As well as tables littered everywhere, functions were spread out all across the encoder's files. This moves them to a single place where they can be used by either the encoder's main files or additional encoder files. Additionally, it changes the type of some to 'inline' to enable us to simply put them in a header file and possibly gain some speed due to compiler optimizations. Signed-off-by: Claudio Freire <klaussfreire@gmail.com>
		
			
				
	
	
		
			1311 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1311 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * AAC coefficients encoder
 | 
						|
 * Copyright (C) 2008-2009 Konstantin Shishkov
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * AAC coefficients encoder
 | 
						|
 */
 | 
						|
 | 
						|
/***********************************
 | 
						|
 *              TODOs:
 | 
						|
 * speedup quantizer selection
 | 
						|
 * add sane pulse detection
 | 
						|
 ***********************************/
 | 
						|
 | 
						|
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
 | 
						|
 | 
						|
#include <float.h>
 | 
						|
#include "libavutil/mathematics.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "aac.h"
 | 
						|
#include "aacenc.h"
 | 
						|
#include "aactab.h"
 | 
						|
#include "aacenctab.h"
 | 
						|
#include "aacenc_utils.h"
 | 
						|
#include "aac_tablegen_decl.h"
 | 
						|
 | 
						|
/** Frequency in Hz for lower limit of noise substitution **/
 | 
						|
#define NOISE_LOW_LIMIT 4500
 | 
						|
 | 
						|
/* Energy spread threshold value below which no PNS is used, this corresponds to
 | 
						|
 * typically around 17Khz, after which PNS usage decays ending at 19Khz */
 | 
						|
#define NOISE_SPREAD_THRESHOLD 0.5f
 | 
						|
 | 
						|
/* This constant gets divided by lambda to return ~1.65 which when multiplied
 | 
						|
 * by the band->threshold and compared to band->energy is the boundary between
 | 
						|
 * excessive PNS and little PNS usage. */
 | 
						|
#define NOISE_LAMBDA_NUMERATOR 252.1f
 | 
						|
 | 
						|
/** Frequency in Hz for lower limit of intensity stereo   **/
 | 
						|
#define INT_STEREO_LOW_LIMIT 6100
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate rate distortion cost for quantizing with given codebook
 | 
						|
 *
 | 
						|
 * @return quantization distortion
 | 
						|
 */
 | 
						|
static av_always_inline float quantize_and_encode_band_cost_template(
 | 
						|
                                struct AACEncContext *s,
 | 
						|
                                PutBitContext *pb, const float *in,
 | 
						|
                                const float *scaled, int size, int scale_idx,
 | 
						|
                                int cb, const float lambda, const float uplim,
 | 
						|
                                int *bits, int BT_ZERO, int BT_UNSIGNED,
 | 
						|
                                int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO,
 | 
						|
                                const float ROUNDING)
 | 
						|
{
 | 
						|
    const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
 | 
						|
    const float Q   = ff_aac_pow2sf_tab [q_idx];
 | 
						|
    const float Q34 = ff_aac_pow34sf_tab[q_idx];
 | 
						|
    const float IQ  = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
 | 
						|
    const float CLIPPED_ESCAPE = 165140.0f*IQ;
 | 
						|
    int i, j;
 | 
						|
    float cost = 0;
 | 
						|
    const int dim = BT_PAIR ? 2 : 4;
 | 
						|
    int resbits = 0;
 | 
						|
    int off;
 | 
						|
 | 
						|
    if (BT_ZERO || BT_NOISE || BT_STEREO) {
 | 
						|
        for (i = 0; i < size; i++)
 | 
						|
            cost += in[i]*in[i];
 | 
						|
        if (bits)
 | 
						|
            *bits = 0;
 | 
						|
        return cost * lambda;
 | 
						|
    }
 | 
						|
    if (!scaled) {
 | 
						|
        abs_pow34_v(s->scoefs, in, size);
 | 
						|
        scaled = s->scoefs;
 | 
						|
    }
 | 
						|
    quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, aac_cb_maxval[cb], ROUNDING);
 | 
						|
    if (BT_UNSIGNED) {
 | 
						|
        off = 0;
 | 
						|
    } else {
 | 
						|
        off = aac_cb_maxval[cb];
 | 
						|
    }
 | 
						|
    for (i = 0; i < size; i += dim) {
 | 
						|
        const float *vec;
 | 
						|
        int *quants = s->qcoefs + i;
 | 
						|
        int curidx = 0;
 | 
						|
        int curbits;
 | 
						|
        float rd = 0.0f;
 | 
						|
        for (j = 0; j < dim; j++) {
 | 
						|
            curidx *= aac_cb_range[cb];
 | 
						|
            curidx += quants[j] + off;
 | 
						|
        }
 | 
						|
        curbits =  ff_aac_spectral_bits[cb-1][curidx];
 | 
						|
        vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
 | 
						|
        if (BT_UNSIGNED) {
 | 
						|
            for (j = 0; j < dim; j++) {
 | 
						|
                float t = fabsf(in[i+j]);
 | 
						|
                float di;
 | 
						|
                if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
 | 
						|
                    if (t >= CLIPPED_ESCAPE) {
 | 
						|
                        di = t - CLIPPED_ESCAPE;
 | 
						|
                        curbits += 21;
 | 
						|
                    } else {
 | 
						|
                        int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13);
 | 
						|
                        di = t - c*cbrtf(c)*IQ;
 | 
						|
                        curbits += av_log2(c)*2 - 4 + 1;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    di = t - vec[j]*IQ;
 | 
						|
                }
 | 
						|
                if (vec[j] != 0.0f)
 | 
						|
                    curbits++;
 | 
						|
                rd += di*di;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            for (j = 0; j < dim; j++) {
 | 
						|
                float di = in[i+j] - vec[j]*IQ;
 | 
						|
                rd += di*di;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        cost    += rd * lambda + curbits;
 | 
						|
        resbits += curbits;
 | 
						|
        if (cost >= uplim)
 | 
						|
            return uplim;
 | 
						|
        if (pb) {
 | 
						|
            put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
 | 
						|
            if (BT_UNSIGNED)
 | 
						|
                for (j = 0; j < dim; j++)
 | 
						|
                    if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
 | 
						|
                        put_bits(pb, 1, in[i+j] < 0.0f);
 | 
						|
            if (BT_ESC) {
 | 
						|
                for (j = 0; j < 2; j++) {
 | 
						|
                    if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
 | 
