951 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			951 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "libavutil/channel_layout.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/eval.h"
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavcodec/avfft.h"
 | |
| #include "avfilter.h"
 | |
| #include "internal.h"
 | |
| #include "audio.h"
 | |
| 
 | |
| #define RDFT_BITS_MIN 4
 | |
| #define RDFT_BITS_MAX 16
 | |
| 
 | |
| enum WindowFunc {
 | |
|     WFUNC_RECTANGULAR,
 | |
|     WFUNC_HANN,
 | |
|     WFUNC_HAMMING,
 | |
|     WFUNC_BLACKMAN,
 | |
|     WFUNC_NUTTALL3,
 | |
|     WFUNC_MNUTTALL3,
 | |
|     WFUNC_NUTTALL,
 | |
|     WFUNC_BNUTTALL,
 | |
|     WFUNC_BHARRIS,
 | |
|     WFUNC_TUKEY,
 | |
|     NB_WFUNC
 | |
| };
 | |
| 
 | |
| enum Scale {
 | |
|     SCALE_LINLIN,
 | |
|     SCALE_LINLOG,
 | |
|     SCALE_LOGLIN,
 | |
|     SCALE_LOGLOG,
 | |
|     NB_SCALE
 | |
| };
 | |
| 
 | |
| #define NB_GAIN_ENTRY_MAX 4096
 | |
| typedef struct GainEntry {
 | |
|     double  freq;
 | |
|     double  gain;
 | |
| } GainEntry;
 | |
| 
 | |
| typedef struct OverlapIndex {
 | |
|     int buf_idx;
 | |
|     int overlap_idx;
 | |
| } OverlapIndex;
 | |
| 
 | |
| typedef struct FIREqualizerContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     RDFTContext   *analysis_rdft;
 | |
|     RDFTContext   *analysis_irdft;
 | |
|     RDFTContext   *rdft;
 | |
|     RDFTContext   *irdft;
 | |
|     FFTContext    *fft_ctx;
 | |
|     RDFTContext   *cepstrum_rdft;
 | |
|     RDFTContext   *cepstrum_irdft;
 | |
|     int           analysis_rdft_len;
 | |
|     int           rdft_len;
 | |
|     int           cepstrum_len;
 | |
| 
 | |
|     float         *analysis_buf;
 | |
|     float         *dump_buf;
 | |
|     float         *kernel_tmp_buf;
 | |
|     float         *kernel_buf;
 | |
|     float         *cepstrum_buf;
 | |
|     float         *conv_buf;
 | |
|     OverlapIndex  *conv_idx;
 | |
|     int           fir_len;
 | |
|     int           nsamples_max;
 | |
|     int64_t       next_pts;
 | |
|     int           frame_nsamples_max;
 | |
|     int           remaining;
 | |
| 
 | |
|     char          *gain_cmd;
 | |
|     char          *gain_entry_cmd;
 | |
|     const char    *gain;
 | |
|     const char    *gain_entry;
 | |
|     double        delay;
 | |
|     double        accuracy;
 | |
|     int           wfunc;
 | |
|     int           fixed;
 | |
|     int           multi;
 | |
|     int           zero_phase;
 | |
|     int           scale;
 | |
|     char          *dumpfile;
 | |
|     int           dumpscale;
 | |
|     int           fft2;
 | |
|     int           min_phase;
 | |
| 
 | |
|     int           nb_gain_entry;
 | |
|     int           gain_entry_err;
 | |
|     GainEntry     gain_entry_tbl[NB_GAIN_ENTRY_MAX];
 | |
| } FIREqualizerContext;
 | |
| 
 | |
| #define OFFSET(x) offsetof(FIREqualizerContext, x)
 | |
| #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
 | |
| #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
 | |
| 
 | |
| static const AVOption firequalizer_options[] = {
 | |
|     { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS },
 | |
|     { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS },
 | |
|     { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS },
 | |
|     { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS },
 | |
|     { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, "wfunc" },
 | |
|         { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, "wfunc" },
 | |
|         { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, "wfunc" },
 | |
|     { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
|     { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
|     { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
|     { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
 | |
|         { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, "scale" },
 | |
|         { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, "scale" },
 | |
|         { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, "scale" },
 | |
|         { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, "scale" },
