 | 
						|
            exp[i] = exp_min;
 | 
						|
            k += 2;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXP_D45:
 | 
						|
        for (i = 1, k = 1; i <= nb_groups; i++) {
 | 
						|
            uint8_t exp_min = exp[k];
 | 
						|
            if (exp[k+1] < exp_min)
 | 
						|
                exp_min = exp[k+1];
 | 
						|
            if (exp[k+2] < exp_min)
 | 
						|
                exp_min = exp[k+2];
 | 
						|
            if (exp[k+3] < exp_min)
 | 
						|
                exp_min = exp[k+3];
 | 
						|
            exp[i] = exp_min;
 | 
						|
            k += 4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* constraint for DC exponent */
 | 
						|
    if (exp[0] > 15)
 | 
						|
        exp[0] = 15;
 | 
						|
 | 
						|
    /* decrease the delta between each groups to within 2 so that they can be
 | 
						|
       differentially encoded */
 | 
						|
    for (i = 1; i <= nb_groups; i++)
 | 
						|
        exp[i] = FFMIN(exp[i], exp[i-1] + 2);
 | 
						|
    i--;
 | 
						|
    while (--i >= 0)
 | 
						|
        exp[i] = FFMIN(exp[i], exp[i+1] + 2);
 | 
						|
 | 
						|
    /* now we have the exponent values the decoder will see */
 | 
						|
    switch (exp_strategy) {
 | 
						|
    case EXP_D25:
 | 
						|
        for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
 | 
						|
            uint8_t exp1 = exp[i];
 | 
						|
            exp[k--] = exp1;
 | 
						|
            exp[k--] = exp1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXP_D45:
 | 
						|
        for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
 | 
						|
            exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
 | 
						|
            k -= 4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode exponents from original extracted form to what the decoder will see.
 | 
						|
 * This copies and groups exponents based on exponent strategy and reduces
 | 
						|
 * deltas between adjacent exponent groups so that they can be differentially
 | 
						|
 * encoded.
 | 
						|
 */
 | 
						|
static void encode_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, blk1, ch;
 | 
						|
    uint8_t *exp, *exp1, *exp_strategy;
 | 
						|
    int nb_coefs, num_reuse_blocks;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        exp          = s->blocks[0].exp[ch];
 | 
						|
        exp_strategy = s->exp_strategy[ch];
 | 
						|
        nb_coefs     = s->nb_coefs[ch];
 | 
						|
 | 
						|
        blk = 0;
 | 
						|
        while (blk < AC3_MAX_BLOCKS) {
 | 
						|
            blk1 = blk + 1;
 | 
						|
 | 
						|
            /* count the number of EXP_REUSE blocks after the current block */
 | 
						|
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
 | 
						|
                blk1++;
 | 
						|
            num_reuse_blocks = blk1 - blk - 1;
 | 
						|
 | 
						|
            /* for the EXP_REUSE case we select the min of the exponents */
 | 
						|
            exponent_min(exp, num_reuse_blocks, nb_coefs);
 | 
						|
 | 
						|
            encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk]);
 | 
						|
 | 
						|
            /* copy encoded exponents for reuse case */
 | 
						|
            exp1 = exp + AC3_MAX_COEFS;
 | 
						|
            while (blk < blk1-1) {
 | 
						|
                memcpy(exp1, exp, nb_coefs * sizeof(*exp));
 | 
						|
                exp1 += AC3_MAX_COEFS;
 | 
						|
                blk++;
 | 
						|
            }
 | 
						|
            blk = blk1;
 | 
						|
            exp = exp1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Group exponents.
 | 
						|
 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
 | 
						|
 * varies depending on exponent strategy and bandwidth.
 | 
						|
 */
 | 
						|
static void group_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch, i;
 | 
						|
    int group_size, nb_groups, bit_count;
 | 
						|
    uint8_t *p;
 | 
						|
    int delta0, delta1, delta2;
 | 
						|
    int exp0, exp1;
 | 
						|
 | 
						|
    bit_count = 0;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            int exp_strategy = s->exp_strategy[ch][blk];
 | 
						|
            if (exp_strategy == EXP_REUSE)
 | 
						|
                continue;
 | 
						|
            group_size = exp_strategy + (exp_strategy == EXP_D45);
 | 
						|
            nb_groups = exponent_group_tab[exp_strategy-1][s->nb_coefs[ch]];
 | 
						|
            bit_count += 4 + (nb_groups * 7);
 | 
						|
            p = block->exp[ch];
 | 
						|
 | 
						|
            /* DC exponent */
 | 
						|
            exp1 = *p++;
 | 
						|
            block->grouped_exp[ch][0] = exp1;
 | 
						|
 | 
						|
            /* remaining exponents are delta encoded */
 | 
						|
            for (i = 1; i <= nb_groups; i++) {
 | 
						|
                /* merge three delta in one code */
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta0 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta1 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta2 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
                block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->exponent_bits = bit_count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
 | 
						|
 * Extract exponents from MDCT coefficients, calculate exponent strategies,
 | 
						|
 * and encode final exponents.
