PyTorch is an open source machine learning framework that accelerates the path from research prototyping to production deployment. Official website: https://pytorch.org/. We call the C++ library of PyTorch as LibTorch, the same below. To build FFmpeg with LibTorch, please take following steps as reference: 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/, please select C++/Java for language, and other options as your need. Please download cxx11 ABI version: (libtorch-cxx11-abi-shared-with-deps-*.zip). 2. unzip the file to your own dir, with command unzip libtorch-shared-with-deps-latest.zip -d your_dir 3. export libtorch_root/libtorch/include and libtorch_root/libtorch/include/torch/csrc/api/include to $PATH export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH 4. config FFmpeg with ../configure --enable-libtorch \ --extra-cflag=-I/libtorch_root/libtorch/include \ --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \ --extra-ldflags=-L/libtorch_root/libtorch/lib/ 5. make To run FFmpeg DNN inference with LibTorch backend: ./ffmpeg -i input.jpg -vf \ dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg The LibTorch_model.pt can be generated by Python with torch.jit.script() api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is pytorch official guide about how to convert and load torchscript model. Please note, torch.jit.trace() is not recommanded, since it does not support ambiguous input size. Signed-off-by: Ting Fu <ting.fu@intel.com> Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
		
			
				
	
	
		
			153 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2018 Sergey Lavrushkin
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * DNN inference engine interface.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef AVFILTER_DNN_INTERFACE_H
 | 
						|
#define AVFILTER_DNN_INTERFACE_H
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
#include "libavutil/frame.h"
 | 
						|
#include "avfilter.h"
 | 
						|
 | 
						|
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
 | 
						|
 | 
						|
typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
 | 
						|
 | 
						|
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
 | 
						|
 | 
						|
typedef enum {
 | 
						|
    DCO_NONE,
 | 
						|
    DCO_BGR,
 | 
						|
    DCO_RGB,
 | 
						|
} DNNColorOrder;
 | 
						|
 | 
						|
typedef enum {
 | 
						|
    DAST_FAIL,              // something wrong
 | 
						|
    DAST_EMPTY_QUEUE,       // no more inference result to get
 | 
						|
    DAST_NOT_READY,         // all queued inferences are not finished
 | 
						|
    DAST_SUCCESS            // got a result frame successfully
 | 
						|
} DNNAsyncStatusType;
 | 
						|
 | 
						|
typedef enum {
 | 
						|
    DFT_NONE,
 | 
						|
    DFT_PROCESS_FRAME,      // process the whole frame
 | 
						|
    DFT_ANALYTICS_DETECT,   // detect from the whole frame
 | 
						|
    DFT_ANALYTICS_CLASSIFY, // classify for each bounding box
 | 
						|
}DNNFunctionType;
 | 
						|
 | 
						|
typedef enum {
 | 
						|
    DL_NONE,
 | 
						|
    DL_NCHW,
 | 
						|
    DL_NHWC,
 | 
						|
} DNNLayout;
 | 
						|
 | 
						|
typedef struct DNNData{
 | 
						|
    void *data;
 | 
						|
    int dims[4];
 | 
						|
    // dt and order together decide the color format
 | 
						|
    DNNDataType dt;
 | 
						|
    DNNColorOrder order;
 | 
						|
    DNNLayout layout;
 | 
						|
    float scale;
 | 
						|
    float mean;
 | 
						|
} DNNData;
 | 
						|
 | 
						|
typedef struct DNNExecBaseParams {
 | 
						|
    const char *input_name;
 | 
						|
    const char **output_names;
 | 
						|
    uint32_t nb_output;
 | 
						|
    AVFrame *in_frame;
 | 
						|
    AVFrame *out_frame;
 | 
						|
} DNNExecBaseParams;
 | 
						|
 | 
						|
typedef struct DNNExecClassificationParams {
 | 
						|
    DNNExecBaseParams base;
 | 
						|
    const char *target;
 | 
						|
} DNNExecClassificationParams;
 | 
						|
 | 
						|
typedef int (*FramePrePostProc)(AVFrame *frame, DNNData *model, AVFilterContext *filter_ctx);
 | 
						|
typedef int (*DetectPostProc)(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx);
 | 
						|
typedef int (*ClassifyPostProc)(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx);
 | 
						|
 | 
						|
typedef struct DNNModel{
 | 
						|
    // Stores model that can be different for different backends.
 | 
						|
    void *model;
 | 
						|
    // Stores options when the model is executed by the backend
 | 
						|
    const char *options;
 | 
						|
    // Stores FilterContext used for the interaction between AVFrame and DNNData
 | 
						|
    AVFilterContext *filter_ctx;
 | 
						|
    // Stores function type of the model
 | 
						|
    DNNFunctionType func_type;
 | 
						|
    // Gets model input information
 | 
						|
    // Just reuse struct DNNData here, actually the DNNData.data field is not needed.
 | 
						|
    int (*get_input)(void *model, DNNData *input, const char *input_name);
 | 
						|
    // Gets model output width/height with given input w/h
 | 
						|
    int (*get_output)(void *model, const char *input_name, int input_width, int input_height,
 | 
						|
                                const char *output_name, int *output_width, int *output_height);
 | 
						|
    // set the pre process to transfer data from AVFrame to DNNData
 | 
						|
    // the default implementation within DNN is used if it is not provided by the filter
 | 
						|
    FramePrePostProc frame_pre_proc;
 | 
						|
    // set the post process to transfer data from DNNData to AVFrame
 | 
						|
    // the default implementation within DNN is used if it is not provided by the filter
 | 
						|
    FramePrePostProc frame_post_proc;
 | 
						|
    // set the post process to interpret detect result from DNNData
 | 
						|
    DetectPostProc detect_post_proc;
 | 
						|
    // set the post process to interpret classify result from DNNData
 | 
						|
    ClassifyPostProc classify_post_proc;
 | 
						|
} DNNModel;
 | 
						|
 | 
						|
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
 | 
						|
typedef struct DNNModule{
 | 
						|
    // Loads model and parameters from given file. Returns NULL if it is not possible.
 | 
						|
    DNNModel *(*load_model)(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
 | 
						|
    // Executes model with specified input and output. Returns the error code otherwise.
 | 
						|
    int (*execute_model)(const DNNModel *model, DNNExecBaseParams *exec_params);
 | 
						|
    // Retrieve inference result.
 | 
						|
    DNNAsyncStatusType (*get_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
 | 
						|
    // Flush all the pending tasks.
 | 
						|
    int (*flush)(const DNNModel *model);
 | 
						|
    // Frees memory allocated for model.
 | 
						|
    void (*free_model)(DNNModel **model);
 | 
						|
} DNNModule;
 | 
						|
 | 
						|
// Initializes DNNModule depending on chosen backend.
 | 
						|
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx);
 | 
						|
 | 
						|
static inline int dnn_get_width_idx_by_layout(DNNLayout layout)
 | 
						|
{
 | 
						|
    return layout == DL_NHWC ? 2 : 3;
 | 
						|
}
 | 
						|
 | 
						|
static inline int dnn_get_height_idx_by_layout(DNNLayout layout)
 | 
						|
{
 | 
						|
    return layout == DL_NHWC ? 1 : 2;
 | 
						|
}
 | 
						|
 | 
						|
static inline int dnn_get_channel_idx_by_layout(DNNLayout layout)
 | 
						|
{
 | 
						|
    return layout == DL_NHWC ? 3 : 1;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |