246 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2018 Sergey Lavrushkin
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * Filter implementing image super-resolution using deep convolutional networks.
 | 
						|
 * https://arxiv.org/abs/1501.00092
 | 
						|
 */
 | 
						|
 | 
						|
#include "avfilter.h"
 | 
						|
#include "formats.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "libavformat/avio.h"
 | 
						|
#include "dnn_interface.h"
 | 
						|
 | 
						|
typedef struct SRCNNContext {
 | 
						|
    const AVClass *class;
 | 
						|
 | 
						|
    char* model_filename;
 | 
						|
    float* input_output_buf;
 | 
						|
    DNNModule* dnn_module;
 | 
						|
    DNNModel* model;
 | 
						|
    DNNData input_output;
 | 
						|
} SRCNNContext;
 | 
						|
 | 
						|
 | 
						|
#define OFFSET(x) offsetof(SRCNNContext, x)
 | 
						|
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
 | 
						|
static const AVOption srcnn_options[] = {
 | 
						|
    { "model_filename", "path to model file specifying network architecture and its parameters", OFFSET(model_filename), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
AVFILTER_DEFINE_CLASS(srcnn);
 | 
						|
 | 
						|
static av_cold int init(AVFilterContext* context)
 | 
						|
{
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
 | 
						|
    srcnn_context->dnn_module = ff_get_dnn_module(DNN_NATIVE);
 | 
						|
    if (!srcnn_context->dnn_module){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not create dnn module\n");
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
    if (!srcnn_context->model_filename){
 | 
						|
        av_log(context, AV_LOG_INFO, "model file for network was not specified, using default network for x2 upsampling\n");
 | 
						|
        srcnn_context->model = (srcnn_context->dnn_module->load_default_model)(DNN_SRCNN);
 | 
						|
    }
 | 
						|
    else{
 | 
						|
        srcnn_context->model = (srcnn_context->dnn_module->load_model)(srcnn_context->model_filename);
 | 
						|
    }
 | 
						|
    if (!srcnn_context->model){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not load dnn model\n");
 | 
						|
        return AVERROR(EIO);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int query_formats(AVFilterContext* context)
 | 
						|
{
 | 
						|
    const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
 | 
						|
                                                AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
 | 
						|
                                                AV_PIX_FMT_NONE};
 | 
						|
    AVFilterFormats* formats_list;
 | 
						|
 | 
						|
    formats_list = ff_make_format_list(pixel_formats);
 | 
						|
    if (!formats_list){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not create formats list\n");
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
    return ff_set_common_formats(context, formats_list);
 | 
						|
}
 | 
						|
 | 
						|
static int config_props(AVFilterLink* inlink)
 | 
						|
{
 | 
						|
    AVFilterContext* context = inlink->dst;
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
    DNNReturnType result;
 | 
						|
 | 
						|
    srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(float));
 | 
						|
    if (!srcnn_context->input_output_buf){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not allocate memory for input/output buffer\n");
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    srcnn_context->input_output.data = srcnn_context->input_output_buf;
 | 
						|
    srcnn_context->input_output.width = inlink->w;
 | 
						|
    srcnn_context->input_output.height = inlink->h;
 | 
						|
    srcnn_context->input_output.channels = 1;
 | 
						|
 | 
						|
    result = (srcnn_context->model->set_input_output)(srcnn_context->model->model, &srcnn_context->input_output, &srcnn_context->input_output);
 | 
						|
    if (result != DNN_SUCCESS){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not set input and output for the model\n");
 | 
						|
        return AVERROR(EIO);
 | 
						|
    }
 | 
						|
    else{
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct ThreadData{
 | 
						|
    uint8_t* out;
 | 
						|
    int out_linesize, height, width;
 | 
						|
} ThreadData;
 | 
						|
 | 
						|
static int uint8_to_float(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 | 
						|
{
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
    const ThreadData* td = arg;
 | 
						|
    const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 | 
						|
