* commit '19dd4017ab6dac11c77d797acebee4f60ad63a6f': libopencore-amr: Add the missing 3rd argument of ff_get_buffer() vmdaudio: fix invalid reads when packet size is not a multiple of chunk size wmaprodec: return an error, not 0, when the input is too small. Conflicts: libavcodec/vmdav.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			1646 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1646 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Wmapro compatible decoder
 | |
|  * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
 | |
|  * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * @brief wmapro decoder implementation
 | |
|  * Wmapro is an MDCT based codec comparable to wma standard or AAC.
 | |
|  * The decoding therefore consists of the following steps:
 | |
|  * - bitstream decoding
 | |
|  * - reconstruction of per-channel data
 | |
|  * - rescaling and inverse quantization
 | |
|  * - IMDCT
 | |
|  * - windowing and overlapp-add
 | |
|  *
 | |
|  * The compressed wmapro bitstream is split into individual packets.
 | |
|  * Every such packet contains one or more wma frames.
 | |
|  * The compressed frames may have a variable length and frames may
 | |
|  * cross packet boundaries.
 | |
|  * Common to all wmapro frames is the number of samples that are stored in
 | |
|  * a frame.
 | |
|  * The number of samples and a few other decode flags are stored
 | |
|  * as extradata that has to be passed to the decoder.
 | |
|  *
 | |
|  * The wmapro frames themselves are again split into a variable number of
 | |
|  * subframes. Every subframe contains the data for 2^N time domain samples
 | |
|  * where N varies between 7 and 12.
 | |
|  *
 | |
|  * Example wmapro bitstream (in samples):
 | |
|  *
 | |
|  * ||   packet 0           || packet 1 || packet 2      packets
 | |
|  * ---------------------------------------------------
 | |
|  * || frame 0      || frame 1       || frame 2    ||    frames
 | |
|  * ---------------------------------------------------
 | |
|  * ||   |      |   ||   |   |   |   ||            ||    subframes of channel 0
 | |
|  * ---------------------------------------------------
 | |
|  * ||      |   |   ||   |   |   |   ||            ||    subframes of channel 1
 | |
|  * ---------------------------------------------------
 | |
|  *
 | |
|  * The frame layouts for the individual channels of a wma frame does not need
 | |
|  * to be the same.
 | |
|  *
 | |
|  * However, if the offsets and lengths of several subframes of a frame are the
 | |
|  * same, the subframes of the channels can be grouped.
 | |
|  * Every group may then use special coding techniques like M/S stereo coding
 | |
|  * to improve the compression ratio. These channel transformations do not
 | |
|  * need to be applied to a whole subframe. Instead, they can also work on
 | |
|  * individual scale factor bands (see below).
 | |
|  * The coefficients that carry the audio signal in the frequency domain
 | |
|  * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
 | |
|  * In addition to that, the encoder can switch to a runlevel coding scheme
 | |
|  * by transmitting subframe_length / 128 zero coefficients.
 | |
|  *
 | |
|  * Before the audio signal can be converted to the time domain, the
 | |
|  * coefficients have to be rescaled and inverse quantized.
 | |
|  * A subframe is therefore split into several scale factor bands that get
 | |
|  * scaled individually.
 | |
|  * Scale factors are submitted for every frame but they might be shared
 | |
|  * between the subframes of a channel. Scale factors are initially DPCM-coded.
 | |
|  * Once scale factors are shared, the differences are transmitted as runlevel
 | |
|  * codes.
 | |
|  * Every subframe length and offset combination in the frame layout shares a
 | |
|  * common quantization factor that can be adjusted for every channel by a
 | |
|  * modifier.
 | |
|  * After the inverse quantization, the coefficients get processed by an IMDCT.
 | |
|  * The resulting values are then windowed with a sine window and the first half
 | |
|  * of the values are added to the second half of the output from the previous
 | |
|  * subframe in order to reconstruct the output samples.
 | |
|  */
 | |
| 
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/intfloat.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "avcodec.h"
 | |
| #include "internal.h"
 | |
| #include "get_bits.h"
 | |
| #include "put_bits.h"
 | |
| #include "wmaprodata.h"
 | |
| #include "sinewin.h"
 | |
| #include "wma.h"
 | |
| #include "wma_common.h"
 | |
| 
 | |
| /** current decoder limitations */
 | |
| #define WMAPRO_MAX_CHANNELS    8                             ///< max number of handled channels
 | |
| #define MAX_SUBFRAMES  32                                    ///< max number of subframes per channel
 | |
| #define MAX_BANDS      29                                    ///< max number of scale factor bands
 | |
| #define MAX_FRAMESIZE  32768                                 ///< maximum compressed frame size
 | |
| 
 | |
| #define WMAPRO_BLOCK_MIN_BITS  6                                           ///< log2 of min block size
 | |
| #define WMAPRO_BLOCK_MAX_BITS 13                                           ///< log2 of max block size
 | |
| #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)                 ///< maximum block size
 | |
| #define WMAPRO_BLOCK_SIZES    (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes
 | |
| 
 | |
| 
 | |
| #define VLCBITS            9
 | |
| #define SCALEVLCBITS       8
 | |
| #define VEC4MAXDEPTH    ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
 | |
| #define VEC2MAXDEPTH    ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
 | |
| #define VEC1MAXDEPTH    ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
 | |
| #define SCALEMAXDEPTH   ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
 | |
| #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
 | |
| 
 | |
| static VLC              sf_vlc;           ///< scale factor DPCM vlc
 | |
| static VLC              sf_rl_vlc;        ///< scale factor run length vlc
 | |
| static VLC              vec4_vlc;         ///< 4 coefficients per symbol
 | |
| static VLC              vec2_vlc;         ///< 2 coefficients per symbol
 | |
| static VLC              vec1_vlc;         ///< 1 coefficient per symbol
 | |
| static VLC              coef_vlc[2];      ///< coefficient run length vlc codes
 | |
| static float            sin64[33];        ///< sinus table for decorrelation
 | |
| 
 | |
| /**
 | |
|  * @brief frame specific decoder context for a single channel
 | |
|  */
 | |
| typedef struct {
 | |
|     int16_t  prev_block_len;                          ///< length of the previous block
 | |
|     uint8_t  transmit_coefs;
 | |
|     uint8_t  num_subframes;
 | |
|     uint16_t subframe_len[MAX_SUBFRAMES];             ///< subframe length in samples
 | |
|     uint16_t subframe_offset[MAX_SUBFRAMES];          ///< subframe positions in the current frame
 | |
|     uint8_t  cur_subframe;                            ///< current subframe number
 | |
|     uint16_t decoded_samples;                         ///< number of already processed samples
 | |
|     uint8_t  grouped;                                 ///< channel is part of a group
 | |
|     int      quant_step;                              ///< quantization step for the current subframe
 | |
|     int8_t   reuse_sf;                                ///< share scale factors between subframes
 | |
|     int8_t   scale_factor_step;                       ///< scaling step for the current subframe
 | |
|     int      max_scale_factor;                        ///< maximum scale factor for the current subframe
 | |
|     int      saved_scale_factors[2][MAX_BANDS];       ///< resampled and (previously) transmitted scale factor values
 | |
|     int8_t   scale_factor_idx;                        ///< index for the transmitted scale factor values (used for resampling)
 | |
|     int*     scale_factors;                           ///< pointer to the scale factor values used for decoding
 | |
|     uint8_t  table_idx;                               ///< index in sf_offsets for the scale factor reference block
 | |
|     float*   coeffs;                                  ///< pointer to the subframe decode buffer
 | |
|     uint16_t num_vec_coeffs;                          ///< number of vector coded coefficients
 | |
|     DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
 | |
| } WMAProChannelCtx;
 | |
| 
 | |
| /**
 | |
|  * @brief channel group for channel transformations
 | |
|  */
 | |
| typedef struct {
 | |
|     uint8_t num_channels;                                     ///< number of channels in the group
 | |
|     int8_t  transform;                                        ///< transform on / off
 | |
|     int8_t  transform_band[MAX_BANDS];                        ///< controls if the transform is enabled for a certain band
 | |
