1379 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1379 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * G.723.1 compatible decoder
 | |
|  * Copyright (c) 2006 Benjamin Larsson
 | |
|  * Copyright (c) 2010 Mohamed Naufal Basheer
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * G.723.1 compatible decoder
 | |
|  */
 | |
| 
 | |
| #define BITSTREAM_READER_LE
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/mem.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "acelp_vectors.h"
 | |
| #include "celp_filters.h"
 | |
| #include "g723_1_data.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #define CNG_RANDOM_SEED 12345
 | |
| 
 | |
| /**
 | |
|  * G723.1 frame types
 | |
|  */
 | |
| enum FrameType {
 | |
|     ACTIVE_FRAME,        ///< Active speech
 | |
|     SID_FRAME,           ///< Silence Insertion Descriptor frame
 | |
|     UNTRANSMITTED_FRAME
 | |
| };
 | |
| 
 | |
| enum Rate {
 | |
|     RATE_6300,
 | |
|     RATE_5300
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * G723.1 unpacked data subframe
 | |
|  */
 | |
| typedef struct {
 | |
|     int ad_cb_lag;     ///< adaptive codebook lag
 | |
|     int ad_cb_gain;
 | |
|     int dirac_train;
 | |
|     int pulse_sign;
 | |
|     int grid_index;
 | |
|     int amp_index;
 | |
|     int pulse_pos;
 | |
| } G723_1_Subframe;
 | |
| 
 | |
| /**
 | |
|  * Pitch postfilter parameters
 | |
|  */
 | |
| typedef struct {
 | |
|     int     index;    ///< postfilter backward/forward lag
 | |
|     int16_t opt_gain; ///< optimal gain
 | |
|     int16_t sc_gain;  ///< scaling gain
 | |
| } PPFParam;
 | |
| 
 | |
| typedef struct g723_1_context {
 | |
|     AVClass *class;
 | |
| 
 | |
|     G723_1_Subframe subframe[4];
 | |
|     enum FrameType cur_frame_type;
 | |
|     enum FrameType past_frame_type;
 | |
|     enum Rate cur_rate;
 | |
|     uint8_t lsp_index[LSP_BANDS];
 | |
|     int pitch_lag[2];
 | |
|     int erased_frames;
 | |
| 
 | |
|     int16_t prev_lsp[LPC_ORDER];
 | |
|     int16_t sid_lsp[LPC_ORDER];
 | |
|     int16_t prev_excitation[PITCH_MAX];
 | |
|     int16_t excitation[PITCH_MAX + FRAME_LEN + 4];
 | |
|     int16_t synth_mem[LPC_ORDER];
 | |
|     int16_t fir_mem[LPC_ORDER];
 | |
|     int     iir_mem[LPC_ORDER];
 | |
| 
 | |
|     int random_seed;
 | |
|     int cng_random_seed;
 | |
|     int interp_index;
 | |
|     int interp_gain;
 | |
|     int sid_gain;
 | |
|     int cur_gain;
 | |
|     int reflection_coef;
 | |
|     int pf_gain;
 | |
|     int postfilter;
 | |
| 
 | |
|     int16_t audio[FRAME_LEN + LPC_ORDER + PITCH_MAX + 4];
 | |
| } G723_1_Context;
 | |
| 
 | |
| static av_cold int g723_1_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     G723_1_Context *p = avctx->priv_data;
 | |
| 
 | |
|     avctx->channel_layout = AV_CH_LAYOUT_MONO;
 | |
|     avctx->sample_fmt     = AV_SAMPLE_FMT_S16;
 | |
|     avctx->channels       = 1;
 | |
|     avctx->sample_rate    = 8000;
 | |
|     p->pf_gain            = 1 << 12;
 | |
| 
 | |
|     memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
 | |
|     memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));
 | |
| 
 | |
|     p->cng_random_seed = CNG_RANDOM_SEED;
 | |
|     p->past_frame_type = SID_FRAME;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Unpack the frame into parameters.
 | |
|  *
 | |
|  * @param p           the context
 | |
|  * @param buf         pointer to the input buffer
 | |
|  * @param buf_size    size of the input buffer
 | |
|  */
 | |
| static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf,
 | |
|                             int buf_size)
 | |
| {
 | |
|     GetBitContext gb;
 | |
|     int ad_cb_len;
 | |
|     int temp, info_bits, i;
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
| 
 | |
|     /* Extract frame type and rate info */
 | |
|     info_bits = get_bits(&gb, 2);
 | |
| 
 | |
|     if (info_bits == 3) {
 | |
|         p->cur_frame_type = UNTRANSMITTED_FRAME;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Extract 24 bit lsp indices, 8 bit for each band */
 | |
|     p->lsp_index[2] = get_bits(&gb, 8);
 | |
|     p->lsp_index[1] = get_bits(&gb, 8);
 | |
|     p->lsp_index[0] = get_bits(&gb, 8);
 | |
| 
 | |
|     if (info_bits == 2) {
 | |
|         p->cur_frame_type = SID_FRAME;
 | |
|         p->subframe[0].amp_index = get_bits(&gb, 6);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Extract the info common to both rates */
 | |
|     p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
 | |
|     p->cur_frame_type = ACTIVE_FRAME;
 | |
| 
 | |
|     p->pitch_lag[0] = get_bits(&gb, 7);
 | |
|     if (p->pitch_lag[0] > 123)       /* test if forbidden code */
 | |
|         return -1;
 | |
|     p->pitch_lag[0] += PITCH_MIN;
 | |
|     p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
 | |
| 
 | |
|     p->pitch_lag[1] = get_bits(&gb, 7);
 | |
|     if (p->pitch_lag[1] > 123)
 | |
|         return -1;
 | |
|     p->pitch_lag[1] += PITCH_MIN;
 | |
|     p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
 | |
|     p->subframe[0].ad_cb_lag = 1;
 | |
|     p->subframe[2].ad_cb_lag = 1;
 | |
| 
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         /* Extract combined gain */
 | |
|         temp = get_bits(&gb, 12);
 | |
|         ad_cb_len = 170;
 | |
|         p->subframe[i].dirac_train = 0;
 | |
|         if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
 | |
|             p->subframe[i].dirac_train = temp >> 11;
 | |
|             temp &= 0x7FF;
 | |
|             ad_cb_len = 85;
 | |
|         }
 | |
|         p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
 | |
|         if (p->subframe[i].ad_cb_gain < ad_cb_len) {
 | |
|             p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
 | |
|                                        GAIN_LEVELS;
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p->subframe[0].grid_index = get_bits(&gb, 1);
 | |
|     p->subframe[1].grid_index = get_bits(&gb, 1);
 | |
|     p->subframe[2].grid_index = get_bits(&gb, 1);
 | |
|     p->subframe[3].grid_index = get_bits(&gb, 1);