 | 
						|
 */
 | 
						|
static void process_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    extract_exponents(s);
 | 
						|
 | 
						|
    compute_exp_strategy(s);
 | 
						|
 | 
						|
    encode_exponents(s);
 | 
						|
 | 
						|
    group_exponents(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Count frame bits that are based solely on fixed parameters.
 | 
						|
 * This only has to be run once when the encoder is initialized.
 | 
						|
 */
 | 
						|
static void count_frame_bits_fixed(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
 | 
						|
    int blk;
 | 
						|
    int frame_bits;
 | 
						|
 | 
						|
    /* assumptions:
 | 
						|
     *   no dynamic range codes
 | 
						|
     *   no channel coupling
 | 
						|
     *   bit allocation parameters do not change between blocks
 | 
						|
     *   SNR offsets do not change between blocks
 | 
						|
     *   no delta bit allocation
 | 
						|
     *   no skipped data
 | 
						|
     *   no auxilliary data
 | 
						|
     */
 | 
						|
 | 
						|
    /* header size */
 | 
						|
    frame_bits = 65;
 | 
						|
    frame_bits += frame_bits_inc[s->channel_mode];
 | 
						|
 | 
						|
    /* audio blocks */
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
 | 
						|
        if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
            frame_bits++; /* rematstr */
 | 
						|
        }
 | 
						|
        frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
 | 
						|
        if (s->lfe_on)
 | 
						|
            frame_bits++; /* lfeexpstr */
 | 
						|
        frame_bits++; /* baie */
 | 
						|
        frame_bits++; /* snr */
 | 
						|
        frame_bits += 2; /* delta / skip */
 | 
						|
    }
 | 
						|
    frame_bits++; /* cplinu for block 0 */
 | 
						|
    /* bit alloc info */
 | 
						|
    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
 | 
						|
    /* csnroffset[6] */
 | 
						|
    /* (fsnoffset[4] + fgaincod[4]) * c */
 | 
						|
    frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
 | 
						|
 | 
						|
    /* auxdatae, crcrsv */
 | 
						|
    frame_bits += 2;
 | 
						|
 | 
						|
    /* CRC */
 | 
						|
    frame_bits += 16;
 | 
						|
 | 
						|
    s->frame_bits_fixed = frame_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize bit allocation.
 | 
						|
 * Set default parameter codes and calculate parameter values.
 | 
						|
 */
 | 
						|
static void bit_alloc_init(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
 | 
						|
    /* init default parameters */
 | 
						|
    s->slow_decay_code = 2;
 | 
						|
    s->fast_decay_code = 1;
 | 
						|
    s->slow_gain_code  = 1;
 | 
						|
    s->db_per_bit_code = 3;
 | 
						|
    s->floor_code      = 4;
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        s->fast_gain_code[ch] = 4;
 | 
						|
 | 
						|
    /* initial snr offset */
 | 
						|
    s->coarse_snr_offset = 40;
 | 
						|
 | 
						|
    /* compute real values */
 | 
						|
    /* currently none of these values change during encoding, so we can just
 | 
						|
       set them once at initialization */
 | 
						|
    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
 | 
						|
    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
 | 
						|
    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
 | 
						|
    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
 | 
						|
    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
 | 
						|
 | 
						|
    count_frame_bits_fixed(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Count the bits used to encode the frame, minus exponents and mantissas.
 | 
						|
 * Bits based on fixed parameters have already been counted, so now we just
 | 
						|
 * have to add the bits based on parameters that change during encoding.
 | 
						|
 */
 | 
						|
static void count_frame_bits(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    int frame_bits = 0;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        /* stereo rematrixing */
 | 
						|
        if (s->channel_mode == AC3_CHMODE_STEREO &&
 | 
						|
            s->blocks[blk].new_rematrixing_strategy) {
 | 
						|
            frame_bits += 4;
 | 
						|
        }
 | 
						|
 | 
						|
        for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
            if (s->exp_strategy[ch][blk] != EXP_REUSE)
 | 
						|
                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    s->frame_bits = s->frame_bits_fixed + frame_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate the number of bits needed to encode a set of mantissas.
 | 
						|
 */
 | 
						|
static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
 | 
						|
{
 | 
						|
    int bits, b, i;
 | 
						|
 | 
						|
    bits = 0;
 | 
						|
    for (i = 0; i < nb_coefs; i++) {
 | 
						|
        b = bap[i];
 | 
						|
        if (b <= 4) {
 | 
						|
            // bap=1 to bap=4 will be counted in compute_mantissa_size_final
 | 
						|
            mant_cnt[b]++;
 | 
						|
        } else if (b <= 13) {
 | 
						|
            // bap=5 to bap=13 use (bap-1) bits
 | 
						|
            bits += b - 1;
 | 
						|
        } else {
 | 
						|
            // bap=14 uses 14 bits and bap=15 uses 16 bits
 | 
						|
            bits += (b == 14) ? 14 : 16;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Finalize the mantissa bit count by adding in the grouped mantissas.