						|
                        int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13);
 | 
						|
                        int len = av_log2(coef);
 | 
						|
 | 
						|
                        put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
 | 
						|
                        put_sbits(pb, len, coef);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (bits)
 | 
						|
        *bits = resbits;
 | 
						|
    return cost;
 | 
						|
}
 | 
						|
 | 
						|
static float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb,
 | 
						|
                                                const float *in, const float *scaled,
 | 
						|
                                                int size, int scale_idx, int cb,
 | 
						|
                                                const float lambda, const float uplim,
 | 
						|
                                                int *bits) {
 | 
						|
    av_assert0(0);
 | 
						|
    return 0.0f;
 | 
						|
}
 | 
						|
 | 
						|
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, ROUNDING) \
 | 
						|
static float quantize_and_encode_band_cost_ ## NAME(                                         \
 | 
						|
                                struct AACEncContext *s,                                     \
 | 
						|
                                PutBitContext *pb, const float *in,                          \
 | 
						|
                                const float *scaled, int size, int scale_idx,                \
 | 
						|
                                int cb, const float lambda, const float uplim,               \
 | 
						|
                                int *bits) {                                                 \
 | 
						|
    return quantize_and_encode_band_cost_template(                                           \
 | 
						|
                                s, pb, in, scaled, size, scale_idx,                          \
 | 
						|
                                BT_ESC ? ESC_BT : cb, lambda, uplim, bits,                   \
 | 
						|
                                BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO,  \
 | 
						|
                                ROUNDING);                                                   \
 | 
						|
}
 | 
						|
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1, 0, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD)
 | 
						|
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD)
 | 
						|
 | 
						|
static float (*const quantize_and_encode_band_cost_arr[])(
 | 
						|
                                struct AACEncContext *s,
 | 
						|
                                PutBitContext *pb, const float *in,
 | 
						|
                                const float *scaled, int size, int scale_idx,
 | 
						|
                                int cb, const float lambda, const float uplim,
 | 
						|
                                int *bits) = {
 | 
						|
    quantize_and_encode_band_cost_ZERO,
 | 
						|
    quantize_and_encode_band_cost_SQUAD,
 | 
						|
    quantize_and_encode_band_cost_SQUAD,
 | 
						|
    quantize_and_encode_band_cost_UQUAD,
 | 
						|
    quantize_and_encode_band_cost_UQUAD,
 | 
						|
    quantize_and_encode_band_cost_SPAIR,
 | 
						|
    quantize_and_encode_band_cost_SPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_ESC,
 | 
						|
    quantize_and_encode_band_cost_NONE,     /* CB 12 doesn't exist */
 | 
						|
    quantize_and_encode_band_cost_NOISE,
 | 
						|
    quantize_and_encode_band_cost_STEREO,
 | 
						|
    quantize_and_encode_band_cost_STEREO,
 | 
						|
};
 | 
						|
 | 
						|
static float (*const quantize_and_encode_band_cost_rtz_arr[])(
 | 
						|
                                struct AACEncContext *s,
 | 
						|
                                PutBitContext *pb, const float *in,
 | 
						|
                                const float *scaled, int size, int scale_idx,
 | 
						|
                                int cb, const float lambda, const float uplim,
 | 
						|
                                int *bits) = {
 | 
						|
    quantize_and_encode_band_cost_ZERO,
 | 
						|
    quantize_and_encode_band_cost_SQUAD,
 | 
						|
    quantize_and_encode_band_cost_SQUAD,
 | 
						|
    quantize_and_encode_band_cost_UQUAD,
 | 
						|
    quantize_and_encode_band_cost_UQUAD,
 | 
						|
    quantize_and_encode_band_cost_SPAIR,
 | 
						|
    quantize_and_encode_band_cost_SPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_UPAIR,
 | 
						|
    quantize_and_encode_band_cost_ESC_RTZ,
 | 
						|
    quantize_and_encode_band_cost_NONE,     /* CB 12 doesn't exist */
 | 
						|
    quantize_and_encode_band_cost_NOISE,
 | 
						|
    quantize_and_encode_band_cost_STEREO,
 | 
						|
    quantize_and_encode_band_cost_STEREO,
 | 
						|
};
 | 
						|
 | 
						|
#define quantize_and_encode_band_cost(                                  \
 | 
						|
                                s, pb, in, scaled, size, scale_idx, cb, \
 | 
						|
                                lambda, uplim, bits, rtz)               \
 | 
						|
    ((rtz) ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb]( \
 | 
						|
                                s, pb, in, scaled, size, scale_idx, cb, \
 | 
						|
                                lambda, uplim, bits)
 | 
						|
 | 
						|
static float quantize_band_cost(struct AACEncContext *s, const float *in,
 | 
						|
                                const float *scaled, int size, int scale_idx,
 | 
						|
                                int cb, const float lambda, const float uplim,
 | 
						|
                                int *bits, int rtz)
 | 
						|
{
 | 
						|
    return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
 | 
						|
                                         cb, lambda, uplim, bits, rtz);
 | 
						|
}
 | 
						|
 | 
						|
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
 | 
						|
                                     const float *in, int size, int scale_idx,
 | 
						|
                                     int cb, const float lambda, int rtz)
 | 
						|
{
 | 
						|
    quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
 | 
						|
                                  INFINITY, NULL, rtz);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * structure used in optimal codebook search
 | 
						|
 */
 | 
						|
typedef struct BandCodingPath {
 | 
						|
    int prev_idx; ///< pointer to the previous path point
 | 
						|
    float cost;   ///< path cost
 | 
						|
    int run;
 | 
						|
} BandCodingPath;
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode band info for single window group bands.