 | |
| 
 | |
|     if (p->cur_rate == RATE_6300) {
 | |
|         skip_bits(&gb, 1);  /* skip reserved bit */
 | |
| 
 | |
|         /* Compute pulse_pos index using the 13-bit combined position index */
 | |
|         temp = get_bits(&gb, 13);
 | |
|         p->subframe[0].pulse_pos = temp / 810;
 | |
| 
 | |
|         temp -= p->subframe[0].pulse_pos * 810;
 | |
|         p->subframe[1].pulse_pos = FASTDIV(temp, 90);
 | |
| 
 | |
|         temp -= p->subframe[1].pulse_pos * 90;
 | |
|         p->subframe[2].pulse_pos = FASTDIV(temp, 9);
 | |
|         p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
 | |
| 
 | |
|         p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
 | |
|                                    get_bits(&gb, 16);
 | |
|         p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
 | |
|                                    get_bits(&gb, 14);
 | |
|         p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
 | |
|                                    get_bits(&gb, 16);
 | |
|         p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
 | |
|                                    get_bits(&gb, 14);
 | |
| 
 | |
|         p->subframe[0].pulse_sign = get_bits(&gb, 6);
 | |
|         p->subframe[1].pulse_sign = get_bits(&gb, 5);
 | |
|         p->subframe[2].pulse_sign = get_bits(&gb, 6);
 | |
|         p->subframe[3].pulse_sign = get_bits(&gb, 5);
 | |
|     } else { /* 5300 bps */
 | |
|         p->subframe[0].pulse_pos  = get_bits(&gb, 12);
 | |
|         p->subframe[1].pulse_pos  = get_bits(&gb, 12);
 | |
|         p->subframe[2].pulse_pos  = get_bits(&gb, 12);
 | |
|         p->subframe[3].pulse_pos  = get_bits(&gb, 12);
 | |
| 
 | |
|         p->subframe[0].pulse_sign = get_bits(&gb, 4);
 | |
|         p->subframe[1].pulse_sign = get_bits(&gb, 4);
 | |
|         p->subframe[2].pulse_sign = get_bits(&gb, 4);
 | |
|         p->subframe[3].pulse_sign = get_bits(&gb, 4);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Bitexact implementation of sqrt(val/2).
 | |
|  */
 | |
| static int16_t square_root(int val)
 | |
| {
 | |
|     int16_t res = 0;
 | |
|     int16_t exp = 0x4000;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 14; i ++) {
 | |
|         int res_exp = res + exp;
 | |
|         if (val >= res_exp * res_exp << 1)
 | |
|             res += exp;
 | |
|         exp >>= 1;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate the number of left-shifts required for normalizing the input.
 | |
|  *
 | |
|  * @param num   input number
 | |
|  * @param width width of the input, 16 bits(0) / 32 bits(1)
 | |
|  */
 | |
| static int normalize_bits(int num, int width)
 | |
| {
 | |
|     return width - av_log2(num) - 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Scale vector contents based on the largest of their absolutes.
 | |
|  */
 | |
| static int scale_vector(int16_t *dst, const int16_t *vector, int length)
 | |
| {
 | |
|     int bits, max = 0;
 | |
|     int i;
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < length; i++)
 | |
|         max |= FFABS(vector[i]);
 | |
| 
 | |
|     max   = FFMIN(max, 0x7FFF);
 | |
|     bits  = normalize_bits(max, 15);
 | |
| 
 | |
|     for (i = 0; i < length; i++)
 | |
|         dst[i] = vector[i] << bits >> 3;
 | |
| 
 | |
|     return bits - 3;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform inverse quantization of LSP frequencies.
 | |
|  *
 | |
|  * @param cur_lsp    the current LSP vector
 | |
|  * @param prev_lsp   the previous LSP vector
 | |
|  * @param lsp_index  VQ indices
 | |
|  * @param bad_frame  bad frame flag
 | |
|  */
 | |
| static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
 | |
|                           uint8_t *lsp_index, int bad_frame)
 | |
| {
 | |
|     int min_dist, pred;
 | |
|     int i, j, temp, stable;
 | |
| 
 | |
|     /* Check for frame erasure */
 | |
|     if (!bad_frame) {
 | |
|         min_dist     = 0x100;
 | |
|         pred         = 12288;
 | |
|     } else {
 | |
|         min_dist     = 0x200;
 | |
|         pred         = 23552;
 | |
|         lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
 | |
|     }
 | |
| 
 | |
|     /* Get the VQ table entry corresponding to the transmitted index */
 | |
|     cur_lsp[0] = lsp_band0[lsp_index[0]][0];
 | |
|     cur_lsp[1] = lsp_band0[lsp_index[0]][1];
 | |
|     cur_lsp[2] = lsp_band0[lsp_index[0]][2];
 | |
|     cur_lsp[3] = lsp_band1[lsp_index[1]][0];
 | |
|     cur_lsp[4] = lsp_band1[lsp_index[1]][1];
 | |
|     cur_lsp[5] = lsp_band1[lsp_index[1]][2];
 | |
|     cur_lsp[6] = lsp_band2[lsp_index[2]][0];
 | |
|     cur_lsp[7] = lsp_band2[lsp_index[2]][1];
 | |
|     cur_lsp[8] = lsp_band2[lsp_index[2]][2];
 | |
|     cur_lsp[9] = lsp_band2[lsp_index[2]][3];
 | |
| 
 | |
|     /* Add predicted vector & DC component to the previously quantized vector */
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         temp        = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
 | |
|         cur_lsp[i] += dc_lsp[i] + temp;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < LPC_ORDER; i++) {
 | |
|         cur_lsp[0]             = FFMAX(cur_lsp[0],  0x180);
 | |
|         cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
 | |
| 
 | |
|         /* Stability check */
 | |
|         for (j = 1; j < LPC_ORDER; j++) {
 | |
|             temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
 | |
|             if (temp > 0) {
 | |
|                 temp >>= 1;
 | |
|                 cur_lsp[j - 1] -= temp;
 | |
|                 cur_lsp[j]     += temp;
 | |
|             }
 | |
|         }
 | |
|         stable = 1;
 | |
|         for (j = 1; j < LPC_ORDER; j++) {
 | |
|             temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
 | |
|             if (temp > 0) {
 | |
|                 stable = 0;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (stable)
 | |
|             break;
 | |
|     }
 | |
|     if (!stable)
 | |
|         memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Bitexact implementation of 2ab scaled by 1/2^16.