 | 
						|
 */
 | 
						|
static int compute_mantissa_size_final(int mant_cnt[5])
 | 
						|
{
 | 
						|
    // bap=1 : 3 mantissas in 5 bits
 | 
						|
    int bits = (mant_cnt[1] / 3) * 5;
 | 
						|
    // bap=2 : 3 mantissas in 7 bits
 | 
						|
    // bap=4 : 2 mantissas in 7 bits
 | 
						|
    bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
 | 
						|
    // bap=3 : each mantissa is 3 bits
 | 
						|
    bits += mant_cnt[3] * 3;
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate masking curve based on the final exponents.
 | 
						|
 * Also calculate the power spectral densities to use in future calculations.
 | 
						|
 */
 | 
						|
static void bit_alloc_masking(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            /* We only need psd and mask for calculating bap.
 | 
						|
               Since we currently do not calculate bap when exponent
 | 
						|
               strategy is EXP_REUSE we do not need to calculate psd or mask. */
 | 
						|
            if (s->exp_strategy[ch][blk] != EXP_REUSE) {
 | 
						|
                ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
 | 
						|
                                          s->nb_coefs[ch],
 | 
						|
                                          block->psd[ch], block->band_psd[ch]);
 | 
						|
                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
 | 
						|
                                           0, s->nb_coefs[ch],
 | 
						|
                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
 | 
						|
                                           ch == s->lfe_channel,
 | 
						|
                                           DBA_NONE, 0, NULL, NULL, NULL,
 | 
						|
                                           block->mask[ch]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Ensure that bap for each block and channel point to the current bap_buffer.
 | 
						|
 * They may have been switched during the bit allocation search.
 | 
						|
 */
 | 
						|
static void reset_block_bap(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    if (s->blocks[0].bap[0] == s->bap_buffer)
 | 
						|
        return;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Run the bit allocation with a given SNR offset.
 | 
						|
 * This calculates the bit allocation pointers that will be used to determine
 | 
						|
 * the quantization of each mantissa.
 | 
						|
 * @return the number of bits needed for mantissas if the given SNR offset is
 | 
						|
 *         is used.
 | 
						|
 */
 | 
						|
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    int mantissa_bits;
 | 
						|
    int mant_cnt[5];
 | 
						|
 | 
						|
    snr_offset = (snr_offset - 240) << 2;
 | 
						|
 | 
						|
    reset_block_bap(s);
 | 
						|
    mantissa_bits = 0;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        // initialize grouped mantissa counts. these are set so that they are
 | 
						|
        // padded to the next whole group size when bits are counted in
 | 
						|
        // compute_mantissa_size_final
 | 
						|
        mant_cnt[0] = mant_cnt[3] = 0;
 | 
						|
        mant_cnt[1] = mant_cnt[2] = 2;
 | 
						|
        mant_cnt[4] = 1;
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            /* Currently the only bit allocation parameters which vary across
 | 
						|
               blocks within a frame are the exponent values.  We can take
 | 
						|
               advantage of that by reusing the bit allocation pointers
 | 
						|
               whenever we reuse exponents. */
 | 
						|
            if (s->exp_strategy[ch][blk] == EXP_REUSE) {
 | 
						|
                memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
 | 
						|
            } else {
 | 
						|
                ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
 | 
						|
                                          s->nb_coefs[ch], snr_offset,
 | 
						|
                                          s->bit_alloc.floor, ff_ac3_bap_tab,
 | 
						|
                                          block->bap[ch]);
 | 
						|
            }
 | 
						|
            mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
 | 
						|
        }
 | 
						|
        mantissa_bits += compute_mantissa_size_final(mant_cnt);
 | 
						|
    }
 | 
						|
    return mantissa_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Constant bitrate bit allocation search.
 | 
						|
 * Find the largest SNR offset that will allow data to fit in the frame.
 | 
						|
 */
 | 
						|
static int cbr_bit_allocation(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
    int bits_left;
 | 
						|
    int snr_offset, snr_incr;
 | 
						|
 | 
						|
    bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
 | 
						|
 | 
						|
    snr_offset = s->coarse_snr_offset << 4;
 | 
						|
 | 
						|
    /* if previous frame SNR offset was 1023, check if current frame can also
 | 
						|
       use SNR offset of 1023. if so, skip the search. */
 | 
						|
    if ((snr_offset | s->fine_snr_offset[0]) == 1023) {
 | 
						|
        if (bit_alloc(s, 1023) <= bits_left)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    while (snr_offset >= 0 &&
 | 
						|
           bit_alloc(s, snr_offset) > bits_left) {
 | 
						|
        snr_offset -= 64;
 | 
						|
    }
 | 
						|
    if (snr_offset < 0)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
 | 
						|
    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
    for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
 | 
						|
        while (snr_offset + snr_incr <= 1023 &&
 | 
						|
               bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
 | 
						|
            snr_offset += snr_incr;
 | 
						|
            FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
    reset_block_bap(s);
 | 
						|
 | 
						|
    s->coarse_snr_offset = snr_offset >> 4;
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        s->fine_snr_offset[ch] = snr_offset & 0xF;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Downgrade exponent strategies to reduce the bits used by the exponents.