|     float   decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
 | |
|     float*  channel_data[WMAPRO_MAX_CHANNELS];                ///< transformation coefficients
 | |
| } WMAProChannelGrp;
 | |
| 
 | |
| /**
 | |
|  * @brief main decoder context
 | |
|  */
 | |
| typedef struct WMAProDecodeCtx {
 | |
|     /* generic decoder variables */
 | |
|     AVCodecContext*  avctx;                         ///< codec context for av_log
 | |
|     AVFloatDSPContext fdsp;
 | |
|     uint8_t          frame_data[MAX_FRAMESIZE +
 | |
|                       FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
 | |
|     PutBitContext    pb;                            ///< context for filling the frame_data buffer
 | |
|     FFTContext       mdct_ctx[WMAPRO_BLOCK_SIZES];  ///< MDCT context per block size
 | |
|     DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
 | |
|     float*           windows[WMAPRO_BLOCK_SIZES];   ///< windows for the different block sizes
 | |
| 
 | |
|     /* frame size dependent frame information (set during initialization) */
 | |
|     uint32_t         decode_flags;                  ///< used compression features
 | |
|     uint8_t          len_prefix;                    ///< frame is prefixed with its length
 | |
|     uint8_t          dynamic_range_compression;     ///< frame contains DRC data
 | |
|     uint8_t          bits_per_sample;               ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
 | |
|     uint16_t         samples_per_frame;             ///< number of samples to output
 | |
|     uint16_t         log2_frame_size;
 | |
|     int8_t           lfe_channel;                   ///< lfe channel index
 | |
|     uint8_t          max_num_subframes;
 | |
|     uint8_t          subframe_len_bits;             ///< number of bits used for the subframe length
 | |
|     uint8_t          max_subframe_len_bit;          ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
 | |
|     uint16_t         min_samples_per_subframe;
 | |
|     int8_t           num_sfb[WMAPRO_BLOCK_SIZES];   ///< scale factor bands per block size
 | |
|     int16_t          sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS];                    ///< scale factor band offsets (multiples of 4)
 | |
|     int8_t           sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
 | |
|     int16_t          subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
 | |
| 
 | |
|     /* packet decode state */
 | |
|     GetBitContext    pgb;                           ///< bitstream reader context for the packet
 | |
|     int              next_packet_start;             ///< start offset of the next wma packet in the demuxer packet
 | |
|     uint8_t          packet_offset;                 ///< frame offset in the packet
 | |
|     uint8_t          packet_sequence_number;        ///< current packet number
 | |
|     int              num_saved_bits;                ///< saved number of bits
 | |
|     int              frame_offset;                  ///< frame offset in the bit reservoir
 | |
|     int              subframe_offset;               ///< subframe offset in the bit reservoir
 | |
|     uint8_t          packet_loss;                   ///< set in case of bitstream error
 | |
|     uint8_t          packet_done;                   ///< set when a packet is fully decoded
 | |
| 
 | |
|     /* frame decode state */
 | |
|     uint32_t         frame_num;                     ///< current frame number (not used for decoding)
 | |
|     GetBitContext    gb;                            ///< bitstream reader context
 | |
|     int              buf_bit_size;                  ///< buffer size in bits
 | |
|     uint8_t          drc_gain;                      ///< gain for the DRC tool
 | |
|     int8_t           skip_frame;                    ///< skip output step
 | |
|     int8_t           parsed_all_subframes;          ///< all subframes decoded?
 | |
| 
 | |
|     /* subframe/block decode state */
 | |
|     int16_t          subframe_len;                  ///< current subframe length
 | |
|     int8_t           channels_for_cur_subframe;     ///< number of channels that contain the subframe
 | |
|     int8_t           channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
 | |
|     int8_t           num_bands;                     ///< number of scale factor bands
 | |
|     int8_t           transmit_num_vec_coeffs;       ///< number of vector coded coefficients is part of the bitstream
 | |
|     int16_t*         cur_sfb_offsets;               ///< sfb offsets for the current block
 | |
|     uint8_t          table_idx;                     ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
 | |
|     int8_t           esc_len;                       ///< length of escaped coefficients
 | |
| 
 | |
|     uint8_t          num_chgroups;                  ///< number of channel groups
 | |
|     WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS];  ///< channel group information
 | |
| 
 | |
|     WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS];  ///< per channel data
 | |
| } WMAProDecodeCtx;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *@brief helper function to print the most important members of the context
 | |
|  *@param s context
 | |
|  */
 | |
| static av_cold void dump_context(WMAProDecodeCtx *s)
 | |
| {
 | |
| #define PRINT(a, b)     av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
 | |
| #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
 | |
| 
 | |
|     PRINT("ed sample bit depth", s->bits_per_sample);
 | |
|     PRINT_HEX("ed decode flags", s->decode_flags);
 | |
|     PRINT("samples per frame",   s->samples_per_frame);
 | |
|     PRINT("log2 frame size",     s->log2_frame_size);
 | |
|     PRINT("max num subframes",   s->max_num_subframes);
 | |
|     PRINT("len prefix",          s->len_prefix);
 | |
|     PRINT("num channels",        s->avctx->channels);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Uninitialize the decoder and free all resources.
 | |
|  *@param avctx codec context
 | |
|  *@return 0 on success, < 0 otherwise
 | |
|  */
 | |
| static av_cold int decode_end(AVCodecContext *avctx)
 | |
| {
 | |
|     WMAProDecodeCtx *s = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
 | |
|         ff_mdct_end(&s->mdct_ctx[i]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Initialize the decoder.
 | |
|  *@param avctx codec context
 | |
|  *@return 0 on success, -1 otherwise
 | |
|  */
 | |
| static av_cold int decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     WMAProDecodeCtx *s = avctx->priv_data;
 | |
|     uint8_t *edata_ptr = avctx->extradata;
 | |
|     unsigned int channel_mask;
 | |
|     int i, bits;
 | |
|     int log2_max_num_subframes;
 | |
|     int num_possible_block_sizes;
 | |
| 
 | |
|     if (!avctx->block_align) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     s->avctx = avctx;
 | |
|     avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
| 
 | |
|     init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
 | |
| 
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
 | |
| 
 | |
|     if (avctx->extradata_size >= 18) {
 | |
|         s->decode_flags    = AV_RL16(edata_ptr+14);
 | |
|         channel_mask       = AV_RL32(edata_ptr+2);
 | |
|         s->bits_per_sample = AV_RL16(edata_ptr);
 | |
|         /** dump the extradata */
 | |
|         for (i = 0; i < avctx->extradata_size; i++)
 | |
|             av_dlog(avctx, "[%x] ", avctx->extradata[i]);
 | |
|         av_dlog(avctx, "\n");
 | |
| 
 | |
|     } else {
 | |
|         av_log_ask_for_sample(avctx, "Unknown extradata size\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     /** generic init */
 | |
|     s->log2_frame_size = av_log2(avctx->block_align) + 4;
 | |
| 
 | |
|     /** frame info */
 | |
|     s->skip_frame  = 1; /* skip first frame */
 | |
|     s->packet_loss = 1;
 | |
|     s->len_prefix  = (s->decode_flags & 0x40);
 | |
| 
 | |
|     /** get frame len */
 | |
|     bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
 | |
|     if (bits > WMAPRO_BLOCK_MAX_BITS) {
 | |
|         av_log_missing_feature(avctx, "14-bits block sizes", 1);
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
|     s->samples_per_frame = 1 << bits;
 | |
| 
 | |
|     /** subframe info */
 | |
|     log2_max_num_subframes       = ((s->decode_flags & 0x38) >> 3);
 | |
|     s->max_num_subframes         = 1 << log2_max_num_subframes;
 | |
|     if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
 | |
|         s->max_subframe_len_bit = 1;
 | |
|     s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
 | |
| 
 | |
|     num_possible_block_sizes     = log2_max_num_subframes + 1;
 | |
|     s->min_samples_per_subframe  = s->samples_per_frame / s->max_num_subframes;
 | |
|     s->dynamic_range_compression = (s->decode_flags & 0x80);
 | |
| 
 | |
|     if (s->max_num_subframes > MAX_SUBFRAMES) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
 | |