 | |
|  *
 | |
|  * @param a 32 bit multiplicand
 | |
|  * @param b 16 bit multiplier
 | |
|  */
 | |
| #define MULL2(a, b) \
 | |
|         ((((a) >> 16) * (b) << 1) + (((a) & 0xffff) * (b) >> 15))
 | |
| 
 | |
| /**
 | |
|  * Convert LSP frequencies to LPC coefficients.
 | |
|  *
 | |
|  * @param lpc buffer for LPC coefficients
 | |
|  */
 | |
| static void lsp2lpc(int16_t *lpc)
 | |
| {
 | |
|     int f1[LPC_ORDER / 2 + 1];
 | |
|     int f2[LPC_ORDER / 2 + 1];
 | |
|     int i, j;
 | |
| 
 | |
|     /* Calculate negative cosine */
 | |
|     for (j = 0; j < LPC_ORDER; j++) {
 | |
|         int index     = lpc[j] >> 7;
 | |
|         int offset    = lpc[j] & 0x7f;
 | |
|         int temp1     = cos_tab[index] << 16;
 | |
|         int temp2     = (cos_tab[index + 1] - cos_tab[index]) *
 | |
|                           ((offset << 8) + 0x80) << 1;
 | |
| 
 | |
|         lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Compute sum and difference polynomial coefficients
 | |
|      * (bitexact alternative to lsp2poly() in lsp.c)
 | |
|      */
 | |
|     /* Initialize with values in Q28 */
 | |
|     f1[0] = 1 << 28;
 | |
|     f1[1] = (lpc[0] << 14) + (lpc[2] << 14);
 | |
|     f1[2] = lpc[0] * lpc[2] + (2 << 28);
 | |
| 
 | |
|     f2[0] = 1 << 28;
 | |
|     f2[1] = (lpc[1] << 14) + (lpc[3] << 14);
 | |
|     f2[2] = lpc[1] * lpc[3] + (2 << 28);
 | |
| 
 | |
|     /*
 | |
|      * Calculate and scale the coefficients by 1/2 in
 | |
|      * each iteration for a final scaling factor of Q25
 | |
|      */
 | |
|     for (i = 2; i < LPC_ORDER / 2; i++) {
 | |
|         f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]);
 | |
|         f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]);
 | |
| 
 | |
|         for (j = i; j >= 2; j--) {
 | |
|             f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
 | |
|                     (f1[j] >> 1) + (f1[j - 2] >> 1);
 | |
|             f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
 | |
|                     (f2[j] >> 1) + (f2[j - 2] >> 1);
 | |
|         }
 | |
| 
 | |
|         f1[0] >>= 1;
 | |
|         f2[0] >>= 1;
 | |
|         f1[1] = ((lpc[2 * i]     << 16 >> i) + f1[1]) >> 1;
 | |
|         f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1;
 | |
|     }
 | |
| 
 | |
|     /* Convert polynomial coefficients to LPC coefficients */
 | |
|     for (i = 0; i < LPC_ORDER / 2; i++) {
 | |
|         int64_t ff1 = f1[i + 1] + f1[i];
 | |
|         int64_t ff2 = f2[i + 1] - f2[i];
 | |
| 
 | |
|         lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16;
 | |
|         lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) +
 | |
|                                                 (1 << 15)) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Quantize LSP frequencies by interpolation and convert them to
 | |
|  * the corresponding LPC coefficients.
 | |
|  *
 | |
|  * @param lpc      buffer for LPC coefficients
 | |
|  * @param cur_lsp  the current LSP vector
 | |
|  * @param prev_lsp the previous LSP vector
 | |
|  */
 | |
| static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp)
 | |
| {
 | |
|     int i;
 | |
|     int16_t *lpc_ptr = lpc;
 | |
| 
 | |
|     /* cur_lsp * 0.25 + prev_lsp * 0.75 */
 | |
|     ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
 | |
|                                  4096, 12288, 1 << 13, 14, LPC_ORDER);
 | |
|     ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
 | |
|                                  8192, 8192, 1 << 13, 14, LPC_ORDER);
 | |
|     ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
 | |
|                                  12288, 4096, 1 << 13, 14, LPC_ORDER);
 | |
|     memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc));
 | |
| 
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         lsp2lpc(lpc_ptr);
 | |
|         lpc_ptr += LPC_ORDER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate a train of dirac functions with period as pitch lag.
 | |
|  */
 | |
| static void gen_dirac_train(int16_t *buf, int pitch_lag)
 | |
| {
 | |
|     int16_t vector[SUBFRAME_LEN];
 | |
|     int i, j;
 | |
| 
 | |
|     memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector));
 | |
|     for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
 | |
|         for (j = 0; j < SUBFRAME_LEN - i; j++)
 | |
|             buf[i + j] += vector[j];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate fixed codebook excitation vector.
 | |
|  *
 | |
|  * @param vector    decoded excitation vector
 | |
|  * @param subfrm    current subframe
 | |
|  * @param cur_rate  current bitrate
 | |
|  * @param pitch_lag closed loop pitch lag
 | |
|  * @param index     current subframe index
 | |
|  */
 | |
| static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
 | |
|                                enum Rate cur_rate, int pitch_lag, int index)
 | |
| {
 | |
|     int temp, i, j;
 | |
| 
 | |
|     memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
 | |
| 
 | |
|     if (cur_rate == RATE_6300) {
 | |
|         if (subfrm->pulse_pos >= max_pos[index])
 | |
|             return;
 | |
| 
 | |
|         /* Decode amplitudes and positions */
 | |
|         j = PULSE_MAX - pulses[index];
 | |
|         temp = subfrm->pulse_pos;
 | |
|         for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
 | |
|             temp -= combinatorial_table[j][i];
 | |
|             if (temp >= 0)
 | |
|                 continue;
 | |
|             temp += combinatorial_table[j++][i];
 | |
|             if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
 | |
|                 vector[subfrm->grid_index + GRID_SIZE * i] =
 | |
|                                         -fixed_cb_gain[subfrm->amp_index];
 | |
|             } else {
 | |
|                 vector[subfrm->grid_index + GRID_SIZE * i] =
 | |
|                                          fixed_cb_gain[subfrm->amp_index];
 | |
|             }
 | |
|             if (j == PULSE_MAX)
 | |
|                 break;
 | |
|         }
 | |
|         if (subfrm->dirac_train == 1)
 | |
|             gen_dirac_train(vector, pitch_lag);
 | |
|     } else { /* 5300 bps */
 | |
|         int cb_gain  = fixed_cb_gain[subfrm->amp_index];
 | |
|         int cb_shift = subfrm->grid_index;
 | |
|         int cb_sign  = subfrm->pulse_sign;
 | |
|         int cb_pos   = subfrm->pulse_pos;
 | |
|         int offset, beta, lag;
 | |
| 
 | |
|         for (i = 0; i < 8; i += 2) {
 | |
|             offset         = ((cb_pos & 7) << 3) + cb_shift + i;
 | |
|             vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
 | |
|             cb_pos  >>= 3;
 | |
|             cb_sign >>= 1;
 | |
|         }
 | |
| 
 | |
|         /* Enhance harmonic components */
 | |
|         lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
 | |
|                subfrm->ad_cb_lag - 1;
 | |
|         beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
 | |
| 
 | |
|         if (lag < SUBFRAME_LEN - 2) {
 | |
|             for (i = lag; i < SUBFRAME_LEN; i++)
 | |
|                 vector[i] += beta * vector[i - lag] >> 15;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get delayed contribution from the previous excitation vector.