 | 
						|
 * This is a fallback for when bit allocation fails with the normal exponent
 | 
						|
 * strategies.  Each time this function is run it only downgrades the
 | 
						|
 * strategy in 1 channel of 1 block.
 | 
						|
 * @return non-zero if downgrade was unsuccessful
 | 
						|
 */
 | 
						|
static int downgrade_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, blk;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
 | 
						|
            if (s->exp_strategy[ch][blk] == EXP_D15) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_D25;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
 | 
						|
            if (s->exp_strategy[ch][blk] == EXP_D25) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_D45;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
 | 
						|
           the block number > 0 */
 | 
						|
        for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
 | 
						|
            if (s->exp_strategy[ch][blk] > EXP_REUSE) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_REUSE;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
 | 
						|
 * This is a second fallback for when bit allocation still fails after exponents
 | 
						|
 * have been downgraded.
 | 
						|
 * @return non-zero if bandwidth reduction was unsuccessful
 | 
						|
 */
 | 
						|
static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
 | 
						|
    if (s->bandwidth_code[0] > min_bw_code) {
 | 
						|
        for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
            s->bandwidth_code[ch]--;
 | 
						|
            s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Perform bit allocation search.
 | 
						|
 * Finds the SNR offset value that maximizes quality and fits in the specified
 | 
						|
 * frame size.  Output is the SNR offset and a set of bit allocation pointers
 | 
						|
 * used to quantize the mantissas.
 | 
						|
 */
 | 
						|
static int compute_bit_allocation(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    count_frame_bits(s);
 | 
						|
 | 
						|
    bit_alloc_masking(s);
 | 
						|
 | 
						|
    ret = cbr_bit_allocation(s);
 | 
						|
    while (ret) {
 | 
						|
        /* fallback 1: downgrade exponents */
 | 
						|
        if (!downgrade_exponents(s)) {
 | 
						|
            extract_exponents(s);
 | 
						|
            encode_exponents(s);
 | 
						|
            group_exponents(s);
 | 
						|
            ret = compute_bit_allocation(s);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* fallback 2: reduce bandwidth */
 | 
						|
        /* only do this if the user has not specified a specific cutoff
 | 
						|
           frequency */
 | 
						|
        if (!s->cutoff && !reduce_bandwidth(s, 0)) {
 | 
						|
            process_exponents(s);
 | 
						|
            ret = compute_bit_allocation(s);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* fallbacks were not enough... */
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Symmetric quantization on 'levels' levels.
 | 
						|
 */
 | 
						|
static inline int sym_quant(int c, int e, int levels)
 | 
						|
{
 | 
						|
    int v;
 | 
						|
 | 
						|
    if (c >= 0) {
 | 
						|
        v = (levels * (c << e)) >> 24;
 | 
						|
        v = (v + 1) >> 1;
 | 
						|
        v = (levels >> 1) + v;
 | 
						|
    } else {
 | 
						|
        v = (levels * ((-c) << e)) >> 24;
 | 
						|
        v = (v + 1) >> 1;
 | 
						|
        v = (levels >> 1) - v;
 | 
						|
    }
 | 
						|
    assert(v >= 0 && v < levels);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Asymmetric quantization on 2^qbits levels.
 | 
						|
 */
 | 
						|
static inline int asym_quant(int c, int e, int qbits)
 | 
						|
{
 | 
						|
    int lshift, m, v;
 | 
						|
 | 
						|
    lshift = e + qbits - 24;
 | 
						|
    if (lshift >= 0)
 | 
						|
        v = c << lshift;
 | 
						|
    else
 | 
						|
        v = c >> (-lshift);
 | 
						|
    /* rounding */
 | 
						|
    v = (v + 1) >> 1;
 | 
						|
    m = (1 << (qbits-1));
 | 
						|
    if (v >= m)
 | 
						|
        v = m - 1;
 | 
						|
    assert(v >= -m);
 | 
						|
    return v & ((1 << qbits)-1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Quantize a set of mantissas for a single channel in a single block.