|                s->max_num_subframes);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->min_samples_per_subframe < (1<<WMAPRO_BLOCK_MIN_BITS)) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n",
 | |
|                s->min_samples_per_subframe);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (s->avctx->sample_rate <= 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (avctx->channels < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
 | |
|                avctx->channels);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     } else if (avctx->channels > WMAPRO_MAX_CHANNELS) {
 | |
|         av_log_ask_for_sample(avctx, "unsupported number of channels\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     /** init previous block len */
 | |
|     for (i = 0; i < avctx->channels; i++)
 | |
|         s->channel[i].prev_block_len = s->samples_per_frame;
 | |
| 
 | |
|     /** extract lfe channel position */
 | |
|     s->lfe_channel = -1;
 | |
| 
 | |
|     if (channel_mask & 8) {
 | |
|         unsigned int mask;
 | |
|         for (mask = 1; mask < 16; mask <<= 1) {
 | |
|             if (channel_mask & mask)
 | |
|                 ++s->lfe_channel;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
 | |
|                     scale_huffbits, 1, 1,
 | |
|                     scale_huffcodes, 2, 2, 616);
 | |
| 
 | |
|     INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
 | |
|                     scale_rl_huffbits, 1, 1,
 | |
|                     scale_rl_huffcodes, 4, 4, 1406);
 | |
| 
 | |
|     INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
 | |
|                     coef0_huffbits, 1, 1,
 | |
|                     coef0_huffcodes, 4, 4, 2108);
 | |
| 
 | |
|     INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
 | |
|                     coef1_huffbits, 1, 1,
 | |
|                     coef1_huffcodes, 4, 4, 3912);
 | |
| 
 | |
|     INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
 | |
|                     vec4_huffbits, 1, 1,
 | |
|                     vec4_huffcodes, 2, 2, 604);
 | |
| 
 | |
|     INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
 | |
|                     vec2_huffbits, 1, 1,
 | |
|                     vec2_huffcodes, 2, 2, 562);
 | |
| 
 | |
|     INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
 | |
|                     vec1_huffbits, 1, 1,
 | |
|                     vec1_huffcodes, 2, 2, 562);
 | |
| 
 | |
|     /** calculate number of scale factor bands and their offsets
 | |
|         for every possible block size */
 | |
|     for (i = 0; i < num_possible_block_sizes; i++) {
 | |
|         int subframe_len = s->samples_per_frame >> i;
 | |
|         int x;
 | |
|         int band = 1;
 | |
| 
 | |
|         s->sfb_offsets[i][0] = 0;
 | |
| 
 | |
|         for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
 | |
|             int offset = (subframe_len * 2 * critical_freq[x])
 | |
|                           / s->avctx->sample_rate + 2;
 | |
|             offset &= ~3;
 | |
|             if (offset > s->sfb_offsets[i][band - 1])
 | |
|                 s->sfb_offsets[i][band++] = offset;
 | |
|         }
 | |
|         s->sfb_offsets[i][band - 1] = subframe_len;
 | |
|         s->num_sfb[i]               = band - 1;
 | |
|         if (s->num_sfb[i] <= 0) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /** Scale factors can be shared between blocks of different size
 | |
|         as every block has a different scale factor band layout.
 | |
|         The matrix sf_offsets is needed to find the correct scale factor.
 | |
|      */
 | |
| 
 | |
|     for (i = 0; i < num_possible_block_sizes; i++) {
 | |
|         int b;
 | |
|         for (b = 0; b < s->num_sfb[i]; b++) {
 | |
|             int x;
 | |
|             int offset = ((s->sfb_offsets[i][b]
 | |
|                            + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
 | |
|             for (x = 0; x < num_possible_block_sizes; x++) {
 | |
|                 int v = 0;
 | |
|                 while (s->sfb_offsets[x][v + 1] << x < offset)
 | |
|                     ++v;
 | |
|                 s->sf_offsets[i][x][b] = v;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** init MDCT, FIXME: only init needed sizes */
 | |
|     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
 | |
|         ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1,
 | |
|                      1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
 | |
|                      / (1 << (s->bits_per_sample - 1)));
 | |
| 
 | |
|     /** init MDCT windows: simple sinus window */
 | |
|     for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
 | |
|         const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
 | |
|         ff_init_ff_sine_windows(win_idx);
 | |
|         s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
 | |
|     }
 | |
| 
 | |
|     /** calculate subwoofer cutoff values */
 | |
|     for (i = 0; i < num_possible_block_sizes; i++) {
 | |
|         int block_size = s->samples_per_frame >> i;
 | |
|         int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
 | |
|                      / s->avctx->sample_rate;
 | |
|         s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
 | |
|     }
 | |
| 
 | |
|     /** calculate sine values for the decorrelation matrix */
 | |
|     for (i = 0; i < 33; i++)
 | |
|         sin64[i] = sin(i*M_PI / 64.0);
 | |
| 
 | |
|     if (avctx->debug & FF_DEBUG_BITSTREAM)
 | |
|         dump_context(s);
 | |
| 
 | |
|     avctx->channel_layout = channel_mask;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode the subframe length.
 | |
|  *@param s context
 | |
|  *@param offset sample offset in the frame
 | |
|  *@return decoded subframe length on success, < 0 in case of an error
 | |
|  */
 | |
| static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
 | |
| {
 | |
|     int frame_len_shift = 0;
 | |
|     int subframe_len;
 | |
| 
 | |
|     /** no need to read from the bitstream when only one length is possible */
 | |
|     if (offset == s->samples_per_frame - s->min_samples_per_subframe)
 | |
|         return s->min_samples_per_subframe;
 | |
| 
 | |
|     /** 1 bit indicates if the subframe is of maximum length */
 | |
|     if (s->max_subframe_len_bit) {
 | |
|         if (get_bits1(&s->gb))
 | |
|             frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
 | |
|     } else
 | |
|         frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
 | |
| 
 | |
|     subframe_len = s->samples_per_frame >> frame_len_shift;
 | |
| 
 | |
|     /** sanity check the length */
 | |
|     if (subframe_len < s->min_samples_per_subframe ||
 | |
|         subframe_len > s->samples_per_frame) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
 | |
|                subframe_len);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     return subframe_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode how the data in the frame is split into subframes.
 | |
|  *       Every WMA frame contains the encoded data for a fixed number of
 | |
|  *       samples per channel. The data for every channel might be split
 | |
|  *       into several subframes. This function will reconstruct the list of
 | |
|  *       subframes for every channel.
 | |
|  *
 | |
|  *       If the subframes are not evenly split, the algorithm estimates the
 | |
|  *       channels with the lowest number of total samples.
 | |
|  *       Afterwards, for each of these channels a bit is read from the
 | |
|  *       bitstream that indicates if the channel contains a subframe with the
 | |
|  *       next subframe size that is going to be read from the bitstream or not.
 | |
|  *       If a channel contains such a subframe, the subframe size gets added to
 | |
|  *       the channel's subframe list.
 | |
|  *       The algorithm repeats these steps until the frame is properly divided
 | |
|  *       between the individual channels.
 | |
|  *
 | |
|  *@param s context
 | |
|  *@return 0 on success, < 0 in case of an error
 | |
|  */
 | |
| static int decode_tilehdr(WMAProDecodeCtx *s)
 | |
| {
 | |
|     uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */
 | |
|     uint8_t  contains_subframe[WMAPRO_MAX_CHANNELS];  /**< flag indicating if a channel contains the current subframe */
 | |
|     int channels_for_cur_subframe = s->avctx->channels; /**< number of channels that contain the current subframe */
 | |
|     int fixed_channel_layout = 0;                     /**< flag indicating that all channels use the same subframe offsets and sizes */
 | |
|     int min_channel_len = 0;                          /**< smallest sum of samples (channels with this length will be processed first) */
 | |
|     int c;
 | |
| 
 | |
|     /* Should never consume more than 3073 bits (256 iterations for the
 | |
|      * while loop when always the minimum amount of 128 samples is subtracted
 | |
|      * from missing samples in the 8 channel case).