 | |
|  */
 | |
| static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag)
 | |
| {
 | |
|     int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
 | |
|     int i;
 | |
| 
 | |
|     residual[0] = prev_excitation[offset];
 | |
|     residual[1] = prev_excitation[offset + 1];
 | |
| 
 | |
|     offset += 2;
 | |
|     for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
 | |
|         residual[i] = prev_excitation[offset + (i - 2) % lag];
 | |
| }
 | |
| 
 | |
| static int dot_product(const int16_t *a, const int16_t *b, int length)
 | |
| {
 | |
|     int i, sum = 0;
 | |
| 
 | |
|     for (i = 0; i < length; i++) {
 | |
|         int prod = a[i] * b[i];
 | |
|         sum = av_sat_dadd32(sum, prod);
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Generate adaptive codebook excitation.
 | |
|  */
 | |
| static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
 | |
|                                int pitch_lag, G723_1_Subframe *subfrm,
 | |
|                                enum Rate cur_rate)
 | |
| {
 | |
|     int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
 | |
|     const int16_t *cb_ptr;
 | |
|     int lag = pitch_lag + subfrm->ad_cb_lag - 1;
 | |
| 
 | |
|     int i;
 | |
|     int sum;
 | |
| 
 | |
|     get_residual(residual, prev_excitation, lag);
 | |
| 
 | |
|     /* Select quantization table */
 | |
|     if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2)
 | |
|         cb_ptr = adaptive_cb_gain85;
 | |
|     else
 | |
|         cb_ptr = adaptive_cb_gain170;
 | |
| 
 | |
|     /* Calculate adaptive vector */
 | |
|     cb_ptr += subfrm->ad_cb_gain * 20;
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         sum = dot_product(residual + i, cb_ptr, PITCH_ORDER);
 | |
|         vector[i] = av_sat_dadd32(1 << 15, sum) >> 16;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Estimate maximum auto-correlation around pitch lag.
 | |
|  *
 | |
|  * @param buf       buffer with offset applied
 | |
|  * @param offset    offset of the excitation vector
 | |
|  * @param ccr_max   pointer to the maximum auto-correlation
 | |
|  * @param pitch_lag decoded pitch lag
 | |
|  * @param length    length of autocorrelation
 | |
|  * @param dir       forward lag(1) / backward lag(-1)
 | |
|  */
 | |
| static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
 | |
|                         int pitch_lag, int length, int dir)
 | |
| {
 | |
|     int limit, ccr, lag = 0;
 | |
|     int i;
 | |
| 
 | |
|     pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
 | |
|     if (dir > 0)
 | |
|         limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
 | |
|     else
 | |
|         limit = pitch_lag + 3;
 | |
| 
 | |
|     for (i = pitch_lag - 3; i <= limit; i++) {
 | |
|         ccr = dot_product(buf, buf + dir * i, length);
 | |
| 
 | |
|         if (ccr > *ccr_max) {
 | |
|             *ccr_max = ccr;
 | |
|             lag = i;
 | |
|         }
 | |
|     }
 | |
|     return lag;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate pitch postfilter optimal and scaling gains.
 | |
|  *
 | |
|  * @param lag      pitch postfilter forward/backward lag
 | |
|  * @param ppf      pitch postfilter parameters
 | |
|  * @param cur_rate current bitrate
 | |
|  * @param tgt_eng  target energy
 | |
|  * @param ccr      cross-correlation
 | |
|  * @param res_eng  residual energy
 | |
|  */
 | |
| static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
 | |
|                            int tgt_eng, int ccr, int res_eng)
 | |
| {
 | |
|     int pf_residual;     /* square of postfiltered residual */
 | |
|     int temp1, temp2;
 | |
| 
 | |
|     ppf->index = lag;
 | |
| 
 | |
|     temp1 = tgt_eng * res_eng >> 1;
 | |
|     temp2 = ccr * ccr << 1;
 | |
| 
 | |
|     if (temp2 > temp1) {
 | |
|         if (ccr >= res_eng) {
 | |
|             ppf->opt_gain = ppf_gain_weight[cur_rate];
 | |
|         } else {
 | |
|             ppf->opt_gain = (ccr << 15) / res_eng *
 | |
|                             ppf_gain_weight[cur_rate] >> 15;
 | |
|         }
 | |
|         /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
 | |
|         temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
 | |
|         temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
 | |
|         pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
 | |
| 
 | |
|         if (tgt_eng >= pf_residual << 1) {
 | |
|             temp1 = 0x7fff;
 | |
|         } else {
 | |
|             temp1 = (tgt_eng << 14) / pf_residual;
 | |
|         }
 | |
| 
 | |
|         /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
 | |
|         ppf->sc_gain = square_root(temp1 << 16);
 | |
|     } else {
 | |
|         ppf->opt_gain = 0;
 | |
|         ppf->sc_gain  = 0x7fff;
 | |
|     }
 | |
| 
 | |
|     ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Calculate pitch postfilter parameters.