 | 
						|
 */
 | 
						|
static void quantize_mantissas_blk_ch(AC3EncodeContext *s, int32_t *fixed_coef,
 | 
						|
                                      int8_t exp_shift, uint8_t *exp,
 | 
						|
                                      uint8_t *bap, uint16_t *qmant, int n)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
        int v;
 | 
						|
        int c = fixed_coef[i];
 | 
						|
        int e = exp[i] - exp_shift;
 | 
						|
        int b = bap[i];
 | 
						|
        switch (b) {
 | 
						|
        case 0:
 | 
						|
            v = 0;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            v = sym_quant(c, e, 3);
 | 
						|
            switch (s->mant1_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant1_ptr = &qmant[i];
 | 
						|
                v = 9 * v;
 | 
						|
                s->mant1_cnt = 1;
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                *s->qmant1_ptr += 3 * v;
 | 
						|
                s->mant1_cnt = 2;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant1_ptr += v;
 | 
						|
                s->mant1_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            v = sym_quant(c, e, 5);
 | 
						|
            switch (s->mant2_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant2_ptr = &qmant[i];
 | 
						|
                v = 25 * v;
 | 
						|
                s->mant2_cnt = 1;
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                *s->qmant2_ptr += 5 * v;
 | 
						|
                s->mant2_cnt = 2;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant2_ptr += v;
 | 
						|
                s->mant2_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            v = sym_quant(c, e, 7);
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            v = sym_quant(c, e, 11);
 | 
						|
            switch (s->mant4_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant4_ptr = &qmant[i];
 | 
						|
                v = 11 * v;
 | 
						|
                s->mant4_cnt = 1;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant4_ptr += v;
 | 
						|
                s->mant4_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 5:
 | 
						|
            v = sym_quant(c, e, 15);
 | 
						|
            break;
 | 
						|
        case 14:
 | 
						|
            v = asym_quant(c, e, 14);
 | 
						|
            break;
 | 
						|
        case 15:
 | 
						|
            v = asym_quant(c, e, 16);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            v = asym_quant(c, e, b - 1);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        qmant[i] = v;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
 | 
						|
 */
 | 
						|
static void quantize_mantissas(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        s->mant1_cnt  = s->mant2_cnt  = s->mant4_cnt  = 0;
 | 
						|
        s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
 | 
						|
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            quantize_mantissas_blk_ch(s, block->fixed_coef[ch], block->exp_shift[ch],
 | 
						|
                                      block->exp[ch], block->bap[ch],
 | 
						|
                                      block->qmant[ch], s->nb_coefs[ch]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write the AC-3 frame header to the output bitstream.
 | 
						|
 */
 | 
						|
static void output_frame_header(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
 | 
						|
    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
 | 
						|
    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
 | 
						|
    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
 | 
						|
    put_bits(&s->pb, 5,  s->bitstream_id);
 | 
						|
    put_bits(&s->pb, 3,  s->bitstream_mode);
 | 
						|
    put_bits(&s->pb, 3,  s->channel_mode);
 | 
						|
    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
 | 
						|
        put_bits(&s->pb, 2, 1);     /* XXX -4.5 dB */
 | 
						|
    if (s->channel_mode & 0x04)
 | 
						|
        put_bits(&s->pb, 2, 1);     /* XXX -6 dB */
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO)
 | 
						|
        put_bits(&s->pb, 2, 0);     /* surround not indicated */
 | 
						|
    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
 | 
						|
    put_bits(&s->pb, 5, 31);        /* dialog norm: -31 db */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no compression control word */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no lang code */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no audio production info */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no copyright */
 | 
						|
    put_bits(&s->pb, 1, 1);         /* original bitstream */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no time code 1 */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no time code 2 */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write one audio block to the output bitstream.
 | 
						|
 */
 | 
						|
static void output_audio_block(AC3EncodeContext *s, int blk)
 | 
						|
{
 | 
						|
    int ch, i, baie, rbnd;
 | 
						|
    AC3Block *block = &s->blocks[blk];
 | 
						|
 | 
						|
    /* block switching */
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++)
 | 
						|
        put_bits(&s->pb, 1, 0);
 | 
						|
 | 
						|
    /* dither flags */
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++)
 | 
						|
        put_bits(&s->pb, 1, 1);
 | 
						|
 | 
						|
    /* dynamic range codes */
 | 
						|
    put_bits(&s->pb, 1, 0);
 | 
						|
 | 
						|
    /* channel coupling */
 | 
						|
    if (!blk) {
 | 
						|
        put_bits(&s->pb, 1, 1); /* coupling strategy present */
 | 
						|
        put_bits(&s->pb, 1, 0); /* no coupling strategy */
 | 
						|
    } else {
 | 
						|
        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
 | 
						|
    }
 | 
						|
 | 
						|
    /* stereo rematrixing */
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
        put_bits(&s->pb, 1, block->new_rematrixing_strategy);
 | 
						|
        if (block->new_rematrixing_strategy) {
 | 
						|
            /* rematrixing flags */
 | 
						|
            for (rbnd = 0; rbnd < 4; rbnd++)
 | 
						|