 | |
|      * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS  + 4)
 | |
|      */
 | |
| 
 | |
|     /** reset tiling information */
 | |
|     for (c = 0; c < s->avctx->channels; c++)
 | |
|         s->channel[c].num_subframes = 0;
 | |
| 
 | |
|     if (s->max_num_subframes == 1 || get_bits1(&s->gb))
 | |
|         fixed_channel_layout = 1;
 | |
| 
 | |
|     /** loop until the frame data is split between the subframes */
 | |
|     do {
 | |
|         int subframe_len;
 | |
| 
 | |
|         /** check which channels contain the subframe */
 | |
|         for (c = 0; c < s->avctx->channels; c++) {
 | |
|             if (num_samples[c] == min_channel_len) {
 | |
|                 if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
 | |
|                    (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
 | |
|                     contains_subframe[c] = 1;
 | |
|                 else
 | |
|                     contains_subframe[c] = get_bits1(&s->gb);
 | |
|             } else
 | |
|                 contains_subframe[c] = 0;
 | |
|         }
 | |
| 
 | |
|         /** get subframe length, subframe_len == 0 is not allowed */
 | |
|         if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
| 
 | |
|         /** add subframes to the individual channels and find new min_channel_len */
 | |
|         min_channel_len += subframe_len;
 | |
|         for (c = 0; c < s->avctx->channels; c++) {
 | |
|             WMAProChannelCtx* chan = &s->channel[c];
 | |
| 
 | |
|             if (contains_subframe[c]) {
 | |
|                 if (chan->num_subframes >= MAX_SUBFRAMES) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR,
 | |
|                            "broken frame: num subframes > 31\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 chan->subframe_len[chan->num_subframes] = subframe_len;
 | |
|                 num_samples[c] += subframe_len;
 | |
|                 ++chan->num_subframes;
 | |
|                 if (num_samples[c] > s->samples_per_frame) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
 | |
|                            "channel len > samples_per_frame\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|             } else if (num_samples[c] <= min_channel_len) {
 | |
|                 if (num_samples[c] < min_channel_len) {
 | |
|                     channels_for_cur_subframe = 0;
 | |
|                     min_channel_len = num_samples[c];
 | |
|                 }
 | |
|                 ++channels_for_cur_subframe;
 | |
|             }
 | |
|         }
 | |
|     } while (min_channel_len < s->samples_per_frame);
 | |
| 
 | |
|     for (c = 0; c < s->avctx->channels; c++) {
 | |
|         int i;
 | |
|         int offset = 0;
 | |
|         for (i = 0; i < s->channel[c].num_subframes; i++) {
 | |
|             av_dlog(s->avctx, "frame[%i] channel[%i] subframe[%i]"
 | |
|                     " len %i\n", s->frame_num, c, i,
 | |
|                     s->channel[c].subframe_len[i]);
 | |
|             s->channel[c].subframe_offset[i] = offset;
 | |
|             offset += s->channel[c].subframe_len[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Calculate a decorrelation matrix from the bitstream parameters.
 | |
|  *@param s codec context
 | |
|  *@param chgroup channel group for which the matrix needs to be calculated
 | |
|  */
 | |
| static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
 | |
|                                         WMAProChannelGrp *chgroup)
 | |
| {
 | |
|     int i;
 | |
|     int offset = 0;
 | |
|     int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
 | |
|     memset(chgroup->decorrelation_matrix, 0, s->avctx->channels *
 | |
|            s->avctx->channels * sizeof(*chgroup->decorrelation_matrix));
 | |
| 
 | |
|     for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
 | |
|         rotation_offset[i] = get_bits(&s->gb, 6);
 | |
| 
 | |
|     for (i = 0; i < chgroup->num_channels; i++)
 | |
|         chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
 | |
|             get_bits1(&s->gb) ? 1.0 : -1.0;
 | |
| 
 | |
|     for (i = 1; i < chgroup->num_channels; i++) {
 | |
|         int x;
 | |
|         for (x = 0; x < i; x++) {
 | |
|             int y;
 | |
|             for (y = 0; y < i + 1; y++) {
 | |
|                 float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
 | |
|                 float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
 | |
|                 int n = rotation_offset[offset + x];
 | |
|                 float sinv;
 | |
|                 float cosv;
 | |
| 
 | |
|                 if (n < 32) {
 | |
|                     sinv = sin64[n];
 | |
|                     cosv = sin64[32 - n];
 | |
|                 } else {
 | |
|                     sinv =  sin64[64 -  n];
 | |
|                     cosv = -sin64[n  - 32];
 | |
|                 }
 | |
| 
 | |
|                 chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
 | |
|                                                (v1 * sinv) - (v2 * cosv);
 | |
|                 chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
 | |
|                                                (v1 * cosv) + (v2 * sinv);
 | |
|             }
 | |
|         }
 | |
|         offset += i;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode channel transformation parameters
 | |
|  *@param s codec context
 | |
|  *@return 0 in case of success, < 0 in case of bitstream errors
 | |
|  */
 | |
| static int decode_channel_transform(WMAProDecodeCtx* s)
 | |
| {
 | |
|     int i;
 | |
|     /* should never consume more than 1921 bits for the 8 channel case
 | |
|      * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
 | |
|      * + MAX_CHANNELS + MAX_BANDS + 1)
 | |
|      */
 | |
| 
 | |
|     /** in the one channel case channel transforms are pointless */
 | |
|     s->num_chgroups = 0;
 | |
|     if (s->avctx->channels > 1) {
 | |
|         int remaining_channels = s->channels_for_cur_subframe;
 | |
| 
 | |
|         if (get_bits1(&s->gb)) {
 | |
|             av_log_ask_for_sample(s->avctx,
 | |
|                                   "unsupported channel transform bit\n");
 | |
|             return AVERROR_PATCHWELCOME;
 | |
|         }
 | |
| 
 | |
|         for (s->num_chgroups = 0; remaining_channels &&
 | |
|              s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
 | |
|             WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
 | |
|             float** channel_data = chgroup->channel_data;
 | |
|             chgroup->num_channels = 0;
 | |
|             chgroup->transform = 0;
 | |
| 
 | |
|             /** decode channel mask */
 | |
|             if (remaining_channels > 2) {
 | |
|                 for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|                     int channel_idx = s->channel_indexes_for_cur_subframe[i];
 | |
|                     if (!s->channel[channel_idx].grouped
 | |
|                         && get_bits1(&s->gb)) {
 | |
|                         ++chgroup->num_channels;
 | |
|                         s->channel[channel_idx].grouped = 1;
 | |
|                         *channel_data++ = s->channel[channel_idx].coeffs;
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 chgroup->num_channels = remaining_channels;
 | |
|                 for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|                     int channel_idx = s->channel_indexes_for_cur_subframe[i];
 | |
|                     if (!s->channel[channel_idx].grouped)
 | |
|                         *channel_data++ = s->channel[channel_idx].coeffs;
 | |
|                     s->channel[channel_idx].grouped = 1;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /** decode transform type */
 | |
|             if (chgroup->num_channels == 2) {
 | |
|                 if (get_bits1(&s->gb)) {
 | |
|                     if (get_bits1(&s->gb)) {
 | |
|                         av_log_ask_for_sample(s->avctx,
 | |
|                                               "unsupported channel transform type\n");
 | |
|                     }
 | |
|                 } else {
 | |
|                     chgroup->transform = 1;
 | |
|                     if (s->avctx->channels == 2) {
 | |
|                         chgroup->decorrelation_matrix[0] =  1.0;
 | |
|                         chgroup->decorrelation_matrix[1] = -1.0;
 | |
|                         chgroup->decorrelation_matrix[2] =  1.0;
 | |
|                         chgroup->decorrelation_matrix[3] =  1.0;
 | |
|                     } else {
 | |
|                         /** cos(pi/4) */
 | |
|                         chgroup->decorrelation_matrix[0] =  0.70703125;
 | |
|                         chgroup->decorrelation_matrix[1] = -0.70703125;
 | |
|                         chgroup->decorrelation_matrix[2] =  0.70703125;
 | |
|                         chgroup->decorrelation_matrix[3] =  0.70703125;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (chgroup->num_channels > 2) {
 | |
|                 if (get_bits1(&s->gb)) {
 | |
|                     chgroup->transform = 1;
 | |
|                     if (get_bits1(&s->gb)) {
 | |
|                         decode_decorrelation_matrix(s, chgroup);
 | |
|                     } else {
 | |
|                         /** FIXME: more than 6 coupled channels not supported */
 | |
|                         if (chgroup->num_channels > 6) {
 | |
|                             av_log_ask_for_sample(s->avctx,
 | |
|                                                   "coupled channels > 6\n");
 | |
|                         } else {
 | |
|                             memcpy(chgroup->decorrelation_matrix,
 | |
|                                    default_decorrelation[chgroup->num_channels],
 | |
|                                    chgroup->num_channels * chgroup->num_channels *
 | |
|                                    sizeof(*chgroup->decorrelation_matrix));
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /** decode transform on / off */
 | |
|             if (chgroup->transform) {
 | |
|                 if (!get_bits1(&s->gb)) {
 | |
|                     int i;
 | |
|                     /** transform can be enabled for individual bands */
 | |
|                     for (i = 0; i < s->num_bands; i++) {
 | |
|                         chgroup->transform_band[i] = get_bits1(&s->gb);
 | |
|                     }
 | |
|                 } else {
 | |
|                     memset(chgroup->transform_band, 1, s->num_bands);
 | |
|                 }
 | |
|             }
 | |
|             remaining_channels -= chgroup->num_channels;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Extract the coefficients from the bitstream.