 | 
						|
 */
 | 
						|
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
 | 
						|
                                     int win, int group_len, const float lambda)
 | 
						|
{
 | 
						|
    BandCodingPath path[120][CB_TOT_ALL];
 | 
						|
    int w, swb, cb, start, size;
 | 
						|
    int i, j;
 | 
						|
    const int max_sfb  = sce->ics.max_sfb;
 | 
						|
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
 | 
						|
    const int run_esc  = (1 << run_bits) - 1;
 | 
						|
    int idx, ppos, count;
 | 
						|
    int stackrun[120], stackcb[120], stack_len;
 | 
						|
    float next_minrd = INFINITY;
 | 
						|
    int next_mincb = 0;
 | 
						|
 | 
						|
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
 | 
						|
    start = win*128;
 | 
						|
    for (cb = 0; cb < CB_TOT_ALL; cb++) {
 | 
						|
        path[0][cb].cost     = 0.0f;
 | 
						|
        path[0][cb].prev_idx = -1;
 | 
						|
        path[0][cb].run      = 0;
 | 
						|
    }
 | 
						|
    for (swb = 0; swb < max_sfb; swb++) {
 | 
						|
        size = sce->ics.swb_sizes[swb];
 | 
						|
        if (sce->zeroes[win*16 + swb]) {
 | 
						|
            for (cb = 0; cb < CB_TOT_ALL; cb++) {
 | 
						|
                path[swb+1][cb].prev_idx = cb;
 | 
						|
                path[swb+1][cb].cost     = path[swb][cb].cost;
 | 
						|
                path[swb+1][cb].run      = path[swb][cb].run + 1;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            float minrd = next_minrd;
 | 
						|
            int mincb = next_mincb;
 | 
						|
            next_minrd = INFINITY;
 | 
						|
            next_mincb = 0;
 | 
						|
            for (cb = 0; cb < CB_TOT_ALL; cb++) {
 | 
						|
                float cost_stay_here, cost_get_here;
 | 
						|
                float rd = 0.0f;
 | 
						|
                if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
 | 
						|
                    cb  < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
 | 
						|
                    path[swb+1][cb].prev_idx = -1;
 | 
						|
                    path[swb+1][cb].cost     = INFINITY;
 | 
						|
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                for (w = 0; w < group_len; w++) {
 | 
						|
                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
 | 
						|
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
 | 
						|
                                             s->scoefs + start + w*128, size,
 | 
						|
                                             sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
 | 
						|
                                             lambda / band->threshold, INFINITY, NULL, 0);
 | 
						|
                }
 | 
						|
                cost_stay_here = path[swb][cb].cost + rd;
 | 
						|
                cost_get_here  = minrd              + rd + run_bits + 4;
 | 
						|
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
 | 
						|
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
 | 
						|
                    cost_stay_here += run_bits;
 | 
						|
                if (cost_get_here < cost_stay_here) {
 | 
						|
                    path[swb+1][cb].prev_idx = mincb;
 | 
						|
                    path[swb+1][cb].cost     = cost_get_here;
 | 
						|
                    path[swb+1][cb].run      = 1;
 | 
						|
                } else {
 | 
						|
                    path[swb+1][cb].prev_idx = cb;
 | 
						|
                    path[swb+1][cb].cost     = cost_stay_here;
 | 
						|
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
 | 
						|
                }
 | 
						|
                if (path[swb+1][cb].cost < next_minrd) {
 | 
						|
                    next_minrd = path[swb+1][cb].cost;
 | 
						|
                    next_mincb = cb;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        start += sce->ics.swb_sizes[swb];
 | 
						|
    }
 | 
						|
 | 
						|
    //convert resulting path from backward-linked list
 | 
						|
    stack_len = 0;
 | 
						|
    idx       = 0;
 | 
						|
    for (cb = 1; cb < CB_TOT_ALL; cb++)
 | 
						|
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
 | 
						|
            idx = cb;
 | 
						|
    ppos = max_sfb;
 | 
						|
    while (ppos > 0) {
 | 
						|
        av_assert1(idx >= 0);
 | 
						|
        cb = idx;
 | 
						|
        stackrun[stack_len] = path[ppos][cb].run;
 | 
						|
        stackcb [stack_len] = cb;
 | 
						|
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
 | 
						|
        ppos -= path[ppos][cb].run;
 | 
						|
        stack_len++;
 | 
						|
    }
 | 
						|
    //perform actual band info encoding
 | 
						|
    start = 0;
 | 
						|
    for (i = stack_len - 1; i >= 0; i--) {
 | 
						|
        cb = aac_cb_out_map[stackcb[i]];
 | 
						|
        put_bits(&s->pb, 4, cb);
 | 
						|
        count = stackrun[i];
 | 
						|
        memset(sce->zeroes + win*16 + start, !cb, count);
 | 
						|
        //XXX: memset when band_type is also uint8_t
 | 
						|
        for (j = 0; j < count; j++) {
 | 
						|
            sce->band_type[win*16 + start] = cb;
 | 
						|
            start++;
 | 
						|
        }
 | 
						|
        while (count >= run_esc) {
 | 
						|
            put_bits(&s->pb, run_bits, run_esc);
 | 
						|
            count -= run_esc;
 | 
						|
        }
 | 
						|
        put_bits(&s->pb, run_bits, count);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
 | 
						|
                                  int win, int group_len, const float lambda)
 | 
						|
{
 | 
						|
    BandCodingPath path[120][CB_TOT_ALL];
 | 
						|
    int w, swb, cb, start, size;
 | 
						|
    int i, j;
 | 
						|
    const int max_sfb  = sce->ics.max_sfb;
 | 
						|
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
 | 
						|
    const int run_esc  = (1 << run_bits) - 1;
 | 
						|
    int idx, ppos, count;
 | 
						|
    int stackrun[120], stackcb[120], stack_len;
 | 
						|
    float next_minbits = INFINITY;
 | 
						|
    int next_mincb = 0;
 | 
						|
 | 
						|
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
 | 
						|
    start = win*128;
 | 
						|
    for (cb = 0; cb < CB_TOT_ALL; cb++) {
 | 
						|
        path[0][cb].cost     = run_bits+4;
 | 
						|
        path[0][cb].prev_idx = -1;
 | 
						|
        path[0][cb].run      = 0;
 | 
						|
    }
 | 
						|
    for (swb = 0; swb < max_sfb; swb++) {
 | 
						|
        size = sce->ics.swb_sizes[swb];
 | 
						|
        if (sce->zeroes[win*16 + swb]) {
 | 
						|
            float cost_stay_here = path[swb][0].cost;
 | 
						|
            float cost_get_here  = next_minbits + run_bits + 4;
 | 
						|
            if (   run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
 | 
						|
                != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
 | 
						|
                cost_stay_here += run_bits;
 | 
						|
            if (cost_get_here < cost_stay_here) {
 | 
						|
                path[swb+1][0].prev_idx = next_mincb;
 | 
						|
                path[swb+1][0].cost     = cost_get_here;
 | 
						|
                path[swb+1][0].run      = 1;
 | 
						|
            } else {
 | 
						|
                path[swb+1][0].prev_idx = 0;
 | 
						|
                path[swb+1][0].cost     = cost_stay_here;
 | 
						|
                path[swb+1][0].run      = path[swb][0].run + 1;
 | 
						|
            }
 | 
						|
            next_minbits = path[swb+1][0].cost;
 | 
						|
            next_mincb = 0;
 | 
						|
            for (cb = 1; cb < CB_TOT_ALL; cb++) {
 | 
						|
                path[swb+1][cb].cost = 61450;
 | 
						|
                path[swb+1][cb].prev_idx = -1;
 | 
						|
                path[swb+1][cb].run = 0;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            float minbits = next_minbits;
 | 
						|
            int mincb = next_mincb;
 | 
						|
            int startcb = sce->band_type[win*16+swb];