 | |
|     { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
 | |
|     { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, "scale" },
 | |
|     { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
|     { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(firequalizer);
 | |
| 
 | |
| static void common_uninit(FIREqualizerContext *s)
 | |
| {
 | |
|     av_rdft_end(s->analysis_rdft);
 | |
|     av_rdft_end(s->analysis_irdft);
 | |
|     av_rdft_end(s->rdft);
 | |
|     av_rdft_end(s->irdft);
 | |
|     av_fft_end(s->fft_ctx);
 | |
|     av_rdft_end(s->cepstrum_rdft);
 | |
|     av_rdft_end(s->cepstrum_irdft);
 | |
|     s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
 | |
|     s->fft_ctx = NULL;
 | |
|     s->cepstrum_rdft = NULL;
 | |
|     s->cepstrum_irdft = NULL;
 | |
| 
 | |
|     av_freep(&s->analysis_buf);
 | |
|     av_freep(&s->dump_buf);
 | |
|     av_freep(&s->kernel_tmp_buf);
 | |
|     av_freep(&s->kernel_buf);
 | |
|     av_freep(&s->cepstrum_buf);
 | |
|     av_freep(&s->conv_buf);
 | |
|     av_freep(&s->conv_idx);
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
| 
 | |
|     common_uninit(s);
 | |
|     av_freep(&s->gain_cmd);
 | |
|     av_freep(&s->gain_entry_cmd);
 | |
| }
 | |
| 
 | |
| static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, float *av_restrict conv_buf,
 | |
|                            OverlapIndex *av_restrict idx, float *av_restrict data, int nsamples)
 | |
| {
 | |
|     if (nsamples <= s->nsamples_max) {
 | |
|         float *buf = conv_buf + idx->buf_idx * s->rdft_len;
 | |
|         float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
 | |
|         int center = s->fir_len/2;
 | |
|         int k;
 | |
| 
 | |
|         memset(buf, 0, center * sizeof(*data));
 | |
|         memcpy(buf + center, data, nsamples * sizeof(*data));
 | |
|         memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
 | |
|         av_rdft_calc(s->rdft, buf);
 | |
| 
 | |
|         buf[0] *= kernel_buf[0];
 | |
|         buf[1] *= kernel_buf[s->rdft_len/2];
 | |
|         for (k = 1; k < s->rdft_len/2; k++) {
 | |
|             buf[2*k] *= kernel_buf[k];
 | |
|             buf[2*k+1] *= kernel_buf[k];
 | |
|         }
 | |
| 
 | |
|         av_rdft_calc(s->irdft, buf);
 | |
|         for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
 | |
|             buf[k] += obuf[k];
 | |
|         memcpy(data, buf, nsamples * sizeof(*data));
 | |
|         idx->buf_idx = !idx->buf_idx;
 | |
|         idx->overlap_idx = nsamples;
 | |
|     } else {
 | |
|         while (nsamples > s->nsamples_max * 2) {
 | |
|             fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
 | |
|             data += s->nsamples_max;
 | |
|             nsamples -= s->nsamples_max;
 | |
|         }
 | |
|         fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2);
 | |
|         fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf,
 | |
|                                      float *av_restrict conv_buf, OverlapIndex *av_restrict idx,
 | |
|                                      float *av_restrict data, int nsamples)
 | |
| {
 | |
|     if (nsamples <= s->nsamples_max) {
 | |
|         float *buf = conv_buf + idx->buf_idx * s->rdft_len;
 | |
|         float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
 | |
|         int k;
 | |
| 
 | |
|         memcpy(buf, data, nsamples * sizeof(*data));
 | |
|         memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
 | |
|         av_rdft_calc(s->rdft, buf);
 | |
| 
 | |
|         buf[0] *= kernel_buf[0];
 | |
|         buf[1] *= kernel_buf[1];
 | |
|         for (k = 2; k < s->rdft_len; k += 2) {
 | |
|             float re, im;
 | |
|             re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1];
 | |
|             im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k];
 | |
|             buf[k] = re;
 | |
|             buf[k+1] = im;
 | |
|         }
 | |
| 
 | |
|         av_rdft_calc(s->irdft, buf);
 | |
|         for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
 | |
|             buf[k] += obuf[k];
 | |
|         memcpy(data, buf, nsamples * sizeof(*data));