                put_bits(&s->pb, 1, block->rematrixing_flags[rbnd]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* exponent strategy */
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++)
 | 
						|
        put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
 | 
						|
    if (s->lfe_on)
 | 
						|
        put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
 | 
						|
 | 
						|
    /* bandwidth */
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        if (s->exp_strategy[ch][blk] != EXP_REUSE)
 | 
						|
            put_bits(&s->pb, 6, s->bandwidth_code[ch]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* exponents */
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        int nb_groups;
 | 
						|
 | 
						|
        if (s->exp_strategy[ch][blk] == EXP_REUSE)
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* DC exponent */
 | 
						|
        put_bits(&s->pb, 4, block->grouped_exp[ch][0]);
 | 
						|
 | 
						|
        /* exponent groups */
 | 
						|
        nb_groups = exponent_group_tab[s->exp_strategy[ch][blk]-1][s->nb_coefs[ch]];
 | 
						|
        for (i = 1; i <= nb_groups; i++)
 | 
						|
            put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
 | 
						|
 | 
						|
        /* gain range info */
 | 
						|
        if (ch != s->lfe_channel)
 | 
						|
            put_bits(&s->pb, 2, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* bit allocation info */
 | 
						|
    baie = (blk == 0);
 | 
						|
    put_bits(&s->pb, 1, baie);
 | 
						|
    if (baie) {
 | 
						|
        put_bits(&s->pb, 2, s->slow_decay_code);
 | 
						|
        put_bits(&s->pb, 2, s->fast_decay_code);
 | 
						|
        put_bits(&s->pb, 2, s->slow_gain_code);
 | 
						|
        put_bits(&s->pb, 2, s->db_per_bit_code);
 | 
						|
        put_bits(&s->pb, 3, s->floor_code);
 | 
						|
    }
 | 
						|
 | 
						|
    /* snr offset */
 | 
						|
    put_bits(&s->pb, 1, baie);
 | 
						|
    if (baie) {
 | 
						|
        put_bits(&s->pb, 6, s->coarse_snr_offset);
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
 | 
						|
            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no data to skip */
 | 
						|
 | 
						|
    /* mantissas */
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        int b, q;
 | 
						|
        for (i = 0; i < s->nb_coefs[ch]; i++) {
 | 
						|
            q = block->qmant[ch][i];
 | 
						|
            b = block->bap[ch][i];
 | 
						|
            switch (b) {
 | 
						|
            case 0:                                         break;
 | 
						|
            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
 | 
						|
            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
 | 
						|
            case 3:               put_bits(&s->pb,   3, q); break;
 | 
						|
            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
 | 
						|
            case 14:              put_bits(&s->pb,  14, q); break;
 | 
						|
            case 15:              put_bits(&s->pb,  16, q); break;
 | 
						|
            default:              put_bits(&s->pb, b-1, q); break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** CRC-16 Polynomial */
 | 
						|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
 | 
						|
 | 
						|
 | 
						|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int c;
 | 
						|
 | 
						|
    c = 0;
 | 
						|
    while (a) {
 | 
						|
        if (a & 1)
 | 
						|
            c ^= b;
 | 
						|
        a = a >> 1;
 | 
						|
        b = b << 1;
 | 
						|
        if (b & (1 << 16))
 | 
						|
            b ^= poly;
 | 
						|
    }
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int r;
 | 
						|
    r = 1;
 | 
						|
    while (n) {
 | 
						|
        if (n & 1)
 | 
						|
            r = mul_poly(r, a, poly);
 | 
						|
        a = mul_poly(a, a, poly);
 | 
						|
        n >>= 1;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Fill the end of the frame with 0's and compute the two CRCs.
 | 
						|
 */
 | 
						|
static void output_frame_end(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
 | 
						|
    int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
 | 
						|
    uint8_t *frame;
 | 
						|
 | 
						|
    frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
 | 
						|
 | 
						|
    /* pad the remainder of the frame with zeros */
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    frame = s->pb.buf;
 | 
						|
    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
 | 
						|
    assert(pad_bytes >= 0);
 | 
						|
    if (pad_bytes > 0)
 | 
						|
        memset(put_bits_ptr(&s->pb), 0, pad_bytes);
 | 
						|
 | 
						|
    /* compute crc1 */
 | 
						|
    /* this is not so easy because it is at the beginning of the data... */
 | 
						|
    crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
 | 
						|
    crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
 | 
						|
    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
 | 
						|
    AV_WB16(frame + 2, crc1);
 | 
						|
 | 
						|
    /* compute crc2 */
 | 
						|
    crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
 | 
						|
                          s->frame_size - frame_size_58 - 3);
 | 
						|
    crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
 | 
						|
    /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
 | 
						|
    if (crc2 == 0x770B) {
 | 
						|
        frame[s->frame_size - 3] ^= 0x1;
 | 
						|
        crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
 | 
						|
    }
 | 
						|
    crc2 = av_bswap16(crc2);
 | 
						|
    AV_WB16(frame + s->frame_size - 2, crc2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write the frame to the output bitstream.
 | 
						|
 */
 | 
						|
static void output_frame(AC3EncodeContext *s, unsigned char *frame)
 | 
						|
{
 | 
						|
    int blk;
 | 
						|
 | 
						|
    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
 | 
						|
 | 
						|
    output_frame_header(s);
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
        output_audio_block(s, blk);
 | 
						|
 | 
						|
    output_frame_end(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode a single AC-3 frame.