 | 
						|
            startcb = aac_cb_in_map[startcb];
 | 
						|
            next_minbits = INFINITY;
 | 
						|
            next_mincb = 0;
 | 
						|
            for (cb = 0; cb < startcb; cb++) {
 | 
						|
                path[swb+1][cb].cost = 61450;
 | 
						|
                path[swb+1][cb].prev_idx = -1;
 | 
						|
                path[swb+1][cb].run = 0;
 | 
						|
            }
 | 
						|
            for (cb = startcb; cb < CB_TOT_ALL; cb++) {
 | 
						|
                float cost_stay_here, cost_get_here;
 | 
						|
                float bits = 0.0f;
 | 
						|
                if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
 | 
						|
                    path[swb+1][cb].cost = 61450;
 | 
						|
                    path[swb+1][cb].prev_idx = -1;
 | 
						|
                    path[swb+1][cb].run = 0;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                for (w = 0; w < group_len; w++) {
 | 
						|
                    bits += quantize_band_cost(s, sce->coeffs + start + w*128,
 | 
						|
                                               s->scoefs + start + w*128, size,
 | 
						|
                                               sce->sf_idx[win*16+swb],
 | 
						|
                                               aac_cb_out_map[cb],
 | 
						|
                                               0, INFINITY, NULL, 0);
 | 
						|
                }
 | 
						|
                cost_stay_here = path[swb][cb].cost + bits;
 | 
						|
                cost_get_here  = minbits            + bits + run_bits + 4;
 | 
						|
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
 | 
						|
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
 | 
						|
                    cost_stay_here += run_bits;
 | 
						|
                if (cost_get_here < cost_stay_here) {
 | 
						|
                    path[swb+1][cb].prev_idx = mincb;
 | 
						|
                    path[swb+1][cb].cost     = cost_get_here;
 | 
						|
                    path[swb+1][cb].run      = 1;
 | 
						|
                } else {
 | 
						|
                    path[swb+1][cb].prev_idx = cb;
 | 
						|
                    path[swb+1][cb].cost     = cost_stay_here;
 | 
						|
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
 | 
						|
                }
 | 
						|
                if (path[swb+1][cb].cost < next_minbits) {
 | 
						|
                    next_minbits = path[swb+1][cb].cost;
 | 
						|
                    next_mincb = cb;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        start += sce->ics.swb_sizes[swb];
 | 
						|
    }
 | 
						|
 | 
						|
    //convert resulting path from backward-linked list
 | 
						|
    stack_len = 0;
 | 
						|
    idx       = 0;
 | 
						|
    for (cb = 1; cb < CB_TOT_ALL; cb++)
 | 
						|
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
 | 
						|
            idx = cb;
 | 
						|
    ppos = max_sfb;
 | 
						|
    while (ppos > 0) {
 | 
						|
        av_assert1(idx >= 0);
 | 
						|
        cb = idx;
 | 
						|
        stackrun[stack_len] = path[ppos][cb].run;
 | 
						|
        stackcb [stack_len] = cb;
 | 
						|
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
 | 
						|
        ppos -= path[ppos][cb].run;
 | 
						|
        stack_len++;
 | 
						|
    }
 | 
						|
    //perform actual band info encoding
 | 
						|
    start = 0;
 | 
						|
    for (i = stack_len - 1; i >= 0; i--) {
 | 
						|
        cb = aac_cb_out_map[stackcb[i]];
 | 
						|
        put_bits(&s->pb, 4, cb);
 | 
						|
        count = stackrun[i];
 | 
						|
        memset(sce->zeroes + win*16 + start, !cb, count);
 | 
						|
        //XXX: memset when band_type is also uint8_t
 | 
						|
        for (j = 0; j < count; j++) {
 | 
						|
            sce->band_type[win*16 + start] = cb;
 | 
						|
            start++;
 | 
						|
        }
 | 
						|
        while (count >= run_esc) {
 | 
						|
            put_bits(&s->pb, run_bits, run_esc);
 | 
						|
            count -= run_esc;
 | 
						|
        }
 | 
						|
        put_bits(&s->pb, run_bits, count);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct TrellisPath {
 | 
						|
    float cost;
 | 
						|
    int prev;
 | 
						|
} TrellisPath;
 | 
						|
 | 
						|
#define TRELLIS_STAGES 121
 | 
						|
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
 | 
						|
 | 
						|
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
 | 
						|
{
 | 
						|
    int w, g, start = 0;
 | 
						|
    int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
 | 
						|
    int bands = 0;
 | 
						|
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = 0;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(ceilf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
 | 
						|
                minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
 | 
						|
                bands++;
 | 
						|
            } else if (sce->band_type[w*16+g] == NOISE_BT) {
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(4+log2f(sce->pns_ener[w*16+g])*2, -100, 155);
 | 
						|
                minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
 | 
						|
                bands++;
 | 
						|
            }
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!bands)
 | 
						|
        return;
 | 
						|
 | 
						|
    /* Clip the scalefactor indices */
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
 | 
						|
            } else if (sce->band_type[w*16+g] == NOISE_BT) {
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
 | 
						|
                                       SingleChannelElement *sce,
 | 
						|
                                       const float lambda)
 | 
						|
{
 | 
						|
    int q, w, w2, g, start = 0;
 | 
						|
    int i, j;
 | 
						|
    int idx;
 | 
						|
    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
 | 
						|
    int bandaddr[TRELLIS_STAGES];
 | 
						|
    int minq;
 | 
						|
    float mincost;
 | 
						|
    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
 | 
						|
    int q0, q1, qcnt = 0;
 | 
						|
 | 
						|
    for (i = 0; i < 1024; i++) {
 | 
						|
        float t = fabsf(sce->coeffs[i]);
 | 
						|
        if (t > 0.0f) {
 | 
						|
            q0f = FFMIN(q0f, t);
 | 
						|
            q1f = FFMAX(q1f, t);
 | 
						|
            qnrgf += t*t;
 | 
						|
            qcnt++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!qcnt) {
 | 
						|
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
 | 
						|
        memset(sce->zeroes, 1, sizeof(sce->zeroes));
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
 | 
						|
    q0 = coef2minsf(q0f);
 | 
						|
    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
 | 
						|
    q1 = coef2maxsf(q1f);
 | 
						|
    if (q1 - q0 > 60) {
 | 
						|
        int q0low  = q0;
 | 
						|
        int q1high = q1;
 | 
						|
        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
 | 
						|
        int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
 | 
						|
        q1 = qnrg + 30;
 | 
						|
        q0 = qnrg - 30;
 | 
						|
        if (q0 < q0low) {
 | 
						|
            q1 += q0low - q0;
 | 
						|
            q0  = q0low;
 | 
						|
        } else if (q1 > q1high) {
 | 
						|
            q0 -= q1 - q1high;
 | 
						|
            q1  = q1high;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < TRELLIS_STATES; i++) {
 | 
						|
        paths[0][i].cost    = 0.0f;
 | 
						|
        paths[0][i].prev    = -1;
 | 
						|
    }
 | 
						|
    for (j = 1; j < TRELLIS_STAGES; j++) {
 | 
						|
        for (i = 0; i < TRELLIS_STATES; i++) {
 | 
						|
            paths[j][i].cost    = INFINITY;
 | 
						|
            paths[j][i].prev    = -2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    idx = 1;
 | 
						|
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
            const float *coefs = sce->coeffs + start;