 | |
|  *
 | |
|  * @param p         the context
 | |
|  * @param offset    offset of the excitation vector
 | |
|  * @param pitch_lag decoded pitch lag
 | |
|  * @param ppf       pitch postfilter parameters
 | |
|  * @param cur_rate  current bitrate
 | |
|  */
 | |
| static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag,
 | |
|                            PPFParam *ppf, enum Rate cur_rate)
 | |
| {
 | |
| 
 | |
|     int16_t scale;
 | |
|     int i;
 | |
|     int temp1, temp2;
 | |
| 
 | |
|     /*
 | |
|      * 0 - target energy
 | |
|      * 1 - forward cross-correlation
 | |
|      * 2 - forward residual energy
 | |
|      * 3 - backward cross-correlation
 | |
|      * 4 - backward residual energy
 | |
|      */
 | |
|     int energy[5] = {0, 0, 0, 0, 0};
 | |
|     int16_t *buf  = p->audio + LPC_ORDER + offset;
 | |
|     int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
 | |
|                                  SUBFRAME_LEN, 1);
 | |
|     int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
 | |
|                                  SUBFRAME_LEN, -1);
 | |
| 
 | |
|     ppf->index    = 0;
 | |
|     ppf->opt_gain = 0;
 | |
|     ppf->sc_gain  = 0x7fff;
 | |
| 
 | |
|     /* Case 0, Section 3.6 */
 | |
|     if (!back_lag && !fwd_lag)
 | |
|         return;
 | |
| 
 | |
|     /* Compute target energy */
 | |
|     energy[0] = dot_product(buf, buf, SUBFRAME_LEN);
 | |
| 
 | |
|     /* Compute forward residual energy */
 | |
|     if (fwd_lag)
 | |
|         energy[2] = dot_product(buf + fwd_lag, buf + fwd_lag, SUBFRAME_LEN);
 | |
| 
 | |
|     /* Compute backward residual energy */
 | |
|     if (back_lag)
 | |
|         energy[4] = dot_product(buf - back_lag, buf - back_lag, SUBFRAME_LEN);
 | |
| 
 | |
|     /* Normalize and shorten */
 | |
|     temp1 = 0;
 | |
|     for (i = 0; i < 5; i++)
 | |
|         temp1 = FFMAX(energy[i], temp1);
 | |
| 
 | |
|     scale = normalize_bits(temp1, 31);
 | |
|     for (i = 0; i < 5; i++)
 | |
|         energy[i] = (energy[i] << scale) >> 16;
 | |
| 
 | |
|     if (fwd_lag && !back_lag) {  /* Case 1 */
 | |
|         comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
 | |
|                        energy[2]);
 | |
|     } else if (!fwd_lag) {       /* Case 2 */
 | |
|         comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
 | |
|                        energy[4]);
 | |
|     } else {                     /* Case 3 */
 | |
| 
 | |
|         /*
 | |
|          * Select the largest of energy[1]^2/energy[2]
 | |
|          * and energy[3]^2/energy[4]
 | |
|          */
 | |
|         temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
 | |
|         temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
 | |
|         if (temp1 >= temp2) {
 | |
|             comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
 | |
|                            energy[2]);
 | |
|         } else {
 | |
|             comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
 | |
|                            energy[4]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Classify frames as voiced/unvoiced.
 | |
|  *
 | |
|  * @param p         the context
 | |
|  * @param pitch_lag decoded pitch_lag
 | |
|  * @param exc_eng   excitation energy estimation
 | |
|  * @param scale     scaling factor of exc_eng
 | |
|  *
 | |
|  * @return residual interpolation index if voiced, 0 otherwise
 | |
|  */
 | |
| static int comp_interp_index(G723_1_Context *p, int pitch_lag,
 | |
|                              int *exc_eng, int *scale)
 | |
| {
 | |
|     int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
 | |
|     int16_t *buf = p->audio + LPC_ORDER;
 | |
| 
 | |
|     int index, ccr, tgt_eng, best_eng, temp;
 | |
| 
 | |
|     *scale = scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
 | |
|     buf   += offset;
 | |
| 
 | |
|     /* Compute maximum backward cross-correlation */
 | |
|     ccr   = 0;
 | |
|     index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
 | |
|     ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
 | |
| 
 | |
|     /* Compute target energy */
 | |
|     tgt_eng  = dot_product(buf, buf, SUBFRAME_LEN * 2);
 | |
|     *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
 | |
| 
 | |
|     if (ccr <= 0)
 | |
|         return 0;
 | |
| 
 | |
|     /* Compute best energy */
 | |
|     best_eng = dot_product(buf - index, buf - index, SUBFRAME_LEN * 2);
 | |
|     best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
 | |
| 
 | |
|     temp = best_eng * *exc_eng >> 3;
 | |
| 
 | |
|     if (temp < ccr * ccr)
 | |
|         return index;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Peform residual interpolation based on frame classification.
 | |
|  *
 | |
|  * @param buf   decoded excitation vector
 | |
|  * @param out   output vector
 | |
|  * @param lag   decoded pitch lag
 | |
|  * @param gain  interpolated gain
 | |
|  * @param rseed seed for random number generator
 | |
|  */
 | |
| static void residual_interp(int16_t *buf, int16_t *out, int lag,
 | |
|                             int gain, int *rseed)
 | |
| {
 | |
|     int i;
 | |
|     if (lag) { /* Voiced */
 | |
|         int16_t *vector_ptr = buf + PITCH_MAX;
 | |
|         /* Attenuate */
 | |
|         for (i = 0; i < lag; i++)
 | |
|             out[i] = vector_ptr[i - lag] * 3 >> 2;
 | |
|         av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
 | |
|                           (FRAME_LEN - lag) * sizeof(*out));
 | |
|     } else {  /* Unvoiced */
 | |
|         for (i = 0; i < FRAME_LEN; i++) {
 | |
|             *rseed = *rseed * 521 + 259;
 | |
|             out[i] = gain * *rseed >> 15;
 | |
|         }
 | |
|         memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform IIR filtering.
 | |
|  *
 | |
|  * @param fir_coef FIR coefficients
 | |
|  * @param iir_coef IIR coefficients
 | |
|  * @param src      source vector
 | |
|  * @param dest     destination vector
 | |
|  */
 | |
| static inline void iir_filter(int16_t *fir_coef, int16_t *iir_coef,
 | |
|                               int16_t *src, int *dest)
 | |
| {
 | |
|     int m, n;
 | |
| 
 | |
|     for (m = 0; m < SUBFRAME_LEN; m++) {
 | |
|         int64_t filter = 0;
 | |
|         for (n = 1; n <= LPC_ORDER; n++) {
 | |
|             filter -= fir_coef[n - 1] * src[m - n] -
 | |
|                       iir_coef[n - 1] * (dest[m - n] >> 16);
 | |
|         }
 | |
| 
 | |
|         dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) + (1 << 15));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Adjust gain of postfiltered signal.