 | |
|         idx->buf_idx = !idx->buf_idx;
 | |
|         idx->overlap_idx = nsamples;
 | |
|     } else {
 | |
|         while (nsamples > s->nsamples_max * 2) {
 | |
|             fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max);
 | |
|             data += s->nsamples_max;
 | |
|             nsamples -= s->nsamples_max;
 | |
|         }
 | |
|         fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2);
 | |
|         fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
 | |
|                             OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
 | |
| {
 | |
|     if (nsamples <= s->nsamples_max) {
 | |
|         FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
 | |
|         FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
 | |
|         int center = s->fir_len/2;
 | |
|         int k;
 | |
|         float tmp;
 | |
| 
 | |
|         memset(buf, 0, center * sizeof(*buf));
 | |
|         for (k = 0; k < nsamples; k++) {
 | |
|             buf[center+k].re = data0[k];
 | |
|             buf[center+k].im = data1[k];
 | |
|         }
 | |
|         memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
 | |
|         av_fft_permute(s->fft_ctx, buf);
 | |
|         av_fft_calc(s->fft_ctx, buf);
 | |
| 
 | |
|         /* swap re <-> im, do backward fft using forward fft_ctx */
 | |
|         /* normalize with 0.5f */
 | |
|         tmp = buf[0].re;
 | |
|         buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
 | |
|         buf[0].im = 0.5f * kernel_buf[0] * tmp;
 | |
|         for (k = 1; k < s->rdft_len/2; k++) {
 | |
|             int m = s->rdft_len - k;
 | |
|             tmp = buf[k].re;
 | |
|             buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
 | |
|             buf[k].im = 0.5f * kernel_buf[k] * tmp;
 | |
|             tmp = buf[m].re;
 | |
|             buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
 | |
|             buf[m].im = 0.5f * kernel_buf[k] * tmp;
 | |
|         }
 | |
|         tmp = buf[k].re;
 | |
|         buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
 | |
|         buf[k].im = 0.5f * kernel_buf[k] * tmp;
 | |
| 
 | |
|         av_fft_permute(s->fft_ctx, buf);
 | |
|         av_fft_calc(s->fft_ctx, buf);
 | |
| 
 | |
|         for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
 | |
|             buf[k].re += obuf[k].re;
 | |
|             buf[k].im += obuf[k].im;
 | |
|         }
 | |
| 
 | |
|         /* swapped re <-> im */
 | |
|         for (k = 0; k < nsamples; k++) {
 | |
|             data0[k] = buf[k].im;
 | |
|             data1[k] = buf[k].re;
 | |
|         }
 | |
|         idx->buf_idx = !idx->buf_idx;
 | |
|         idx->overlap_idx = nsamples;
 | |
|     } else {
 | |
|         while (nsamples > s->nsamples_max * 2) {
 | |
|             fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max);
 | |
|             data0 += s->nsamples_max;
 | |
|             data1 += s->nsamples_max;
 | |
|             nsamples -= s->nsamples_max;
 | |
|         }
 | |
|         fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2);
 | |
|         fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
 | |
| {
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     int rate = ctx->inputs[0]->sample_rate;
 | |
|     int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG;
 | |
|     int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG;
 | |
|     int x;
 | |
|     int center = s->fir_len / 2;
 | |
|     double delay = s->zero_phase ? 0.0 : (double) center / rate;
 | |
|     double vx, ya, yb;
 | |
| 
 | |
|     if (!s->min_phase) {
 | |
|         s->analysis_buf[0] *= s->rdft_len/2;
 | |
|         for (x = 1; x <= center; x++) {
 | |
|             s->analysis_buf[x] *= s->rdft_len/2;
 | |
|             s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2;
 | |
|         }
 | |
|     } else {
 | |
|         for (x = 0; x < s->fir_len; x++)
 | |
|             s->analysis_buf[x] *= s->rdft_len/2;
 | |
|     }
 | |
| 
 | |
|     if (ch)
 | |
|         fprintf(fp, "\n\n");
 | |
| 
 | |
|     fprintf(fp, "# time[%d] (time amplitude)\n", ch);
 | |
| 
 | |