 | 
						|
            float qmin, qmax;
 | 
						|
            int nz = 0;
 | 
						|
 | 
						|
            bandaddr[idx] = w * 16 + g;
 | 
						|
            qmin = INT_MAX;
 | 
						|
            qmax = 0.0f;
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
 | 
						|
                    sce->zeroes[(w+w2)*16+g] = 1;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                sce->zeroes[(w+w2)*16+g] = 0;
 | 
						|
                nz = 1;
 | 
						|
                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
 | 
						|
                    float t = fabsf(coefs[w2*128+i]);
 | 
						|
                    if (t > 0.0f)
 | 
						|
                        qmin = FFMIN(qmin, t);
 | 
						|
                    qmax = FFMAX(qmax, t);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (nz) {
 | 
						|
                int minscale, maxscale;
 | 
						|
                float minrd = INFINITY;
 | 
						|
                float maxval;
 | 
						|
                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
 | 
						|
                minscale = coef2minsf(qmin);
 | 
						|
                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
 | 
						|
                maxscale = coef2maxsf(qmax);
 | 
						|
                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
 | 
						|
                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
 | 
						|
                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
 | 
						|
                for (q = minscale; q < maxscale; q++) {
 | 
						|
                    float dist = 0;
 | 
						|
                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
 | 
						|
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
 | 
						|
                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
 | 
						|
                    }
 | 
						|
                    minrd = FFMIN(minrd, dist);
 | 
						|
 | 
						|
                    for (i = 0; i < q1 - q0; i++) {
 | 
						|
                        float cost;
 | 
						|
                        cost = paths[idx - 1][i].cost + dist
 | 
						|
                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
 | 
						|
                        if (cost < paths[idx][q].cost) {
 | 
						|
                            paths[idx][q].cost    = cost;
 | 
						|
                            paths[idx][q].prev    = i;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                for (q = 0; q < q1 - q0; q++) {
 | 
						|
                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
 | 
						|
                    paths[idx][q].prev = q;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            sce->zeroes[w*16+g] = !nz;
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
            idx++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    idx--;
 | 
						|
    mincost = paths[idx][0].cost;
 | 
						|
    minq    = 0;
 | 
						|
    for (i = 1; i < TRELLIS_STATES; i++) {
 | 
						|
        if (paths[idx][i].cost < mincost) {
 | 
						|
            mincost = paths[idx][i].cost;
 | 
						|
            minq = i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    while (idx) {
 | 
						|
        sce->sf_idx[bandaddr[idx]] = minq + q0;
 | 
						|
        minq = paths[idx][minq].prev;
 | 
						|
        idx--;
 | 
						|
    }
 | 
						|
    //set the same quantizers inside window groups
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++)
 | 
						|
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
 | 
						|
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * two-loop quantizers search taken from ISO 13818-7 Appendix C
 | 
						|
 */
 | 
						|
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
 | 
						|
                                          AACEncContext *s,
 | 
						|
                                          SingleChannelElement *sce,
 | 
						|
                                          const float lambda)
 | 
						|
{
 | 
						|
    int start = 0, i, w, w2, g;
 | 
						|
    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
 | 
						|
    float dists[128] = { 0 }, uplims[128] = { 0 };
 | 
						|
    float maxvals[128];
 | 
						|
    int fflag, minscaler;
 | 
						|
    int its  = 0;
 | 
						|
    int allz = 0;
 | 
						|
    float minthr = INFINITY;
 | 
						|
 | 
						|
    // for values above this the decoder might end up in an endless loop
 | 
						|
    // due to always having more bits than what can be encoded.
 | 
						|
    destbits = FFMIN(destbits, 5800);
 | 
						|
    //XXX: some heuristic to determine initial quantizers will reduce search time
 | 
						|
    //determine zero bands and upper limits
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            int nz = 0;
 | 
						|
            float uplim = 0.0f, energy = 0.0f;
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                uplim  += band->threshold;
 | 
						|
                energy += band->energy;
 | 
						|
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
 | 
						|
                    sce->zeroes[(w+w2)*16+g] = 1;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                nz = 1;
 | 
						|
            }
 | 
						|
            uplims[w*16+g] = uplim *512;
 | 
						|
            sce->zeroes[w*16+g] = !nz;
 | 
						|
            if (nz)
 | 
						|
                minthr = FFMIN(minthr, uplim);
 | 
						|
            allz |= nz;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (sce->zeroes[w*16+g]) {
 | 
						|
                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!allz)
 | 
						|
        return;
 | 
						|
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
 | 
						|
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            const float *scaled = s->scoefs + start;
 | 
						|
            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    //perform two-loop search
 | 
						|
    //outer loop - improve quality
 | 
						|
    do {
 | 
						|
        int tbits, qstep;
 | 
						|
        minscaler = sce->sf_idx[0];
 | 
						|
        //inner loop - quantize spectrum to fit into given number of bits
 | 
						|
        qstep = its ? 1 : 32;
 | 
						|
        do {
 | 
						|
            int prev = -1;
 | 
						|
            tbits = 0;
 | 
						|
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
                start = w*128;
 | 
						|
                for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
                    const float *coefs = sce->coeffs + start;
 | 
						|
                    const float *scaled = s->scoefs + start;
 | 
						|
                    int bits = 0;
 | 
						|
                    int cb;
 | 
						|
                    float dist = 0.0f;
 | 
						|
 | 
						|
                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
 | 
						|
                        start += sce->ics.swb_sizes[g];
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
 | 
						|
                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                        int b;
 | 
						|
                        dist += quantize_band_cost(s, coefs + w2*128,
 | 
						|
                                                   scaled + w2*128,
 | 
						|
                                                   sce->ics.swb_sizes[g],
 | 
						|
                                                   sce->sf_idx[w*16+g],
 | 
						|
                                                   cb,
 | 
						|
                                                   1.0f,
 | 
						|
                                                   INFINITY,
 | 
						|
                                                   &b,
 | 
						|
                                                   0);
 | 
						|
                        bits += b;
 | 
						|
                    }
 | 
						|