 | |
|  *@param s codec context
 | |
|  *@param c current channel number
 | |
|  *@return 0 on success, < 0 in case of bitstream errors
 | |
|  */
 | |
| static int decode_coeffs(WMAProDecodeCtx *s, int c)
 | |
| {
 | |
|     /* Integers 0..15 as single-precision floats.  The table saves a
 | |
|        costly int to float conversion, and storing the values as
 | |
|        integers allows fast sign-flipping. */
 | |
|     static const uint32_t fval_tab[16] = {
 | |
|         0x00000000, 0x3f800000, 0x40000000, 0x40400000,
 | |
|         0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
 | |
|         0x41000000, 0x41100000, 0x41200000, 0x41300000,
 | |
|         0x41400000, 0x41500000, 0x41600000, 0x41700000,
 | |
|     };
 | |
|     int vlctable;
 | |
|     VLC* vlc;
 | |
|     WMAProChannelCtx* ci = &s->channel[c];
 | |
|     int rl_mode = 0;
 | |
|     int cur_coeff = 0;
 | |
|     int num_zeros = 0;
 | |
|     const uint16_t* run;
 | |
|     const float* level;
 | |
| 
 | |
|     av_dlog(s->avctx, "decode coefficients for channel %i\n", c);
 | |
| 
 | |
|     vlctable = get_bits1(&s->gb);
 | |
|     vlc = &coef_vlc[vlctable];
 | |
| 
 | |
|     if (vlctable) {
 | |
|         run = coef1_run;
 | |
|         level = coef1_level;
 | |
|     } else {
 | |
|         run = coef0_run;
 | |
|         level = coef0_level;
 | |
|     }
 | |
| 
 | |
|     /** decode vector coefficients (consumes up to 167 bits per iteration for
 | |
|       4 vector coded large values) */
 | |
|     while ((s->transmit_num_vec_coeffs || !rl_mode) &&
 | |
|            (cur_coeff + 3 < ci->num_vec_coeffs)) {
 | |
|         uint32_t vals[4];
 | |
|         int i;
 | |
|         unsigned int idx;
 | |
| 
 | |
|         idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
 | |
| 
 | |
|         if (idx == HUFF_VEC4_SIZE - 1) {
 | |
|             for (i = 0; i < 4; i += 2) {
 | |
|                 idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
 | |
|                 if (idx == HUFF_VEC2_SIZE - 1) {
 | |
|                     uint32_t v0, v1;
 | |
|                     v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
 | |
|                     if (v0 == HUFF_VEC1_SIZE - 1)
 | |
|                         v0 += ff_wma_get_large_val(&s->gb);
 | |
|                     v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
 | |
|                     if (v1 == HUFF_VEC1_SIZE - 1)
 | |
|                         v1 += ff_wma_get_large_val(&s->gb);
 | |
|                     vals[i  ] = av_float2int(v0);
 | |
|                     vals[i+1] = av_float2int(v1);
 | |
|                 } else {
 | |
|                     vals[i]   = fval_tab[symbol_to_vec2[idx] >> 4 ];
 | |
|                     vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12      ];
 | |
|             vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
 | |
|             vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
 | |
|             vals[3] = fval_tab[ symbol_to_vec4[idx]       & 0xF];
 | |
|         }
 | |
| 
 | |
|         /** decode sign */
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             if (vals[i]) {
 | |
|                 uint32_t sign = get_bits1(&s->gb) - 1;
 | |
|                 AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
 | |
|                 num_zeros = 0;
 | |
|             } else {
 | |
|                 ci->coeffs[cur_coeff] = 0;
 | |
|                 /** switch to run level mode when subframe_len / 128 zeros
 | |
|                     were found in a row */
 | |
|                 rl_mode |= (++num_zeros > s->subframe_len >> 8);
 | |
|             }
 | |
|             ++cur_coeff;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** decode run level coded coefficients */
 | |
|     if (cur_coeff < s->subframe_len) {
 | |
|         memset(&ci->coeffs[cur_coeff], 0,
 | |
|                sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
 | |
|         if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
 | |
|                                     level, run, 1, ci->coeffs,
 | |
|                                     cur_coeff, s->subframe_len,
 | |
|                                     s->subframe_len, s->esc_len, 0))
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Extract scale factors from the bitstream.
 | |
|  *@param s codec context
 | |
|  *@return 0 on success, < 0 in case of bitstream errors
 | |
|  */
 | |
| static int decode_scale_factors(WMAProDecodeCtx* s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /** should never consume more than 5344 bits
 | |
|      *  MAX_CHANNELS * (1 +  MAX_BANDS * 23)
 | |
|      */
 | |
| 
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
|         int* sf;
 | |
|         int* sf_end;
 | |
|         s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
 | |
|         sf_end = s->channel[c].scale_factors + s->num_bands;
 | |
| 
 | |
|         /** resample scale factors for the new block size
 | |
|          *  as the scale factors might need to be resampled several times
 | |
|          *  before some  new values are transmitted, a backup of the last
 | |
|          *  transmitted scale factors is kept in saved_scale_factors
 | |
|          */
 | |
|         if (s->channel[c].reuse_sf) {
 | |
|             const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
 | |
|             int b;
 | |
|             for (b = 0; b < s->num_bands; b++)
 | |
|                 s->channel[c].scale_factors[b] =
 | |
|                     s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
 | |
|         }
 | |
| 
 | |
|         if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
 | |
| 
 | |
|             if (!s->channel[c].reuse_sf) {
 | |
|                 int val;
 | |
|                 /** decode DPCM coded scale factors */
 | |
|                 s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
 | |
|                 val = 45 / s->channel[c].scale_factor_step;
 | |
|                 for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
 | |
|                     val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
 | |
|                     *sf = val;
 | |
|                 }
 | |
|             } else {
 | |
|                 int i;
 | |
|                 /** run level decode differences to the resampled factors */
 | |
|                 for (i = 0; i < s->num_bands; i++) {
 | |
|                     int idx;
 | |
|                     int skip;
 | |
|                     int val;
 | |
|                     int sign;
 | |
| 
 | |
|                     idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
 | |
| 
 | |
|                     if (!idx) {
 | |
|                         uint32_t code = get_bits(&s->gb, 14);
 | |
|                         val  =  code >> 6;
 | |
|                         sign = (code & 1) - 1;
 | |
|                         skip = (code & 0x3f) >> 1;
 | |
|                     } else if (idx == 1) {
 | |
|                         break;
 | |
|                     } else {
 | |
|                         skip = scale_rl_run[idx];
 | |
|                         val  = scale_rl_level[idx];
 | |
|                         sign = get_bits1(&s->gb)-1;
 | |
|                     }
 | |
| 
 | |
|                     i += skip;
 | |
|                     if (i >= s->num_bands) {
 | |
|                         av_log(s->avctx, AV_LOG_ERROR,
 | |
|                                "invalid scale factor coding\n");
 | |
|                         return AVERROR_INVALIDDATA;
 | |
|                     }
 | |
|                     s->channel[c].scale_factors[i] += (val ^ sign) - sign;
 | |
|                 }
 | |
|             }
 | |
|             /** swap buffers */
 | |
|             s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
 | |
|             s->channel[c].table_idx = s->table_idx;
 | |
|             s->channel[c].reuse_sf  = 1;
 | |
|         }
 | |
| 
 | |
|         /** calculate new scale factor maximum */
 | |
|         s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
 | |
|         for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
 | |
|             s->channel[c].max_scale_factor =
 | |
|                 FFMAX(s->channel[c].max_scale_factor, *sf);
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Reconstruct the individual channel data.