 | |
|  *
 | |
|  * @param p      the context
 | |
|  * @param buf    postfiltered output vector
 | |
|  * @param energy input energy coefficient
 | |
|  */
 | |
| static void gain_scale(G723_1_Context *p, int16_t * buf, int energy)
 | |
| {
 | |
|     int num, denom, gain, bits1, bits2;
 | |
|     int i;
 | |
| 
 | |
|     num   = energy;
 | |
|     denom = 0;
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         int temp = buf[i] >> 2;
 | |
|         temp *= temp;
 | |
|         denom = av_sat_dadd32(denom, temp);
 | |
|     }
 | |
| 
 | |
|     if (num && denom) {
 | |
|         bits1   = normalize_bits(num,   31);
 | |
|         bits2   = normalize_bits(denom, 31);
 | |
|         num     = num << bits1 >> 1;
 | |
|         denom <<= bits2;
 | |
| 
 | |
|         bits2 = 5 + bits1 - bits2;
 | |
|         bits2 = FFMAX(0, bits2);
 | |
| 
 | |
|         gain = (num >> 1) / (denom >> 16);
 | |
|         gain = square_root(gain << 16 >> bits2);
 | |
|     } else {
 | |
|         gain = 1 << 12;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < SUBFRAME_LEN; i++) {
 | |
|         p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
 | |
|         buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
 | |
|                                    (1 << 10)) >> 11);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Perform formant filtering.
 | |
|  *
 | |
|  * @param p   the context
 | |
|  * @param lpc quantized lpc coefficients
 | |
|  * @param buf input buffer
 | |
|  * @param dst output buffer
 | |
|  */
 | |
| static void formant_postfilter(G723_1_Context *p, int16_t *lpc,
 | |
|                                int16_t *buf, int16_t *dst)
 | |
| {
 | |
|     int16_t filter_coef[2][LPC_ORDER];
 | |
|     int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
 | |
|     int i, j, k;
 | |
| 
 | |
|     memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
 | |
|     memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
 | |
| 
 | |
|     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
 | |
|         for (k = 0; k < LPC_ORDER; k++) {
 | |
|             filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
 | |
|                                  (1 << 14)) >> 15;
 | |
|             filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
 | |
|                                  (1 << 14)) >> 15;
 | |
|         }
 | |
|         iir_filter(filter_coef[0], filter_coef[1], buf + i,
 | |
|                    filter_signal + i);
 | |
|         lpc += LPC_ORDER;
 | |
|     }
 | |
| 
 | |
|     memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(*p->fir_mem));
 | |
|     memcpy(p->iir_mem, filter_signal + FRAME_LEN,
 | |
|            LPC_ORDER * sizeof(*p->iir_mem));
 | |
| 
 | |
|     buf += LPC_ORDER;
 | |
|     signal_ptr = filter_signal + LPC_ORDER;
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         int temp;
 | |
|         int auto_corr[2];
 | |
|         int scale, energy;
 | |
| 
 | |
|         /* Normalize */
 | |
|         scale = scale_vector(dst, buf, SUBFRAME_LEN);
 | |
| 
 | |
|         /* Compute auto correlation coefficients */
 | |
|         auto_corr[0] = dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
 | |
|         auto_corr[1] = dot_product(dst, dst,     SUBFRAME_LEN);
 | |
| 
 | |
|         /* Compute reflection coefficient */
 | |
|         temp = auto_corr[1] >> 16;
 | |
|         if (temp) {
 | |
|             temp = (auto_corr[0] >> 2) / temp;
 | |
|         }
 | |
|         p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
 | |
|         temp = -p->reflection_coef >> 1 & ~3;
 | |
| 
 | |
|         /* Compensation filter */
 | |
|         for (j = 0; j < SUBFRAME_LEN; j++) {
 | |
|             dst[j] = av_sat_dadd32(signal_ptr[j],
 | |
|                                    (signal_ptr[j - 1] >> 16) * temp) >> 16;
 | |
|         }
 | |
| 
 | |
|         /* Compute normalized signal energy */
 | |
|         temp = 2 * scale + 4;
 | |
|         if (temp < 0) {
 | |
|             energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
 | |
|         } else
 | |
|             energy = auto_corr[1] >> temp;
 | |
| 
 | |
|         gain_scale(p, dst, energy);
 | |
| 
 | |
|         buf        += SUBFRAME_LEN;
 | |
|         signal_ptr += SUBFRAME_LEN;
 | |
|         dst        += SUBFRAME_LEN;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int sid_gain_to_lsp_index(int gain)
 | |
| {
 | |
|     if (gain < 0x10)
 | |
|         return gain << 6;
 | |
|     else if (gain < 0x20)
 | |
|         return gain - 8 << 7;
 | |
|     else
 | |
|         return gain - 20 << 8;
 | |
| }
 | |
| 
 | |
| static inline int cng_rand(int *state, int base)
 | |
| {
 | |
|     *state = (*state * 521 + 259) & 0xFFFF;
 | |
|     return (*state & 0x7FFF) * base >> 15;
 | |
| }
 | |
| 
 | |
| static int estimate_sid_gain(G723_1_Context *p)
 | |
| {
 | |
|     int i, shift, seg, seg2, t, val, val_add, x, y;
 | |
| 
 | |
|     shift = 16 - p->cur_gain * 2;
 | |
|     if (shift > 0)
 | |
|         t = p->sid_gain << shift;
 | |
|     else
 | |
|         t = p->sid_gain >> -shift;
 | |
|     x = t * cng_filt[0] >> 16;
 | |
| 
 | |
|     if (x >= cng_bseg[2])
 | |
|         return 0x3F;
 | |
| 
 | |
|     if (x >= cng_bseg[1]) {
 | |
|         shift = 4;
 | |
|         seg   = 3;
 | |
|     } else {
 | |
|         shift = 3;
 | |
|         seg   = (x >= cng_bseg[0]);
 | |
|     }
 | |
|     seg2 = FFMIN(seg, 3);
 | |
| 
 | |
|     val     = 1 << shift;
 | |
|     val_add = val >> 1;
 | |
|     for (i = 0; i < shift; i++) {
 | |
|         t = seg * 32 + (val << seg2);
 | |
|         t *= t;
 | |
|         if (x >= t)
 | |
|             val += val_add;
 | |
|         else
 | |
|             val -= val_add;
 | |
|         val_add >>= 1;
 | |
|     }
 | |
| 
 | |
|     t = seg * 32 + (val << seg2);
 | |
|     y = t * t - x;
 | |
|     if (y <= 0) {
 | |
|         t = seg * 32 + (val + 1 << seg2);
 | |
|         t = t * t - x;
 | |
|         val = (seg2 - 1 << 4) + val;
 | |
|         if (t >= y)
 | |
|             val++;
 | |
|     } else {
 | |
|         t = seg * 32 + (val - 1 << seg2);
 | |
|         t = t * t - x;
 | |
|         val = (seg2 - 1 << 4) + val;
 | |
|         if (t >= y)
 | |
|             val--;
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static void generate_noise(G723_1_Context *p)
 | |
| {
 | |
|     int i, j, idx, t;
 | |
|     int off[SUBFRAMES];
 | |
|     int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
 | |
|     int tmp[SUBFRAME_LEN * 2];
 | |
|     int16_t *vector_ptr;
 | |