                    dists[w*16+g] = dist - bits;
 | 
						|
                    if (prev != -1) {
 | 
						|
                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
 | 
						|
                    }
 | 
						|
                    tbits += bits;
 | 
						|
                    start += sce->ics.swb_sizes[g];
 | 
						|
                    prev = sce->sf_idx[w*16+g];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (tbits > destbits) {
 | 
						|
                for (i = 0; i < 128; i++)
 | 
						|
                    if (sce->sf_idx[i] < 218 - qstep)
 | 
						|
                        sce->sf_idx[i] += qstep;
 | 
						|
            } else {
 | 
						|
                for (i = 0; i < 128; i++)
 | 
						|
                    if (sce->sf_idx[i] > 60 - qstep)
 | 
						|
                        sce->sf_idx[i] -= qstep;
 | 
						|
            }
 | 
						|
            qstep >>= 1;
 | 
						|
            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
 | 
						|
                qstep = 1;
 | 
						|
        } while (qstep);
 | 
						|
 | 
						|
        fflag = 0;
 | 
						|
        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
 | 
						|
 | 
						|
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
            for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
                int prevsc = sce->sf_idx[w*16+g];
 | 
						|
                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
 | 
						|
                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
 | 
						|
                        sce->sf_idx[w*16+g]--;
 | 
						|
                    else //Try to make sure there is some energy in every band
 | 
						|
                        sce->sf_idx[w*16+g]-=2;
 | 
						|
                }
 | 
						|
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
 | 
						|
                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
 | 
						|
                if (sce->sf_idx[w*16+g] != prevsc)
 | 
						|
                    fflag = 1;
 | 
						|
                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        its++;
 | 
						|
    } while (fflag && its < 10);
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
 | 
						|
                                       SingleChannelElement *sce,
 | 
						|
                                       const float lambda)
 | 
						|
{
 | 
						|
    int start = 0, i, w, w2, g;
 | 
						|
    float uplim[128], maxq[128];
 | 
						|
    int minq, maxsf;
 | 
						|
    float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
 | 
						|
    int last = 0, lastband = 0, curband = 0;
 | 
						|
    float avg_energy = 0.0;
 | 
						|
    if (sce->ics.num_windows == 1) {
 | 
						|
        start = 0;
 | 
						|
        for (i = 0; i < 1024; i++) {
 | 
						|
            if (i - start >= sce->ics.swb_sizes[curband]) {
 | 
						|
                start += sce->ics.swb_sizes[curband];
 | 
						|
                curband++;
 | 
						|
            }
 | 
						|
            if (sce->coeffs[i]) {
 | 
						|
                avg_energy += sce->coeffs[i] * sce->coeffs[i];
 | 
						|
                last = i;
 | 
						|
                lastband = curband;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (w = 0; w < 8; w++) {
 | 
						|
            const float *coeffs = sce->coeffs + w*128;
 | 
						|
            curband = start = 0;
 | 
						|
            for (i = 0; i < 128; i++) {
 | 
						|
                if (i - start >= sce->ics.swb_sizes[curband]) {
 | 
						|
                    start += sce->ics.swb_sizes[curband];
 | 
						|
                    curband++;
 | 
						|
                }
 | 
						|
                if (coeffs[i]) {
 | 
						|
                    avg_energy += coeffs[i] * coeffs[i];
 | 
						|
                    last = FFMAX(last, i);
 | 
						|
                    lastband = FFMAX(lastband, curband);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    last++;
 | 
						|
    avg_energy /= last;
 | 
						|
    if (avg_energy == 0.0f) {
 | 
						|
        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
 | 
						|
            sce->sf_idx[i] = SCALE_ONE_POS;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
            float *coefs   = sce->coeffs + start;
 | 
						|
            const int size = sce->ics.swb_sizes[g];
 | 
						|
            int start2 = start, end2 = start + size, peakpos = start;
 | 
						|
            float maxval = -1, thr = 0.0f, t;
 | 
						|
            maxq[w*16+g] = 0.0f;
 | 
						|
            if (g > lastband) {
 | 
						|
                maxq[w*16+g] = 0.0f;
 | 
						|
                start += size;
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
 | 
						|
                    memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                for (i = 0; i < size; i++) {
 | 
						|
                    float t = coefs[w2*128+i]*coefs[w2*128+i];
 | 
						|
                    maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
 | 
						|
                    thr += t;
 | 
						|
                    if (sce->ics.num_windows == 1 && maxval < t) {
 | 
						|
                        maxval  = t;
 | 
						|
                        peakpos = start+i;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (sce->ics.num_windows == 1) {
 | 
						|
                start2 = FFMAX(peakpos - 2, start2);
 | 
						|
                end2   = FFMIN(peakpos + 3, end2);
 | 
						|
            } else {
 | 
						|
                start2 -= start;
 | 
						|
                end2   -= start;
 | 
						|
            }
 | 
						|
            start += size;
 | 
						|
            thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
 | 
						|
            t   = 1.0 - (1.0 * start2 / last);
 | 
						|
            uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
 | 
						|
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = w*128;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            const float *coefs  = sce->coeffs + start;
 | 
						|
            const float *scaled = s->scoefs   + start;
 | 
						|
            const int size      = sce->ics.swb_sizes[g];
 | 
						|
            int scf, prev_scf, step;
 | 
						|
            int min_scf = -1, max_scf = 256;
 | 
						|
            float curdiff;
 | 
						|
            if (maxq[w*16+g] < 21.544) {
 | 
						|
                sce->zeroes[w*16+g] = 1;
 | 
						|
                start += size;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            sce->zeroes[w*16+g] = 0;
 | 
						|
            scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
 | 
						|
            for (;;) {
 | 
						|
                float dist = 0.0f;
 | 
						|
                int quant_max;
 | 
						|
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                    int b;
 | 
						|
                    dist += quantize_band_cost(s, coefs + w2*128,
 | 
						|
                                               scaled + w2*128,
 | 
						|
                                               sce->ics.swb_sizes[g],
 | 
						|
                                               scf,
 | 
						|
                                               ESC_BT,
 | 
						|
                                               lambda,
 | 
						|
                                               INFINITY,
 | 
						|
                                               &b,
 | 
						|
                                               0);
 | 
						|
                    dist -= b;
 | 
						|
                }
 | 
						|
                dist *= 1.0f / 512.0f / lambda;
 | 
						|
                quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
 | 
						|
                if (quant_max >= 8191) { // too much, return to the previous quantizer
 | 
						|
                    sce->sf_idx[w*16+g] = prev_scf;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                prev_scf = scf;
 | 
						|