 | |
|  *@param s codec context
 | |
|  */
 | |
| static void inverse_channel_transform(WMAProDecodeCtx *s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->num_chgroups; i++) {
 | |
|         if (s->chgroup[i].transform) {
 | |
|             float data[WMAPRO_MAX_CHANNELS];
 | |
|             const int num_channels = s->chgroup[i].num_channels;
 | |
|             float** ch_data = s->chgroup[i].channel_data;
 | |
|             float** ch_end = ch_data + num_channels;
 | |
|             const int8_t* tb = s->chgroup[i].transform_band;
 | |
|             int16_t* sfb;
 | |
| 
 | |
|             /** multichannel decorrelation */
 | |
|             for (sfb = s->cur_sfb_offsets;
 | |
|                  sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
 | |
|                 int y;
 | |
|                 if (*tb++ == 1) {
 | |
|                     /** multiply values with the decorrelation_matrix */
 | |
|                     for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
 | |
|                         const float* mat = s->chgroup[i].decorrelation_matrix;
 | |
|                         const float* data_end = data + num_channels;
 | |
|                         float* data_ptr = data;
 | |
|                         float** ch;
 | |
| 
 | |
|                         for (ch = ch_data; ch < ch_end; ch++)
 | |
|                             *data_ptr++ = (*ch)[y];
 | |
| 
 | |
|                         for (ch = ch_data; ch < ch_end; ch++) {
 | |
|                             float sum = 0;
 | |
|                             data_ptr = data;
 | |
|                             while (data_ptr < data_end)
 | |
|                                 sum += *data_ptr++ * *mat++;
 | |
| 
 | |
|                             (*ch)[y] = sum;
 | |
|                         }
 | |
|                     }
 | |
|                 } else if (s->avctx->channels == 2) {
 | |
|                     int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
 | |
|                     s->fdsp.vector_fmul_scalar(ch_data[0] + sfb[0],
 | |
|                                                ch_data[0] + sfb[0],
 | |
|                                                181.0 / 128, len);
 | |
|                     s->fdsp.vector_fmul_scalar(ch_data[1] + sfb[0],
 | |
|                                                ch_data[1] + sfb[0],
 | |
|                                                181.0 / 128, len);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Apply sine window and reconstruct the output buffer.
 | |
|  *@param s codec context
 | |
|  */
 | |
| static void wmapro_window(WMAProDecodeCtx *s)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
|         float* window;
 | |
|         int winlen = s->channel[c].prev_block_len;
 | |
|         float* start = s->channel[c].coeffs - (winlen >> 1);
 | |
| 
 | |
|         if (s->subframe_len < winlen) {
 | |
|             start += (winlen - s->subframe_len) >> 1;
 | |
|             winlen = s->subframe_len;
 | |
|         }
 | |
| 
 | |
|         window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
 | |
| 
 | |
|         winlen >>= 1;
 | |
| 
 | |
|         s->fdsp.vector_fmul_window(start, start, start + winlen,
 | |
|                                    window, winlen);
 | |
| 
 | |
|         s->channel[c].prev_block_len = s->subframe_len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode a single subframe (block).
 | |
|  *@param s codec context
 | |
|  *@return 0 on success, < 0 when decoding failed
 | |
|  */
 | |
| static int decode_subframe(WMAProDecodeCtx *s)
 | |
| {
 | |
|     int offset = s->samples_per_frame;
 | |
|     int subframe_len = s->samples_per_frame;
 | |
|     int i;
 | |
|     int total_samples   = s->samples_per_frame * s->avctx->channels;
 | |
|     int transmit_coeffs = 0;
 | |
|     int cur_subwoofer_cutoff;
 | |
| 
 | |
|     s->subframe_offset = get_bits_count(&s->gb);
 | |
| 
 | |
|     /** reset channel context and find the next block offset and size
 | |
|         == the next block of the channel with the smallest number of
 | |
|         decoded samples
 | |
|     */
 | |
|     for (i = 0; i < s->avctx->channels; i++) {
 | |
|         s->channel[i].grouped = 0;
 | |
|         if (offset > s->channel[i].decoded_samples) {
 | |
|             offset = s->channel[i].decoded_samples;
 | |
|             subframe_len =
 | |
|                 s->channel[i].subframe_len[s->channel[i].cur_subframe];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     av_dlog(s->avctx,
 | |
|             "processing subframe with offset %i len %i\n", offset, subframe_len);
 | |
| 
 | |
|     /** get a list of all channels that contain the estimated block */
 | |
|     s->channels_for_cur_subframe = 0;
 | |
|     for (i = 0; i < s->avctx->channels; i++) {
 | |
|         const int cur_subframe = s->channel[i].cur_subframe;
 | |
|         /** subtract already processed samples */
 | |
|         total_samples -= s->channel[i].decoded_samples;
 | |
| 
 | |
|         /** and count if there are multiple subframes that match our profile */
 | |
|         if (offset == s->channel[i].decoded_samples &&
 | |
|             subframe_len == s->channel[i].subframe_len[cur_subframe]) {
 | |
|             total_samples -= s->channel[i].subframe_len[cur_subframe];
 | |
|             s->channel[i].decoded_samples +=
 | |
|                 s->channel[i].subframe_len[cur_subframe];
 | |
|             s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
 | |
|             ++s->channels_for_cur_subframe;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** check if the frame will be complete after processing the
 | |
|         estimated block */
 | |
|     if (!total_samples)
 | |
|         s->parsed_all_subframes = 1;
 | |
| 
 | |
| 
 | |
|     av_dlog(s->avctx, "subframe is part of %i channels\n",
 | |
|             s->channels_for_cur_subframe);
 | |
| 
 | |
|     /** calculate number of scale factor bands and their offsets */
 | |
|     s->table_idx         = av_log2(s->samples_per_frame/subframe_len);
 | |
|     s->num_bands         = s->num_sfb[s->table_idx];
 | |
|     s->cur_sfb_offsets   = s->sfb_offsets[s->table_idx];
 | |
|     cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
 | |
| 
 | |
|     /** configure the decoder for the current subframe */
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
| 
 | |
|         s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
 | |
|                                                   + offset];
 | |
|     }
 | |
| 
 | |
|     s->subframe_len = subframe_len;
 | |
|     s->esc_len = av_log2(s->subframe_len - 1) + 1;
 | |
| 
 | |
|     /** skip extended header if any */
 | |
|     if (get_bits1(&s->gb)) {
 | |
|         int num_fill_bits;
 | |
|         if (!(num_fill_bits = get_bits(&s->gb, 2))) {
 | |
|             int len = get_bits(&s->gb, 4);
 | |
|             num_fill_bits = (len ? get_bits(&s->gb, len) : 0) + 1;
 | |
|         }
 | |
| 
 | |
|         if (num_fill_bits >= 0) {
 | |
|             if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
 | |
|                 av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             skip_bits_long(&s->gb, num_fill_bits);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** no idea for what the following bit is used */
 | |
|     if (get_bits1(&s->gb)) {
 | |
|         av_log_ask_for_sample(s->avctx, "reserved bit set\n");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (decode_channel_transform(s) < 0)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
|         if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
 | |
|             transmit_coeffs = 1;
 | |
|     }
 | |
| 
 | |
|     av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE);
 | |
|     if (transmit_coeffs) {
 | |
|         int step;
 | |
|         int quant_step = 90 * s->bits_per_sample >> 4;
 | |
| 
 | |
|         /** decode number of vector coded coefficients */
 | |
|         if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) {
 | |
|             int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
 | |
|             for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|                 int c = s->channel_indexes_for_cur_subframe[i];
 | |
|                 int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2;
 | |
|                 if (num_vec_coeffs > s->subframe_len) {
 | |
|                     av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 s->channel[c].num_vec_coeffs = num_vec_coeffs;
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|                 int c = s->channel_indexes_for_cur_subframe[i];
 | |
|                 s->channel[c].num_vec_coeffs = s->subframe_len;
 | |
|             }
 | |
|         }
 | |
|         /** decode quantization step */
 | |
|         step = get_sbits(&s->gb, 6);
 | |
|         quant_step += step;
 | |
|         if (step == -32 || step == 31) {
 | |
|             const int sign = (step == 31) - 1;
 | |
|             int quant = 0;
 | |