|     if (!s->min_phase) {
 | |
|     for (x = center; x > 0; x--)
 | |
|         fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]);
 | |
| 
 | |
|     for (x = 0; x <= center; x++)
 | |
|         fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]);
 | |
|     } else {
 | |
|         for (x = 0; x < s->fir_len; x++)
 | |
|             fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
 | |
|     }
 | |
| 
 | |
|     av_rdft_calc(s->analysis_rdft, s->analysis_buf);
 | |
| 
 | |
|     fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
 | |
| 
 | |
|     for (x = 0; x <= s->analysis_rdft_len/2; x++) {
 | |
|         int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
 | |
|         vx = (double)x * rate / s->analysis_rdft_len;
 | |
|         if (xlog)
 | |
|             vx = log2(0.05*vx);
 | |
|         ya = s->dump_buf[i];
 | |
|         yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i];
 | |
|         if (s->min_phase)
 | |
|             yb = fabs(yb);
 | |
|         if (ylog) {
 | |
|             ya = 20.0 * log10(fabs(ya));
 | |
|             yb = 20.0 * log10(fabs(yb));
 | |
|         }
 | |
|         fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static double entry_func(void *p, double freq, double gain)
 | |
| {
 | |
|     AVFilterContext *ctx = p;
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
| 
 | |
|     if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n");
 | |
|         s->gain_entry_err = AVERROR(EINVAL);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (isnan(freq)) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain);
 | |
|         s->gain_entry_err = AVERROR(EINVAL);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain);
 | |
|         s->gain_entry_err = AVERROR(EINVAL);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     s->gain_entry_tbl[s->nb_gain_entry].freq = freq;
 | |
|     s->gain_entry_tbl[s->nb_gain_entry].gain = gain;
 | |
|     s->nb_gain_entry++;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int gain_entry_compare(const void *key, const void *memb)
 | |
| {
 | |
|     const double *freq = key;
 | |
|     const GainEntry *entry = memb;
 | |
| 
 | |
|     if (*freq < entry[0].freq)
 | |
|         return -1;
 | |
|     if (*freq > entry[1].freq)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static double gain_interpolate_func(void *p, double freq)
 | |
| {
 | |
|     AVFilterContext *ctx = p;
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     GainEntry *res;
 | |
|     double d0, d1, d;
 | |
| 
 | |
|     if (isnan(freq))
 | |
|         return freq;
 | |
| 
 | |
|     if (!s->nb_gain_entry)
 | |
|         return 0;
 | |
| 
 | |
|     if (freq <= s->gain_entry_tbl[0].freq)
 | |
|         return s->gain_entry_tbl[0].gain;
 | |
| 
 | |
|     if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
 | |
|         return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
 | |
| 
 | |
|     res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
 | |
|     av_assert0(res);
 | |
| 
 | |
|     d  = res[1].freq - res[0].freq;
 | |
|     d0 = freq - res[0].freq;
 | |
|     d1 = res[1].freq - freq;
 | |
| 
 | |
|     if (d0 && d1)
 | |
|         return (d0 * res[1].gain + d1 * res[0].gain) / d;
 | |
| 
 | |
|     if (d0)
 | |
|         return res[1].gain;
 | |
| 
 | |
|     return res[0].gain;
 | |
| }
 | |
| 
 | |
| static double cubic_interpolate_func(void *p, double freq)
 | |
| {
 | |
|     AVFilterContext *ctx = p;
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     GainEntry *res;
 | |
|     double x, x2, x3;
 | |
|     double a, b, c, d;
 | |
|     double m0, m1, m2, msum, unit;
 | |
| 
 | |
|     if (!s->nb_gain_entry)
 | |
|         return 0;
 | |
| 
 | |
|     if (freq <= s->gain_entry_tbl[0].freq)
 | |
|         return s->gain_entry_tbl[0].gain;
 | |
| 
 | |
|     if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq)
 | |
|         return s->gain_entry_tbl[s->nb_gain_entry-1].gain;
 | |
| 
 | |
|     res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare);
 | |
|     av_assert0(res);
 | |
| 
 | |
|     unit = res[1].freq - res[0].freq;
 | |
|     m0 = res != s->gain_entry_tbl ?