                curdiff = fabsf(dist - uplim[w*16+g]);
 | 
						|
                if (curdiff <= 1.0f)
 | 
						|
                    step = 0;
 | 
						|
                else
 | 
						|
                    step = log2f(curdiff);
 | 
						|
                if (dist > uplim[w*16+g])
 | 
						|
                    step = -step;
 | 
						|
                scf += step;
 | 
						|
                scf = av_clip_uint8(scf);
 | 
						|
                step = scf - prev_scf;
 | 
						|
                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
 | 
						|
                    sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                if (step > 0)
 | 
						|
                    min_scf = prev_scf;
 | 
						|
                else
 | 
						|
                    max_scf = prev_scf;
 | 
						|
            }
 | 
						|
            start += size;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
 | 
						|
    for (i = 1; i < 128; i++) {
 | 
						|
        if (!sce->sf_idx[i])
 | 
						|
            sce->sf_idx[i] = sce->sf_idx[i-1];
 | 
						|
        else
 | 
						|
            minq = FFMIN(minq, sce->sf_idx[i]);
 | 
						|
    }
 | 
						|
    if (minq == INT_MAX)
 | 
						|
        minq = 0;
 | 
						|
    minq = FFMIN(minq, SCALE_MAX_POS);
 | 
						|
    maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
 | 
						|
    for (i = 126; i >= 0; i--) {
 | 
						|
        if (!sce->sf_idx[i])
 | 
						|
            sce->sf_idx[i] = sce->sf_idx[i+1];
 | 
						|
        sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
 | 
						|
                                       SingleChannelElement *sce,
 | 
						|
                                       const float lambda)
 | 
						|
{
 | 
						|
    int i, w, w2, g;
 | 
						|
    int minq = 255;
 | 
						|
 | 
						|
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        for (g = 0; g < sce->ics.num_swb; g++) {
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                if (band->energy <= band->threshold) {
 | 
						|
                    sce->sf_idx[(w+w2)*16+g] = 218;
 | 
						|
                    sce->zeroes[(w+w2)*16+g] = 1;
 | 
						|
                } else {
 | 
						|
                    sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
 | 
						|
                    sce->zeroes[(w+w2)*16+g] = 0;
 | 
						|
                }
 | 
						|
                minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i = 0; i < 128; i++) {
 | 
						|
        sce->sf_idx[i] = 140;
 | 
						|
        //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
 | 
						|
    }
 | 
						|
    //set the same quantizers inside window groups
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++)
 | 
						|
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
 | 
						|
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
 | 
						|
{
 | 
						|
    int start = 0, w, w2, g;
 | 
						|
    const float lambda = s->lambda;
 | 
						|
    const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
 | 
						|
    const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
 | 
						|
    const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
 | 
						|
 | 
						|
    /* Coders !twoloop don't reset the band_types */
 | 
						|
    for (w = 0; w < 128; w++)
 | 
						|
        if (sce->band_type[w] == NOISE_BT)
 | 
						|
            sce->band_type[w] = 0;
 | 
						|
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = 0;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
 | 
						|
                float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                    FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
 | 
						|
                    energy += band->energy;
 | 
						|
                    threshold += band->threshold;
 | 
						|
                    spread += band->spread;
 | 
						|
                }
 | 
						|
                if (spread > spread_threshold*sce->ics.group_len[w] &&
 | 
						|
                    ((sce->zeroes[w*16+g] && energy >= threshold) ||
 | 
						|
                    energy < threshold*thr_mult*sce->ics.group_len[w])) {
 | 
						|
                    sce->band_type[w*16+g] = NOISE_BT;
 | 
						|
                    sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
 | 
						|
                    sce->zeroes[w*16+g] = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
 | 
						|
{
 | 
						|
    float IS[128];
 | 
						|
    float *L34  = s->scoefs + 128*0, *R34  = s->scoefs + 128*1;
 | 
						|
    float *I34  = s->scoefs + 128*2;
 | 
						|
    SingleChannelElement *sce0 = &cpe->ch[0];
 | 
						|
    SingleChannelElement *sce1 = &cpe->ch[1];
 | 
						|
    int start = 0, count = 0, i, w, w2, g;
 | 
						|
    const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
 | 
						|
    const float lambda = s->lambda;
 | 
						|
 | 
						|
    for (w = 0; w < 128; w++)
 | 
						|
        if (sce1->band_type[w] >= INTENSITY_BT2)
 | 
						|
            sce1->band_type[w] = 0;
 | 
						|
 | 
						|
    if (!cpe->common_window)
 | 
						|
        return;
 | 
						|
    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
 | 
						|
        start = 0;
 | 
						|
        for (g = 0;  g < sce0->ics.num_swb; g++) {
 | 
						|
            if (start*freq_mult > INT_STEREO_LOW_LIMIT*(lambda/170.0f) &&
 | 
						|
                cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
 | 
						|
                cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) {
 | 
						|
                int phase = 0;
 | 
						|
                float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
 | 
						|
                float dist1 = 0.0f, dist2 = 0.0f;
 | 
						|
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
 | 
						|
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
 | 
						|
                        float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
 | 
						|
                        float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
 | 
						|
                        phase += coef0*coef1 >= 0.0f ? 1 : -1;
 | 
						|
                        ener0 += coef0*coef0;
 | 
						|
                        ener1 += coef1*coef1;
 | 
						|
                        ener01 += (coef0 + coef1)*(coef0 + coef1);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                if (!phase) { /* Too much phase difference between channels */
 | 
						|
                    start += sce0->ics.swb_sizes[g];
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
                phase = av_clip(phase, -1, 1);
 | 
						|
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
 | 
						|
                    FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
 | 
						|
                    FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
 | 
						|
                    int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
 | 
						|
                    float e01_34 = phase*pow(sqrt(ener1/ener0), 3.0/4.0);
 | 
						|
                    float maxval, dist_spec_err = 0.0f;
 | 
						|
                    float minthr = FFMIN(band0->threshold, band1->threshold);
 | 
						|
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
 | 
						|
                        IS[i] = (sce0->pcoeffs[start+(w+w2)*128+i] + phase*sce1->pcoeffs[start+(w+w2)*128+i]) * sqrt(ener0/ener01);
 | 
						|
                    abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
 | 
						|
                    abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
 | 
						|
                    abs_pow34_v(I34, IS,                            sce0->ics.swb_sizes[g]);
 | 
						|
                    maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
 | 
						|
                    is_band_type = find_min_book(maxval, is_sf_idx);
 | 
						|
                    dist1 += quantize_band_cost(s, sce0->coeffs + start + (w+w2)*128,