 | 
						|
 */
 | 
						|
static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
 | 
						|
                            int buf_size, void *data)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    const SampleType *samples = data;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (s->bit_alloc.sr_code == 1)
 | 
						|
        adjust_frame_size(s);
 | 
						|
 | 
						|
    deinterleave_input_samples(s, samples);
 | 
						|
 | 
						|
    apply_mdct(s);
 | 
						|
 | 
						|
    compute_rematrixing_strategy(s);
 | 
						|
 | 
						|
    scale_coefficients(s);
 | 
						|
 | 
						|
    apply_rematrixing(s);
 | 
						|
 | 
						|
    process_exponents(s);
 | 
						|
 | 
						|
    ret = compute_bit_allocation(s);
 | 
						|
    if (ret) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    quantize_mantissas(s);
 | 
						|
 | 
						|
    output_frame(s, frame);
 | 
						|
 | 
						|
    return s->frame_size;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Finalize encoding and free any memory allocated by the encoder.
 | 
						|
 */
 | 
						|
static av_cold int ac3_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        av_freep(&s->planar_samples[ch]);
 | 
						|
    av_freep(&s->planar_samples);
 | 
						|
    av_freep(&s->bap_buffer);
 | 
						|
    av_freep(&s->bap1_buffer);
 | 
						|
    av_freep(&s->mdct_coef_buffer);
 | 
						|
    av_freep(&s->fixed_coef_buffer);
 | 
						|
    av_freep(&s->exp_buffer);
 | 
						|
    av_freep(&s->grouped_exp_buffer);
 | 
						|
    av_freep(&s->psd_buffer);
 | 
						|
    av_freep(&s->band_psd_buffer);
 | 
						|
    av_freep(&s->mask_buffer);
 | 
						|
    av_freep(&s->qmant_buffer);
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        av_freep(&block->bap);
 | 
						|
        av_freep(&block->mdct_coef);
 | 
						|
        av_freep(&block->fixed_coef);
 | 
						|
        av_freep(&block->exp);
 | 
						|
        av_freep(&block->grouped_exp);
 | 
						|
        av_freep(&block->psd);
 | 
						|
        av_freep(&block->band_psd);
 | 
						|
        av_freep(&block->mask);
 | 
						|
        av_freep(&block->qmant);
 | 
						|
    }
 | 
						|
 | 
						|
    mdct_end(&s->mdct);
 | 
						|
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set channel information during initialization.
 | 
						|
 */
 | 
						|
static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
 | 
						|
                                    int64_t *channel_layout)
 | 
						|
{
 | 
						|
    int ch_layout;
 | 
						|
 | 
						|
    if (channels < 1 || channels > AC3_MAX_CHANNELS)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    if ((uint64_t)*channel_layout > 0x7FF)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    ch_layout = *channel_layout;
 | 
						|
    if (!ch_layout)
 | 
						|
        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
 | 
						|
    if (av_get_channel_layout_nb_channels(ch_layout) != channels)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
 | 
						|
    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
 | 
						|
    s->channels     = channels;
 | 
						|
    s->fbw_channels = channels - s->lfe_on;
 | 
						|
    s->lfe_channel  = s->lfe_on ? s->fbw_channels : -1;
 | 
						|
    if (s->lfe_on)
 | 
						|
        ch_layout -= AV_CH_LOW_FREQUENCY;
 | 
						|
 | 
						|
    switch (ch_layout) {
 | 
						|
    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
 | 
						|
    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
 | 
						|
    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
 | 
						|
    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
 | 
						|
    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
 | 
						|
    case AV_CH_LAYOUT_QUAD:
 | 
						|
    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
 | 
						|
    case AV_CH_LAYOUT_5POINT0:
 | 
						|
    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
 | 
						|
    default:
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
 | 
						|
    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
 | 
						|
    *channel_layout = ch_layout;
 | 
						|
    if (s->lfe_on)
 | 
						|
        *channel_layout |= AV_CH_LOW_FREQUENCY;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int i, ret;
 | 
						|
 | 
						|
    /* validate channel layout */
 | 
						|
    if (!avctx->channel_layout) {
 | 
						|
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
 | 
						|
                                      "encoder will guess the layout, but it "
 | 
						|
                                      "might be incorrect.\n");
 | 
						|
    }
 | 
						|
    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
 | 
						|
    if (ret) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* validate sample rate */
 | 
						|
    for (i = 0; i < 9; i++) {
 | 
						|
        if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (i == 9) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->sample_rate        = avctx->sample_rate;
 | 
						|
    s->bit_alloc.sr_shift = i % 3;
 | 
						|
    s->bit_alloc.sr_code  = i / 3;
 | 
						|
 | 
						|
    /* validate bit rate */
 | 
						|
    for (i = 0; i < 19; i++) {
 | 
						|
        if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (i == 19) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->bit_rate        = avctx->bit_rate;
 | 
						|
    s->frame_size_code = i << 1;
 | 
						|
 | 
						|
    /* validate cutoff */
 | 
						|
    if (avctx->cutoff < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->cutoff = avctx->cutoff;
 | 
						|
    if (s->cutoff > (s->sample_rate >> 1))
 | 
						|
        s->cutoff = s->sample_rate >> 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set bandwidth for all channels.