 | |
|          unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0;
 | |
|     m1 = res[1].gain - res[0].gain;
 | |
|     m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ?
 | |
|          unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0;
 | |
| 
 | |
|     msum = fabs(m0) + fabs(m1);
 | |
|     m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0;
 | |
|     msum = fabs(m1) + fabs(m2);
 | |
|     m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0;
 | |
| 
 | |
|     d = res[0].gain;
 | |
|     c = m0;
 | |
|     b = 3 * res[1].gain - m1 - 2 * c - 3 * d;
 | |
|     a = res[1].gain - b - c - d;
 | |
| 
 | |
|     x = (freq - res[0].freq) / unit;
 | |
|     x2 = x * x;
 | |
|     x3 = x2 * x;
 | |
| 
 | |
|     return a * x3 + b * x2 + c * x + d;
 | |
| }
 | |
| 
 | |
| static const char *const var_names[] = {
 | |
|     "f",
 | |
|     "sr",
 | |
|     "ch",
 | |
|     "chid",
 | |
|     "chs",
 | |
|     "chlayout",
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| enum VarOffset {
 | |
|     VAR_F,
 | |
|     VAR_SR,
 | |
|     VAR_CH,
 | |
|     VAR_CHID,
 | |
|     VAR_CHS,
 | |
|     VAR_CHLAYOUT,
 | |
|     VAR_NB
 | |
| };
 | |
| 
 | |
| static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
 | |
| {
 | |
|     int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len;
 | |
|     double norm = 2.0 / cepstrum_len;
 | |
|     double minval = 1e-7 / rdft_len;
 | |
| 
 | |
|     memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
 | |
|     memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
 | |
|     memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2  * sizeof(*rdft_buf));
 | |
| 
 | |
|     av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
 | |
| 
 | |
|     s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval));
 | |
|     s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval));
 | |
| 
 | |
|     for (k = 2; k < cepstrum_len; k += 2) {
 | |
|         s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
 | |
|         s->cepstrum_buf[k+1] = 0;
 | |
|     }
 | |
| 
 | |
|     av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
 | |
| 
 | |
|     memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
 | |
|     for (k = 1; k < cepstrum_len/2; k++)
 | |
|         s->cepstrum_buf[k] *= 2;
 | |
| 
 | |
|     av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
 | |
| 
 | |
|     s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm;
 | |
|     s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm;
 | |
|     for (k = 2; k < cepstrum_len; k += 2) {
 | |
|         double mag = exp(s->cepstrum_buf[k] * norm) * norm;
 | |
|         double ph = s->cepstrum_buf[k+1] * norm;
 | |
|         s->cepstrum_buf[k] = mag * cos(ph);
 | |
|         s->cepstrum_buf[k+1] = mag * sin(ph);
 | |
|     }
 | |
| 
 | |
|     av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
 | |
|     memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
 | |
|     memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
 | |
| 
 | |
|     if (s->dumpfile) {
 | |
|         memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf));
 | |
|         memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
 | |
| {
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     const char *gain_entry_func_names[] = { "entry", NULL };
 | |
|     const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL };
 | |
|     double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL };
 | |
|     double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL };
 | |
|     double vars[VAR_NB];
 | |
|     AVExpr *gain_expr;
 | |
|     int ret, k, center, ch;
 | |
|     int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG;
 | |
|     int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG;
 | |
|     FILE *dump_fp = NULL;
 | |
| 
 | |
|     s->nb_gain_entry = 0;
 | |
|     s->gain_entry_err = 0;
 | |
|     if (gain_entry) {
 | |
|         double result = 0.0;
 | |
|         ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL,
 | |
|                                      gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|         if (s->gain_entry_err < 0)
 | |
|             return s->gain_entry_err;
 | |
|     }
 | |
| 
 | |
|     av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry);
 | |
| 
 | |