 | 
						|
                                                L34,
 | 
						|
                                                sce0->ics.swb_sizes[g],
 | 
						|
                                                sce0->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce0->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / band0->threshold, INFINITY, NULL, 0);
 | 
						|
                    dist1 += quantize_band_cost(s, sce1->coeffs + start + (w+w2)*128,
 | 
						|
                                                R34,
 | 
						|
                                                sce1->ics.swb_sizes[g],
 | 
						|
                                                sce1->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce1->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / band1->threshold, INFINITY, NULL, 0);
 | 
						|
                    dist2 += quantize_band_cost(s, IS,
 | 
						|
                                                I34,
 | 
						|
                                                sce0->ics.swb_sizes[g],
 | 
						|
                                                is_sf_idx,
 | 
						|
                                                is_band_type,
 | 
						|
                                                lambda / minthr, INFINITY, NULL, 0);
 | 
						|
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
 | 
						|
                        dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
 | 
						|
                        dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
 | 
						|
                    }
 | 
						|
                    dist_spec_err *= lambda / minthr;
 | 
						|
                    dist2 += dist_spec_err;
 | 
						|
                }
 | 
						|
                if (dist2 <= dist1) {
 | 
						|
                    cpe->is_mask[w*16+g] = 1;
 | 
						|
                    cpe->ms_mask[w*16+g] = 0;
 | 
						|
                    cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01);
 | 
						|
                    cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
 | 
						|
                    if (phase)
 | 
						|
                        cpe->ch[1].band_type[w*16+g] = INTENSITY_BT;
 | 
						|
                    else
 | 
						|
                        cpe->ch[1].band_type[w*16+g] = INTENSITY_BT2;
 | 
						|
                    count++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            start += sce0->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    cpe->is_mode = !!count;
 | 
						|
}
 | 
						|
 | 
						|
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
 | 
						|
{
 | 
						|
    int start = 0, i, w, w2, g;
 | 
						|
    float M[128], S[128];
 | 
						|
    float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
 | 
						|
    const float lambda = s->lambda;
 | 
						|
    SingleChannelElement *sce0 = &cpe->ch[0];
 | 
						|
    SingleChannelElement *sce1 = &cpe->ch[1];
 | 
						|
    if (!cpe->common_window)
 | 
						|
        return;
 | 
						|
    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
 | 
						|
        start = 0;
 | 
						|
        for (g = 0;  g < sce0->ics.num_swb; g++) {
 | 
						|
            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
 | 
						|
                float dist1 = 0.0f, dist2 = 0.0f;
 | 
						|
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
 | 
						|
                    FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
 | 
						|
                    FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
 | 
						|
                    float minthr = FFMIN(band0->threshold, band1->threshold);
 | 
						|
                    float maxthr = FFMAX(band0->threshold, band1->threshold);
 | 
						|
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
 | 
						|
                        M[i] = (sce0->pcoeffs[start+(w+w2)*128+i]
 | 
						|
                              + sce1->pcoeffs[start+(w+w2)*128+i]) * 0.5;
 | 
						|
                        S[i] =  M[i]
 | 
						|
                              - sce1->pcoeffs[start+(w+w2)*128+i];
 | 
						|
                    }
 | 
						|
                    abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
 | 
						|
                    abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
 | 
						|
                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
 | 
						|
                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
 | 
						|
                    dist1 += quantize_band_cost(s, sce0->coeffs + start + (w+w2)*128,
 | 
						|
                                                L34,
 | 
						|
                                                sce0->ics.swb_sizes[g],
 | 
						|
                                                sce0->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce0->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / band0->threshold, INFINITY, NULL, 0);
 | 
						|
                    dist1 += quantize_band_cost(s, sce1->coeffs + start + (w+w2)*128,
 | 
						|
                                                R34,
 | 
						|
                                                sce1->ics.swb_sizes[g],
 | 
						|
                                                sce1->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce1->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / band1->threshold, INFINITY, NULL, 0);
 | 
						|
                    dist2 += quantize_band_cost(s, M,
 | 
						|
                                                M34,
 | 
						|
                                                sce0->ics.swb_sizes[g],
 | 
						|
                                                sce0->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce0->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / maxthr, INFINITY, NULL, 0);
 | 
						|
                    dist2 += quantize_band_cost(s, S,
 | 
						|
                                                S34,
 | 
						|
                                                sce1->ics.swb_sizes[g],
 | 
						|
                                                sce1->sf_idx[(w+w2)*16+g],
 | 
						|
                                                sce1->band_type[(w+w2)*16+g],
 | 
						|
                                                lambda / minthr, INFINITY, NULL, 0);
 | 
						|
                }
 | 
						|
                cpe->ms_mask[w*16+g] = dist2 < dist1;
 | 
						|
            }
 | 
						|
            start += sce0->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
 | 
						|
    [AAC_CODER_FAAC] = {
 | 
						|
        search_for_quantizers_faac,
 | 
						|
        encode_window_bands_info,
 | 
						|
        quantize_and_encode_band,
 | 
						|
        set_special_band_scalefactors,
 | 
						|
        search_for_pns,
 | 
						|
        search_for_ms,
 | 
						|
        search_for_is,
 | 
						|
    },
 | 
						|
    [AAC_CODER_ANMR] = {
 | 
						|
        search_for_quantizers_anmr,
 | 
						|
        encode_window_bands_info,
 | 
						|
        quantize_and_encode_band,
 | 
						|
        set_special_band_scalefactors,
 | 
						|
        search_for_pns,
 | 
						|
        search_for_ms,
 | 
						|
        search_for_is,
 | 
						|
    },
 | 
						|
    [AAC_CODER_TWOLOOP] = {
 | 
						|
        search_for_quantizers_twoloop,
 | 
						|
        codebook_trellis_rate,
 | 
						|
        quantize_and_encode_band,
 | 
						|
        set_special_band_scalefactors,
 | 
						|
        search_for_pns,
 | 
						|
        search_for_ms,
 | 
						|
        search_for_is,
 | 
						|
    },
 | 
						|
    [AAC_CODER_FAST] = {
 | 
						|
        search_for_quantizers_fast,
 | 
						|
        encode_window_bands_info,
 | 
						|
        quantize_and_encode_band,
 | 
						|
        set_special_band_scalefactors,
 | 
						|
        search_for_pns,
 | 
						|
        search_for_ms,
 | 
						|
        search_for_is,
 | 
						|
    },
 | 
						|
};
 |