 | 
						|
 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
 | 
						|
 * default value will be used.
 | 
						|
 */
 | 
						|
static av_cold void set_bandwidth(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, bw_code;
 | 
						|
 | 
						|
    if (s->cutoff) {
 | 
						|
        /* calculate bandwidth based on user-specified cutoff frequency */
 | 
						|
        int fbw_coeffs;
 | 
						|
        fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
 | 
						|
        bw_code        = av_clip((fbw_coeffs - 73) / 3, 0, 60);
 | 
						|
    } else {
 | 
						|
        /* use default bandwidth setting */
 | 
						|
        /* XXX: should compute the bandwidth according to the frame
 | 
						|
           size, so that we avoid annoying high frequency artifacts */
 | 
						|
        bw_code = 50;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set number of coefficients for each channel */
 | 
						|
    for (ch = 0; ch < s->fbw_channels; ch++) {
 | 
						|
        s->bandwidth_code[ch] = bw_code;
 | 
						|
        s->nb_coefs[ch]       = bw_code * 3 + 73;
 | 
						|
    }
 | 
						|
    if (s->lfe_on)
 | 
						|
        s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int allocate_buffers(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
 | 
						|
                     alloc_fail);
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch],
 | 
						|
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
 | 
						|
                          alloc_fail);
 | 
						|
    }
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->bap_buffer,  AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->bap_buffer),  alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     64 * sizeof(*s->band_psd_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     64 * sizeof(*s->mask_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
 | 
						|
                         alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
 | 
						|
                          alloc_fail);
 | 
						|
 | 
						|
        for (ch = 0; ch < s->channels; ch++) {
 | 
						|
            /* arrangement: block, channel, coeff */
 | 
						|
            block->bap[ch]         = &s->bap_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
            block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
            block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * s->channels + ch)];
 | 
						|
            block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
            block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * s->channels + ch)];
 | 
						|
            block->mask[ch]        = &s->mask_buffer       [64            * (blk * s->channels + ch)];
 | 
						|
            block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
 | 
						|
            /* arrangement: channel, block, coeff */
 | 
						|
            block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CONFIG_AC3ENC_FLOAT) {
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->fixed_coef_buffer, AC3_MAX_BLOCKS * s->channels *
 | 
						|
                         AC3_MAX_COEFS * sizeof(*s->fixed_coef_buffer), alloc_fail);
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels *
 | 
						|
                              sizeof(*block->fixed_coef), alloc_fail);
 | 
						|
            for (ch = 0; ch < s->channels; ch++)
 | 
						|
                block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, s->channels *
 | 
						|
                              sizeof(*block->fixed_coef), alloc_fail);
 | 
						|
            for (ch = 0; ch < s->channels; ch++)
 | 
						|
                block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
alloc_fail:
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize the encoder.
 | 
						|
 */
 | 
						|
static av_cold int ac3_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    int ret, frame_size_58;
 | 
						|
 | 
						|
    avctx->frame_size = AC3_FRAME_SIZE;
 | 
						|
 | 
						|
    ff_ac3_common_init();
 | 
						|
 | 
						|
    ret = validate_options(avctx, s);
 | 
						|
    if (ret)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->bitstream_id   = 8 + s->bit_alloc.sr_shift;
 | 
						|
    s->bitstream_mode = 0; /* complete main audio service */
 | 
						|
 | 
						|
    s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
 | 
						|
    s->bits_written    = 0;
 | 
						|
    s->samples_written = 0;
 | 
						|
    s->frame_size      = s->frame_size_min;
 | 
						|
 | 
						|
    /* calculate crc_inv for both possible frame sizes */
 | 
						|
    frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
 | 
						|
    s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
 | 
						|
    if (s->bit_alloc.sr_code == 1) {
 | 
						|
        frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
 | 
						|
        s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
 | 
						|
    }
 | 
						|
 | 
						|
    set_bandwidth(s);
 | 
						|
 | 
						|
    rematrixing_init(s);
 | 
						|
 | 
						|
    exponent_init(s);
 | 
						|
 | 
						|
    bit_alloc_init(s);
 | 
						|
 | 
						|
    ret = mdct_init(avctx, &s->mdct, 9);
 | 
						|
    if (ret)
 | 
						|
        goto init_fail;
 | 
						|
 | 
						|
    ret = allocate_buffers(avctx);
 | 
						|
    if (ret)
 | 
						|
        goto init_fail;
 | 
						|
 | 
						|
    avctx->coded_frame= avcodec_alloc_frame();
 | 
						|
 | 
						|
    dsputil_init(&s->dsp, avctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
init_fail:
 | 
						|
    ac3_encode_close(avctx);
 | 
						|
    return ret;
 | 
						|
}
 |