|     ret = av_expr_parse(&gain_expr, gain, var_names,
 | |
|                         gain_func_names, gain_funcs, NULL, NULL, 0, ctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = fopen(s->dumpfile, "w"))))
 | |
|         av_log(ctx, AV_LOG_WARNING, "dumping failed.\n");
 | |
| 
 | |
|     vars[VAR_CHS] = inlink->channels;
 | |
|     vars[VAR_CHLAYOUT] = inlink->channel_layout;
 | |
|     vars[VAR_SR] = inlink->sample_rate;
 | |
|     for (ch = 0; ch < inlink->channels; ch++) {
 | |
|         float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
 | |
|         double result;
 | |
|         vars[VAR_CH] = ch;
 | |
|         vars[VAR_CHID] = av_channel_layout_extract_channel(inlink->channel_layout, ch);
 | |
|         vars[VAR_F] = 0.0;
 | |
|         if (xlog)
 | |
|             vars[VAR_F] = log2(0.05 * vars[VAR_F]);
 | |
|         result = av_expr_eval(gain_expr, vars, ctx);
 | |
|         s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
 | |
| 
 | |
|         vars[VAR_F] = 0.5 * inlink->sample_rate;
 | |
|         if (xlog)
 | |
|             vars[VAR_F] = log2(0.05 * vars[VAR_F]);
 | |
|         result = av_expr_eval(gain_expr, vars, ctx);
 | |
|         s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
 | |
| 
 | |
|         for (k = 1; k < s->analysis_rdft_len/2; k++) {
 | |
|             vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
 | |
|             if (xlog)
 | |
|                 vars[VAR_F] = log2(0.05 * vars[VAR_F]);
 | |
|             result = av_expr_eval(gain_expr, vars, ctx);
 | |
|             s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
 | |
|             s->analysis_buf[2*k+1] = 0.0;
 | |
|         }
 | |
| 
 | |
|         if (s->dump_buf)
 | |
|             memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
 | |
| 
 | |
|         av_rdft_calc(s->analysis_irdft, s->analysis_buf);
 | |
|         center = s->fir_len / 2;
 | |
| 
 | |
|         for (k = 0; k <= center; k++) {
 | |
|             double u = k * (M_PI/center);
 | |
|             double win;
 | |
|             switch (s->wfunc) {
 | |
|             case WFUNC_RECTANGULAR:
 | |
|                 win = 1.0;
 | |
|                 break;
 | |
|             case WFUNC_HANN:
 | |
|                 win = 0.5 + 0.5 * cos(u);
 | |
|                 break;
 | |
|             case WFUNC_HAMMING:
 | |
|                 win = 0.53836 + 0.46164 * cos(u);
 | |
|                 break;
 | |
|             case WFUNC_BLACKMAN:
 | |
|                 win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u);
 | |
|                 break;
 | |
|             case WFUNC_NUTTALL3:
 | |
|                 win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u);
 | |
|                 break;
 | |
|             case WFUNC_MNUTTALL3:
 | |
|                 win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u);
 | |
|                 break;
 | |
|             case WFUNC_NUTTALL:
 | |
|                 win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u);
 | |
|                 break;
 | |
|             case WFUNC_BNUTTALL:
 | |
|                 win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u);
 | |
|                 break;
 | |
|             case WFUNC_BHARRIS:
 | |
|                 win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u);
 | |
|                 break;
 | |
|             case WFUNC_TUKEY:
 | |
|                 win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI));
 | |
|                 break;
 | |
|             default:
 | |
|                 av_assert0(0);
 | |
|             }
 | |
|             s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win;
 | |
|             if (k)
 | |
|                 s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k];
 | |
|         }
 | |
| 
 | |
|         memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
 | |
|         memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
 | |
|         memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
 | |
|         if (s->min_phase)
 | |
|             generate_min_phase_kernel(s, rdft_buf);
 | |
|         av_rdft_calc(s->rdft, rdft_buf);
 | |
| 
 | |
|         for (k = 0; k < s->rdft_len; k++) {
 | |
|             if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
 | |
|                 av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