    const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 | 
						|
    const uint8_t* src = td->out + slice_start * td->out_linesize;
 | 
						|
    float* dst = srcnn_context->input_output_buf + slice_start * td->width;
 | 
						|
    int y, x;
 | 
						|
 | 
						|
    for (y = slice_start; y < slice_end; ++y){
 | 
						|
        for (x = 0; x < td->width; ++x){
 | 
						|
            dst[x] = (float)src[x] / 255.0f;
 | 
						|
        }
 | 
						|
        src += td->out_linesize;
 | 
						|
        dst += td->width;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int float_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
 | 
						|
{
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
    const ThreadData* td = arg;
 | 
						|
    const int slice_start = (td->height *  jobnr     ) / nb_jobs;
 | 
						|
    const int slice_end   = (td->height * (jobnr + 1)) / nb_jobs;
 | 
						|
    const float* src = srcnn_context->input_output_buf + slice_start * td->width;
 | 
						|
    uint8_t* dst = td->out + slice_start * td->out_linesize;
 | 
						|
    int y, x;
 | 
						|
 | 
						|
    for (y = slice_start; y < slice_end; ++y){
 | 
						|
        for (x = 0; x < td->width; ++x){
 | 
						|
            dst[x] = (uint8_t)(255.0f * FFMIN(src[x], 1.0f));
 | 
						|
        }
 | 
						|
        src += td->width;
 | 
						|
        dst += td->out_linesize;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
 | 
						|
{
 | 
						|
    AVFilterContext* context = inlink->dst;
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
    AVFilterLink* outlink = context->outputs[0];
 | 
						|
    AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
 | 
						|
    ThreadData td;
 | 
						|
    int nb_threads;
 | 
						|
    DNNReturnType dnn_result;
 | 
						|
 | 
						|
    if (!out){
 | 
						|
        av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
 | 
						|
        av_frame_free(&in);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
    av_frame_copy_props(out, in);
 | 
						|
    av_frame_copy(out, in);
 | 
						|
    av_frame_free(&in);
 | 
						|
    td.out = out->data[0];
 | 
						|
    td.out_linesize = out->linesize[0];
 | 
						|
    td.height = out->height;
 | 
						|
    td.width = out->width;
 | 
						|
 | 
						|
    nb_threads = ff_filter_get_nb_threads(context);
 | 
						|
    context->internal->execute(context, uint8_to_float, &td, NULL, FFMIN(td.height, nb_threads));
 | 
						|
 | 
						|
    dnn_result = (srcnn_context->dnn_module->execute_model)(srcnn_context->model);
 | 
						|
    if (dnn_result != DNN_SUCCESS){
 | 
						|
        av_log(context, AV_LOG_ERROR, "failed to execute loaded model\n");
 | 
						|
        return AVERROR(EIO);
 | 
						|
    }
 | 
						|
 | 
						|
    context->internal->execute(context, float_to_uint8, &td, NULL, FFMIN(td.height, nb_threads));
 | 
						|
 | 
						|
    return ff_filter_frame(outlink, out);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void uninit(AVFilterContext* context)
 | 
						|
{
 | 
						|
    SRCNNContext* srcnn_context = context->priv;
 | 
						|
 | 
						|
    if (srcnn_context->dnn_module){
 | 
						|
        (srcnn_context->dnn_module->free_model)(&srcnn_context->model);
 | 
						|
        av_freep(&srcnn_context->dnn_module);
 | 
						|
    }
 | 
						|
    av_freep(&srcnn_context->input_output_buf);
 | 
						|
}
 | 
						|
 | 
						|
static const AVFilterPad srcnn_inputs[] = {
 | 
						|
    {
 | 
						|
        .name         = "default",
 | 
						|
        .type         = AVMEDIA_TYPE_VIDEO,
 | 
						|
        .config_props = config_props,
 | 
						|
        .filter_frame = filter_frame,
 | 
						|
    },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
static const AVFilterPad srcnn_outputs[] = {
 | 
						|
    {
 | 
						|
        .name = "default",
 | 
						|
        .type = AVMEDIA_TYPE_VIDEO,
 | 
						|
    },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
AVFilter ff_vf_srcnn = {
 | 
						|
    .name          = "srcnn",
 | 
						|
    .description   = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
 | 
						|
    .priv_size     = sizeof(SRCNNContext),
 | 
						|
    .init          = init,
 | 
						|
    .uninit        = uninit,
 | 
						|
    .query_formats = query_formats,
 | 
						|
    .inputs        = srcnn_inputs,
 | 
						|
    .outputs       = srcnn_outputs,
 | 
						|
    .priv_class    = &srcnn_class,
 | 
						|
    .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
 | 
						|
};
 | 
						|
 |