|             while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
 | |
|                    (step = get_bits(&s->gb, 5)) == 31) {
 | |
|                 quant += 31;
 | |
|             }
 | |
|             quant_step += ((quant + step) ^ sign) - sign;
 | |
|         }
 | |
|         if (quant_step < 0) {
 | |
|             av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
 | |
|         }
 | |
| 
 | |
|         /** decode quantization step modifiers for every channel */
 | |
| 
 | |
|         if (s->channels_for_cur_subframe == 1) {
 | |
|             s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
 | |
|         } else {
 | |
|             int modifier_len = get_bits(&s->gb, 3);
 | |
|             for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|                 int c = s->channel_indexes_for_cur_subframe[i];
 | |
|                 s->channel[c].quant_step = quant_step;
 | |
|                 if (get_bits1(&s->gb)) {
 | |
|                     if (modifier_len) {
 | |
|                         s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
 | |
|                     } else
 | |
|                         ++s->channel[c].quant_step;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /** decode scale factors */
 | |
|         if (decode_scale_factors(s) < 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     av_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
 | |
|             get_bits_count(&s->gb) - s->subframe_offset);
 | |
| 
 | |
|     /** parse coefficients */
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
|         if (s->channel[c].transmit_coefs &&
 | |
|             get_bits_count(&s->gb) < s->num_saved_bits) {
 | |
|             decode_coeffs(s, c);
 | |
|         } else
 | |
|             memset(s->channel[c].coeffs, 0,
 | |
|                    sizeof(*s->channel[c].coeffs) * subframe_len);
 | |
|     }
 | |
| 
 | |
|     av_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
 | |
|             get_bits_count(&s->gb) - s->subframe_offset);
 | |
| 
 | |
|     if (transmit_coeffs) {
 | |
|         FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
 | |
|         /** reconstruct the per channel data */
 | |
|         inverse_channel_transform(s);
 | |
|         for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|             int c = s->channel_indexes_for_cur_subframe[i];
 | |
|             const int* sf = s->channel[c].scale_factors;
 | |
|             int b;
 | |
| 
 | |
|             if (c == s->lfe_channel)
 | |
|                 memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
 | |
|                        (subframe_len - cur_subwoofer_cutoff));
 | |
| 
 | |
|             /** inverse quantization and rescaling */
 | |
|             for (b = 0; b < s->num_bands; b++) {
 | |
|                 const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
 | |
|                 const int exp = s->channel[c].quant_step -
 | |
|                             (s->channel[c].max_scale_factor - *sf++) *
 | |
|                             s->channel[c].scale_factor_step;
 | |
|                 const float quant = pow(10.0, exp / 20.0);
 | |
|                 int start = s->cur_sfb_offsets[b];
 | |
|                 s->fdsp.vector_fmul_scalar(s->tmp + start,
 | |
|                                            s->channel[c].coeffs + start,
 | |
|                                            quant, end - start);
 | |
|             }
 | |
| 
 | |
|             /** apply imdct (imdct_half == DCTIV with reverse) */
 | |
|             mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** window and overlapp-add */
 | |
|     wmapro_window(s);
 | |
| 
 | |
|     /** handled one subframe */
 | |
|     for (i = 0; i < s->channels_for_cur_subframe; i++) {
 | |
|         int c = s->channel_indexes_for_cur_subframe[i];
 | |
|         if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
 | |
|             av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         ++s->channel[c].cur_subframe;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode one WMA frame.
 | |
|  *@param s codec context
 | |
|  *@return 0 if the trailer bit indicates that this is the last frame,
 | |
|  *        1 if there are additional frames
 | |
|  */
 | |
| static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
 | |
| {
 | |
|     AVCodecContext *avctx = s->avctx;
 | |
|     GetBitContext* gb = &s->gb;
 | |
|     int more_frames = 0;
 | |
|     int len = 0;
 | |
|     int i, ret;
 | |
| 
 | |
|     /** get frame length */
 | |
|     if (s->len_prefix)
 | |
|         len = get_bits(gb, s->log2_frame_size);
 | |
| 
 | |
|     av_dlog(s->avctx, "decoding frame with length %x\n", len);
 | |
| 
 | |
|     /** decode tile information */
 | |
|     if (decode_tilehdr(s)) {
 | |
|         s->packet_loss = 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /** read postproc transform */
 | |
|     if (s->avctx->channels > 1 && get_bits1(gb)) {
 | |
|         if (get_bits1(gb)) {
 | |
|             for (i = 0; i < avctx->channels * avctx->channels; i++)
 | |
|                 skip_bits(gb, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** read drc info */
 | |
|     if (s->dynamic_range_compression) {
 | |
|         s->drc_gain = get_bits(gb, 8);
 | |
|         av_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
 | |
|     }
 | |
| 
 | |
|     /** no idea what these are for, might be the number of samples
 | |
|         that need to be skipped at the beginning or end of a stream */
 | |
|     if (get_bits1(gb)) {
 | |
|         int av_unused skip;
 | |
| 
 | |
|         /** usually true for the first frame */
 | |
|         if (get_bits1(gb)) {
 | |
|             skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
 | |
|             av_dlog(s->avctx, "start skip: %i\n", skip);
 | |
|         }
 | |
| 
 | |
|         /** sometimes true for the last frame */
 | |
|         if (get_bits1(gb)) {
 | |
|             skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
 | |
|             av_dlog(s->avctx, "end skip: %i\n", skip);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     av_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
 | |
|             get_bits_count(gb) - s->frame_offset);
 | |
| 
 | |
|     /** reset subframe states */
 | |
|     s->parsed_all_subframes = 0;
 | |
|     for (i = 0; i < avctx->channels; i++) {
 | |
|         s->channel[i].decoded_samples = 0;
 | |
|         s->channel[i].cur_subframe    = 0;
 | |
|         s->channel[i].reuse_sf        = 0;
 | |
|     }
 | |
| 
 | |
|     /** decode all subframes */
 | |
|     while (!s->parsed_all_subframes) {
 | |
|         if (decode_subframe(s) < 0) {
 | |
|             s->packet_loss = 1;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* get output buffer */
 | |
|     frame->nb_samples = s->samples_per_frame;
 | |
|     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | |
|         s->packet_loss = 1;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /** copy samples to the output buffer */
 | |
|     for (i = 0; i < avctx->channels; i++)
 | |
|         memcpy(frame->extended_data[i], s->channel[i].out,
 | |
|                s->samples_per_frame * sizeof(*s->channel[i].out));
 | |
| 
 | |
|     for (i = 0; i < avctx->channels; i++) {
 | |
|         /** reuse second half of the IMDCT output for the next frame */
 | |
|         memcpy(&s->channel[i].out[0],
 | |
|                &s->channel[i].out[s->samples_per_frame],
 | |
|                s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
 | |
|     }
 | |
| 
 | |
|     if (s->skip_frame) {
 | |
|         s->skip_frame = 0;
 | |
|         *got_frame_ptr = 0;
 | |
|     } else {
 | |
|         *got_frame_ptr = 1;
 | |
|     }
 | |
| 
 | |
|     if (s->len_prefix) {
 | |
|         if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
 | |
|             /** FIXME: not sure if this is always an error */
 | |
|             av_log(s->avctx, AV_LOG_ERROR,
 | |
|                    "frame[%i] would have to skip %i bits\n", s->frame_num,
 | |
|                    len - (get_bits_count(gb) - s->frame_offset) - 1);
 | |
|             s->packet_loss = 1;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         /** skip the rest of the frame data */
 | |
|         skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
 | |
|     } else {
 | |
|         while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /** decode trailer bit */
 | |
|     more_frames = get_bits1(gb);
 | |
| 
 | |
|     ++s->frame_num;
 | |
|     return more_frames;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Calculate remaining input buffer length.
 | |
|  *@param s codec context
 | |
|  *@param gb bitstream reader context
 | |
|  *@return remaining size in bits
 | |
|  */
 | |
| static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
 | |
| {
 | |
|     return s->buf_bit_size - get_bits_count(gb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Fill the bit reservoir with a (partial) frame.