 | |
|                 av_expr_free(gain_expr);
 | |
|                 if (dump_fp)
 | |
|                     fclose(dump_fp);
 | |
|                 return AVERROR(EINVAL);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!s->min_phase) {
 | |
|             rdft_buf[s->rdft_len-1] = rdft_buf[1];
 | |
|             for (k = 0; k < s->rdft_len/2; k++)
 | |
|                 rdft_buf[k] = rdft_buf[2*k];
 | |
|             rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
 | |
|         }
 | |
| 
 | |
|         if (dump_fp)
 | |
|             dump_fir(ctx, dump_fp, ch);
 | |
| 
 | |
|         if (!s->multi)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
 | |
|     av_expr_free(gain_expr);
 | |
|     if (dump_fp)
 | |
|         fclose(dump_fp);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
 | |
| #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     int rdft_bits;
 | |
| 
 | |
|     common_uninit(s);
 | |
| 
 | |
|     s->next_pts = 0;
 | |
|     s->frame_nsamples_max = 0;
 | |
| 
 | |
|     s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3);
 | |
|     s->remaining = s->fir_len - 1;
 | |
| 
 | |
|     for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
 | |
|         s->rdft_len = 1 << rdft_bits;
 | |
|         s->nsamples_max = s->rdft_len - s->fir_len + 1;
 | |
|         if (s->nsamples_max * 2 >= s->fir_len)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     if (rdft_bits > RDFT_BITS_MAX) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (s->fft2 && !s->multi && inlink->channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (s->min_phase) {
 | |
|         int cepstrum_bits = rdft_bits + 2;
 | |
|         if (cepstrum_bits > RDFT_BITS_MAX) {
 | |
|             av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n");
 | |
|             return AVERROR(EINVAL);
 | |
|         }
 | |
| 
 | |
|         cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
 | |
|         s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C);
 | |
|         s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R);
 | |
|         if (!s->cepstrum_rdft || !s->cepstrum_irdft)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         s->cepstrum_len = 1 << cepstrum_bits;
 | |
|         s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf));
 | |
|         if (!s->cepstrum_buf)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
 | |
|         s->analysis_rdft_len = 1 << rdft_bits;
 | |
|         if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len)
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     if (rdft_bits > RDFT_BITS_MAX) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     if (s->dumpfile) {
 | |
|         s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
 | |
|         s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
 | |
|     }
 | |
| 
 | |
|     s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf));
 | |
|     s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_tmp_buf));
 | |
|     s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->channels : 1), sizeof(*s->kernel_buf));
 | |
|     s->conv_buf   = av_calloc(2 * s->rdft_len * inlink->channels, sizeof(*s->conv_buf));
 | |
|     s->conv_idx   = av_calloc(inlink->channels, sizeof(*s->conv_idx));
 | |
|     if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
 | |
|            inlink->sample_rate, inlink->channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max);
 | |
| 
 | |
|     if (s->fixed)
 | |
|         inlink->min_samples = inlink->max_samples = s->nsamples_max;
 | |
| 
 | |
|     return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s));
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     int ch;
 | |
| 
 | |
|     if (!s->min_phase) {
 | |
|         for (ch = 0; ch + 1 < inlink->channels && s->fft_ctx; ch += 2) {
 | |
|             fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
 | |
|                             s->conv_idx + ch, (float *) frame->extended_data[ch],
 | |
|                             (float *) frame->extended_data[ch+1], frame->nb_samples);
 | |
|         }
 | |
| 
 | |
|         for ( ; ch < inlink->channels; ch++) {
 | |
|             fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
 | |
|                         s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