|     int64_t sum;
 | |
|     int b0, c, delta, x, shift;
 | |
| 
 | |
|     p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
 | |
|     p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;
 | |
| 
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
 | |
|         p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < SUBFRAMES / 2; i++) {
 | |
|         t = cng_rand(&p->cng_random_seed, 1 << 13);
 | |
|         off[i * 2]     =   t       & 1;
 | |
|         off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
 | |
|         t >>= 2;
 | |
|         for (j = 0; j < 11; j++) {
 | |
|             signs[i * 11 + j] = (t & 1) * 2 - 1 << 14;
 | |
|             t >>= 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     idx = 0;
 | |
|     for (i = 0; i < SUBFRAMES; i++) {
 | |
|         for (j = 0; j < SUBFRAME_LEN / 2; j++)
 | |
|             tmp[j] = j;
 | |
|         t = SUBFRAME_LEN / 2;
 | |
|         for (j = 0; j < pulses[i]; j++, idx++) {
 | |
|             int idx2 = cng_rand(&p->cng_random_seed, t);
 | |
| 
 | |
|             pos[idx]  = tmp[idx2] * 2 + off[i];
 | |
|             tmp[idx2] = tmp[--t];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     vector_ptr = p->audio + LPC_ORDER;
 | |
|     memcpy(vector_ptr, p->prev_excitation,
 | |
|            PITCH_MAX * sizeof(*p->excitation));
 | |
|     for (i = 0; i < SUBFRAMES; i += 2) {
 | |
|         gen_acb_excitation(vector_ptr, vector_ptr,
 | |
|                            p->pitch_lag[i >> 1], &p->subframe[i],
 | |
|                            p->cur_rate);
 | |
|         gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
 | |
|                            vector_ptr + SUBFRAME_LEN,
 | |
|                            p->pitch_lag[i >> 1], &p->subframe[i + 1],
 | |
|                            p->cur_rate);
 | |
| 
 | |
|         t = 0;
 | |
|         for (j = 0; j < SUBFRAME_LEN * 2; j++)
 | |
|             t |= FFABS(vector_ptr[j]);
 | |
|         t = FFMIN(t, 0x7FFF);
 | |
|         if (!t) {
 | |
|             shift = 0;
 | |
|         } else {
 | |
|             shift = -10 + av_log2(t);
 | |
|             if (shift < -2)
 | |
|                 shift = -2;
 | |
|         }
 | |
|         sum = 0;
 | |
|         if (shift < 0) {
 | |
|            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
 | |
|                t      = vector_ptr[j] << -shift;
 | |
|                sum   += t * t;
 | |
|                tmp[j] = t;
 | |
|            }
 | |
|         } else {
 | |
|            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
 | |
|                t      = vector_ptr[j] >> shift;
 | |
|                sum   += t * t;
 | |
|                tmp[j] = t;
 | |
|            }
 | |
|         }
 | |
| 
 | |
|         b0 = 0;
 | |
|         for (j = 0; j < 11; j++)
 | |
|             b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
 | |
|         b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
 | |
| 
 | |
|         c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
 | |
|         if (shift * 2 + 3 >= 0)
 | |
|             c >>= shift * 2 + 3;
 | |
|         else
 | |
|             c <<= -(shift * 2 + 3);
 | |
|         c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;
 | |
| 
 | |
|         delta = b0 * b0 * 2 - c;
 | |
|         if (delta <= 0) {
 | |
|             x = -b0;
 | |
|         } else {
 | |
|             delta = square_root(delta);
 | |
|             x     = delta - b0;
 | |
|             t     = delta + b0;
 | |
|             if (FFABS(t) < FFABS(x))
 | |
|                 x = -t;
 | |
|         }
 | |
|         shift++;
 | |
|         if (shift < 0)
 | |
|            x >>= -shift;
 | |
|         else
 | |
|            x <<= shift;
 | |
|         x = av_clip(x, -10000, 10000);
 | |
| 
 | |
|         for (j = 0; j < 11; j++) {
 | |
|             idx = (i / 2) * 11 + j;
 | |
|             vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
 | |
|                                                  (x * signs[idx] >> 15));
 | |
|         }
 | |
| 
 | |
|         /* copy decoded data to serve as a history for the next decoded subframes */
 | |
|         memcpy(vector_ptr + PITCH_MAX, vector_ptr,
 | |
|                sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
 | |
|         vector_ptr += SUBFRAME_LEN * 2;
 | |
|     }
 | |
|     /* Save the excitation for the next frame */
 | |
|     memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
 | |
|            PITCH_MAX * sizeof(*p->excitation));
 | |
| }
 | |
| 
 | |
| static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
 | |
|                                int *got_frame_ptr, AVPacket *avpkt)
 | |
| {
 | |
|     G723_1_Context *p  = avctx->priv_data;
 | |
|     AVFrame *frame     = data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     int dec_mode       = buf[0] & 3;
 | |
| 
 | |
|     PPFParam ppf[SUBFRAMES];
 | |
|     int16_t cur_lsp[LPC_ORDER];
 | |
|     int16_t lpc[SUBFRAMES * LPC_ORDER];
 | |
|     int16_t acb_vector[SUBFRAME_LEN];
 | |
|     int16_t *out;
 | |
|     int bad_frame = 0, i, j, ret;
 | |
|     int16_t *audio = p->audio;
 | |
| 
 | |
|     if (buf_size < frame_size[dec_mode]) {
 | |
|         if (buf_size)
 | |
|             av_log(avctx, AV_LOG_WARNING,
 | |
|                    "Expected %d bytes, got %d - skipping packet\n",
 | |
|                    frame_size[dec_mode], buf_size);
 | |
|         *got_frame_ptr = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     if (unpack_bitstream(p, buf, buf_size) < 0) {
 | |
|         bad_frame = 1;
 | |
|         if (p->past_frame_type == ACTIVE_FRAME)
 | |
|             p->cur_frame_type = ACTIVE_FRAME;
 | |
|         else
 | |
|             p->cur_frame_type = UNTRANSMITTED_FRAME;
 | |
|     }
 | |
| 
 | |
|     frame->nb_samples = FRAME_LEN;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
 | |
|          av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|          return ret;
 | |
|     }
 | |
| 
 | |
|     out = (int16_t *)frame->data[0];
 | |
| 
 | |
|     if (p->cur_frame_type == ACTIVE_FRAME) {
 | |
|         if (!bad_frame)
 | |
|             p->erased_frames = 0;
 | |
|         else if (p->erased_frames != 3)
 | |
|             p->erased_frames++;
 | |
| 
 | |
|         inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
 | |
|         lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
 | |
| 
 | |
|         /* Save the lsp_vector for the next frame */
 | |
|         memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
 | |
| 
 | |