 | |
|  *@param s codec context
 | |
|  *@param gb bitstream reader context
 | |
|  *@param len length of the partial frame
 | |
|  *@param append decides whether to reset the buffer or not
 | |
|  */
 | |
| static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
 | |
|                       int append)
 | |
| {
 | |
|     int buflen;
 | |
| 
 | |
|     /** when the frame data does not need to be concatenated, the input buffer
 | |
|         is reset and additional bits from the previous frame are copied
 | |
|         and skipped later so that a fast byte copy is possible */
 | |
| 
 | |
|     if (!append) {
 | |
|         s->frame_offset = get_bits_count(gb) & 7;
 | |
|         s->num_saved_bits = s->frame_offset;
 | |
|         init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
 | |
|     }
 | |
| 
 | |
|     buflen = (put_bits_count(&s->pb) + len + 8) >> 3;
 | |
| 
 | |
|     if (len <= 0 || buflen > MAX_FRAMESIZE) {
 | |
|         av_log_ask_for_sample(s->avctx, "input buffer too small\n");
 | |
|         s->packet_loss = 1;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->num_saved_bits += len;
 | |
|     if (!append) {
 | |
|         avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
 | |
|                      s->num_saved_bits);
 | |
|     } else {
 | |
|         int align = 8 - (get_bits_count(gb) & 7);
 | |
|         align = FFMIN(align, len);
 | |
|         put_bits(&s->pb, align, get_bits(gb, align));
 | |
|         len -= align;
 | |
|         avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
 | |
|     }
 | |
|     skip_bits_long(gb, len);
 | |
| 
 | |
|     {
 | |
|         PutBitContext tmp = s->pb;
 | |
|         flush_put_bits(&tmp);
 | |
|     }
 | |
| 
 | |
|     init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
 | |
|     skip_bits(&s->gb, s->frame_offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Decode a single WMA packet.
 | |
|  *@param avctx codec context
 | |
|  *@param data the output buffer
 | |
|  *@param avpkt input packet
 | |
|  *@return number of bytes that were read from the input buffer
 | |
|  */
 | |
| static int decode_packet(AVCodecContext *avctx, void *data,
 | |
|                          int *got_frame_ptr, AVPacket* avpkt)
 | |
| {
 | |
|     WMAProDecodeCtx *s = avctx->priv_data;
 | |
|     GetBitContext* gb  = &s->pgb;
 | |
|     const uint8_t* buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     int num_bits_prev_frame;
 | |
|     int packet_sequence_number;
 | |
| 
 | |
|     *got_frame_ptr = 0;
 | |
| 
 | |
|     if (s->packet_done || s->packet_loss) {
 | |
|         s->packet_done = 0;
 | |
| 
 | |
|         /** sanity check for the buffer length */
 | |
|         if (buf_size < avctx->block_align) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
 | |
|                    buf_size, avctx->block_align);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         s->next_packet_start = buf_size - avctx->block_align;
 | |
|         buf_size = avctx->block_align;
 | |
|         s->buf_bit_size = buf_size << 3;
 | |
| 
 | |
|         /** parse packet header */
 | |
|         init_get_bits(gb, buf, s->buf_bit_size);
 | |
|         packet_sequence_number = get_bits(gb, 4);
 | |
|         skip_bits(gb, 2);
 | |
| 
 | |
|         /** get number of bits that need to be added to the previous frame */
 | |
|         num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
 | |
|         av_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
 | |
|                 num_bits_prev_frame);
 | |
| 
 | |
|         /** check for packet loss */
 | |
|         if (!s->packet_loss &&
 | |
|             ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
 | |
|             s->packet_loss = 1;
 | |
|             av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
 | |
|                    s->packet_sequence_number, packet_sequence_number);
 | |
|         }
 | |
|         s->packet_sequence_number = packet_sequence_number;
 | |
| 
 | |
|         if (num_bits_prev_frame > 0) {
 | |
|             int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
 | |
|             if (num_bits_prev_frame >= remaining_packet_bits) {
 | |
|                 num_bits_prev_frame = remaining_packet_bits;
 | |
|                 s->packet_done = 1;
 | |
|             }
 | |
| 
 | |
|             /** append the previous frame data to the remaining data from the
 | |
|                 previous packet to create a full frame */
 | |
|             save_bits(s, gb, num_bits_prev_frame, 1);
 | |
|             av_dlog(avctx, "accumulated %x bits of frame data\n",
 | |
|                     s->num_saved_bits - s->frame_offset);
 | |
| 
 | |
|             /** decode the cross packet frame if it is valid */
 | |
|             if (!s->packet_loss)
 | |
|                 decode_frame(s, data, got_frame_ptr);
 | |
|         } else if (s->num_saved_bits - s->frame_offset) {
 | |
|             av_dlog(avctx, "ignoring %x previously saved bits\n",
 | |
|                     s->num_saved_bits - s->frame_offset);
 | |
|         }
 | |
| 
 | |
|         if (s->packet_loss) {
 | |
|             /** reset number of saved bits so that the decoder
 | |
|                 does not start to decode incomplete frames in the
 | |
|                 s->len_prefix == 0 case */
 | |
|             s->num_saved_bits = 0;
 | |
|             s->packet_loss = 0;
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|         int frame_size;
 | |
|         s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
 | |
|         init_get_bits(gb, avpkt->data, s->buf_bit_size);
 | |
|         skip_bits(gb, s->packet_offset);
 | |
|         if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
 | |
|             (frame_size = show_bits(gb, s->log2_frame_size)) &&
 | |
|             frame_size <= remaining_bits(s, gb)) {
 | |
|             save_bits(s, gb, frame_size, 0);
 | |
|             s->packet_done = !decode_frame(s, data, got_frame_ptr);
 | |
|         } else if (!s->len_prefix
 | |
|                    && s->num_saved_bits > get_bits_count(&s->gb)) {
 | |
|             /** when the frames do not have a length prefix, we don't know
 | |
|                 the compressed length of the individual frames
 | |
|                 however, we know what part of a new packet belongs to the
 | |
|                 previous frame
 | |
|                 therefore we save the incoming packet first, then we append
 | |
|                 the "previous frame" data from the next packet so that
 | |
|                 we get a buffer that only contains full frames */
 | |
|             s->packet_done = !decode_frame(s, data, got_frame_ptr);
 | |
|         } else
 | |
|             s->packet_done = 1;
 | |
|     }
 | |
| 
 | |
|     if (s->packet_done && !s->packet_loss &&
 | |
|         remaining_bits(s, gb) > 0) {
 | |
|         /** save the rest of the data so that it can be decoded
 | |
|             with the next packet */
 | |
|         save_bits(s, gb, remaining_bits(s, gb), 0);
 | |
|     }
 | |
| 
 | |
|     s->packet_offset = get_bits_count(gb) & 7;
 | |
|     if (s->packet_loss)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     return get_bits_count(gb) >> 3;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *@brief Clear decoder buffers (for seeking).
 | |
|  *@param avctx codec context
 | |
|  */
 | |
| static void flush(AVCodecContext *avctx)
 | |
| {
 | |
|     WMAProDecodeCtx *s = avctx->priv_data;
 | |
|     int i;
 | |
|     /** reset output buffer as a part of it is used during the windowing of a
 | |
|         new frame */
 | |
|     for (i = 0; i < avctx->channels; i++)
 | |
|         memset(s->channel[i].out, 0, s->samples_per_frame *
 | |
|                sizeof(*s->channel[i].out));
 | |
|     s->packet_loss = 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *@brief wmapro decoder
 | |
|  */
 | |
| AVCodec ff_wmapro_decoder = {
 | |
|     .name           = "wmapro",
 | |
|     .type           = AVMEDIA_TYPE_AUDIO,
 | |
|     .id             = AV_CODEC_ID_WMAPRO,
 | |
|     .priv_data_size = sizeof(WMAProDecodeCtx),
 | |
|     .init           = decode_init,
 | |
|     .close          = decode_end,
 | |
|     .decode         = decode_packet,
 | |
|     .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
 | |
|     .flush          = flush,
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
 | |
|     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | |
|                                                       AV_SAMPLE_FMT_NONE },
 | |
| };
 |