 | |
|                         (float *) frame->extended_data[ch], frame->nb_samples);
 | |
|         }
 | |
|     } else {
 | |
|         for (ch = 0; ch < inlink->channels; ch++) {
 | |
|             fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
 | |
|                                      s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
 | |
|                                      (float *) frame->extended_data[ch], frame->nb_samples);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->next_pts = AV_NOPTS_VALUE;
 | |
|     if (frame->pts != AV_NOPTS_VALUE) {
 | |
|         s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base);
 | |
|         if (s->zero_phase && !s->min_phase)
 | |
|             frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base);
 | |
|     }
 | |
|     s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples);
 | |
|     return ff_filter_frame(ctx->outputs[0], frame);
 | |
| }
 | |
| 
 | |
| static int request_frame(AVFilterLink *outlink)
 | |
| {
 | |
|     AVFilterContext *ctx = outlink->src;
 | |
|     FIREqualizerContext *s= ctx->priv;
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_request_frame(ctx->inputs[0]);
 | |
|     if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) {
 | |
|         AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max));
 | |
| 
 | |
|         if (!frame)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->channels, frame->format);
 | |
|         frame->pts = s->next_pts;
 | |
|         s->remaining -= frame->nb_samples;
 | |
|         ret = filter_frame(ctx->inputs[0], frame);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
 | |
|                            char *res, int res_len, int flags)
 | |
| {
 | |
|     FIREqualizerContext *s = ctx->priv;
 | |
|     int ret = AVERROR(ENOSYS);
 | |
| 
 | |
|     if (!strcmp(cmd, "gain")) {
 | |
|         char *gain_cmd;
 | |
| 
 | |
|         if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) {
 | |
|             av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n");
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         gain_cmd = av_strdup(args);
 | |
|         if (!gain_cmd)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s));
 | |
|         if (ret >= 0) {
 | |
|             av_freep(&s->gain_cmd);
 | |
|             s->gain_cmd = gain_cmd;
 | |
|         } else {
 | |
|             av_freep(&gain_cmd);
 | |
|         }
 | |
|     } else if (!strcmp(cmd, "gain_entry")) {
 | |
|         char *gain_entry_cmd;
 | |
| 
 | |
|         if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) {
 | |
|             av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n");
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         gain_entry_cmd = av_strdup(args);
 | |
|         if (!gain_entry_cmd)
 | |
|             return AVERROR(ENOMEM);
 | |
| 
 | |
|         ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd);
 | |
|         if (ret >= 0) {
 | |
|             av_freep(&s->gain_entry_cmd);
 | |
|             s->gain_entry_cmd = gain_entry_cmd;
 | |
|         } else {
 | |
|             av_freep(&gain_entry_cmd);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static const AVFilterPad firequalizer_inputs[] = {
 | |
|     {
 | |
|         .name           = "default",
 | |
|         .flags          = AVFILTERPAD_FLAG_NEEDS_WRITABLE,
 | |
|         .config_props   = config_input,
 | |
|         .filter_frame   = filter_frame,
 | |
|         .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const AVFilterPad firequalizer_outputs[] = {
 | |
|     {
 | |
|         .name           = "default",
 | |
|         .request_frame  = request_frame,
 | |
|         .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
| };
 | |
| 
 | |
| const AVFilter ff_af_firequalizer = {
 | |
|     .name               = "firequalizer",
 | |
|     .description        = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."),
 | |
|     .uninit             = uninit,
 | |
|     .process_command    = process_command,
 | |
|     .priv_size          = sizeof(FIREqualizerContext),
 | |
|     FILTER_INPUTS(firequalizer_inputs),
 | |
|     FILTER_OUTPUTS(firequalizer_outputs),
 | |
|     FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
 | |
|     .priv_class         = &firequalizer_class,
 | |
| };
 |