|         /* Generate the excitation for the frame */
 | |
|         memcpy(p->excitation, p->prev_excitation,
 | |
|                PITCH_MAX * sizeof(*p->excitation));
 | |
|         if (!p->erased_frames) {
 | |
|             int16_t *vector_ptr = p->excitation + PITCH_MAX;
 | |
| 
 | |
|             /* Update interpolation gain memory */
 | |
|             p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index +
 | |
|                                             p->subframe[3].amp_index) >> 1];
 | |
|             for (i = 0; i < SUBFRAMES; i++) {
 | |
|                 gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
 | |
|                                    p->pitch_lag[i >> 1], i);
 | |
|                 gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i],
 | |
|                                    p->pitch_lag[i >> 1], &p->subframe[i],
 | |
|                                    p->cur_rate);
 | |
|                 /* Get the total excitation */
 | |
|                 for (j = 0; j < SUBFRAME_LEN; j++) {
 | |
|                     int v = av_clip_int16(vector_ptr[j] << 1);
 | |
|                     vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
 | |
|                 }
 | |
|                 vector_ptr += SUBFRAME_LEN;
 | |
|             }
 | |
| 
 | |
|             vector_ptr = p->excitation + PITCH_MAX;
 | |
| 
 | |
|             p->interp_index = comp_interp_index(p, p->pitch_lag[1],
 | |
|                                                 &p->sid_gain, &p->cur_gain);
 | |
| 
 | |
|             /* Peform pitch postfiltering */
 | |
|             if (p->postfilter) {
 | |
|                 i = PITCH_MAX;
 | |
|                 for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
 | |
|                     comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
 | |
|                                    ppf + j, p->cur_rate);
 | |
| 
 | |
|                 for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
 | |
|                     ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
 | |
|                                                  vector_ptr + i,
 | |
|                                                  vector_ptr + i + ppf[j].index,
 | |
|                                                  ppf[j].sc_gain,
 | |
|                                                  ppf[j].opt_gain,
 | |
|                                                  1 << 14, 15, SUBFRAME_LEN);
 | |
|             } else {
 | |
|                 audio = vector_ptr - LPC_ORDER;
 | |
|             }
 | |
| 
 | |
|             /* Save the excitation for the next frame */
 | |
|             memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
 | |
|                    PITCH_MAX * sizeof(*p->excitation));
 | |
|         } else {
 | |
|             p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
 | |
|             if (p->erased_frames == 3) {
 | |
|                 /* Mute output */
 | |
|                 memset(p->excitation, 0,
 | |
|                        (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
 | |
|                 memset(p->prev_excitation, 0,
 | |
|                        PITCH_MAX * sizeof(*p->excitation));
 | |
|                 memset(frame->data[0], 0,
 | |
|                        (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
 | |
|             } else {
 | |
|                 int16_t *buf = p->audio + LPC_ORDER;
 | |
| 
 | |
|                 /* Regenerate frame */
 | |
|                 residual_interp(p->excitation, buf, p->interp_index,
 | |
|                                 p->interp_gain, &p->random_seed);
 | |
| 
 | |
|                 /* Save the excitation for the next frame */
 | |
|                 memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
 | |
|                        PITCH_MAX * sizeof(*p->excitation));
 | |
|             }
 | |
|         }
 | |
|         p->cng_random_seed = CNG_RANDOM_SEED;
 | |
|     } else {
 | |
|         if (p->cur_frame_type == SID_FRAME) {
 | |
|             p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
 | |
|             inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
 | |
|         } else if (p->past_frame_type == ACTIVE_FRAME) {
 | |
|             p->sid_gain = estimate_sid_gain(p);
 | |
|         }
 | |
| 
 | |
|         if (p->past_frame_type == ACTIVE_FRAME)
 | |
|             p->cur_gain = p->sid_gain;
 | |
|         else
 | |
|             p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
 | |
|         generate_noise(p);
 | |
|         lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
 | |
|         /* Save the lsp_vector for the next frame */
 | |
|         memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
 | |
|     }
 | |
| 
 | |
|     p->past_frame_type = p->cur_frame_type;
 | |
| 
 | |
|     memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
 | |
|     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
 | |
|         ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
 | |
|                                     audio + i, SUBFRAME_LEN, LPC_ORDER,
 | |
|                                     0, 1, 1 << 12);
 | |
|     memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
 | |
| 
 | |
|     if (p->postfilter) {
 | |
|         formant_postfilter(p, lpc, p->audio, out);
 | |
|     } else { // if output is not postfiltered it should be scaled by 2
 | |
|         for (i = 0; i < FRAME_LEN; i++)
 | |
|             out[i] = av_clip_int16(p->audio[LPC_ORDER + i] << 1);
 | |
|     }
 | |
| 
 | |
|     *got_frame_ptr = 1;
 | |
| 
 | |
|     return frame_size[dec_mode];
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(G723_1_Context, x)
 | |
| #define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
 | |
| 
 | |
| static const AVOption options[] = {
 | |
|     { "postfilter", "postfilter on/off", OFFSET(postfilter), AV_OPT_TYPE_INT,
 | |
|       { .i64 = 1 }, 0, 1, AD },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| 
 | |
| static const AVClass g723_1dec_class = {
 | |
|     .class_name = "G.723.1 decoder",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| AVCodec ff_g723_1_decoder = {
 | |
|     .name           = "g723_1",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_G723_1,
 | |
|     .priv_data_size = sizeof(G723_1_Context),
 | |
|     .init           = g723_1_decode_init,
 | |
|     .decode         = g723_1_decode_frame,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
 | |
|     .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
 | |
|     .priv_class     = &g723_1dec_class,
 | |
| };
 |