* qatar/master: (29 commits) sbrdsp.asm: convert all instructions to float/SSE ones. dv: cosmetics. dv: check buffer size before reading profile. Revert "AAC SBR: group some writes." udp: Print an error message if bind fails cook: extend channel uncoupling tables so the full bit range is covered. roqvideo: cosmetics. roqvideo: convert to bytestream2 API. dca: don't use av_clip_uintp2(). wmall: fix build with -DDEBUG enabled. smc: port to bytestream2 API. AAC SBR: group some writes. dsputil: remove shift parameter from scalarproduct_int16 SBR DSP: unroll sum_square rv34: remove dead code in intra availability check rv34: clean a bit availability checks. v4l2: update documentation tgq: convert to bytestream2 API. parser: remove forward declaration of MpegEncContext dca: prevent accessing static arrays with invalid indexes. ... Conflicts: doc/indevs.texi libavcodec/Makefile libavcodec/dca.c libavcodec/dvdata.c libavcodec/eatgq.c libavcodec/mmvideo.c libavcodec/roqvideodec.c libavcodec/smc.c libswscale/output.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			611 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			611 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * G.729, G729 Annex D postfilter
 | |
|  * Copyright (c) 2008 Vladimir Voroshilov
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| #include <inttypes.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "g729.h"
 | |
| #include "acelp_pitch_delay.h"
 | |
| #include "g729postfilter.h"
 | |
| #include "celp_math.h"
 | |
| #include "acelp_filters.h"
 | |
| #include "acelp_vectors.h"
 | |
| #include "celp_filters.h"
 | |
| 
 | |
| #define FRAC_BITS 15
 | |
| #include "mathops.h"
 | |
| 
 | |
| /**
 | |
|  * short interpolation filter (of length 33, according to spec)
 | |
|  * for computing signal with non-integer delay
 | |
|  */
 | |
| static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
 | |
|       0, 31650, 28469, 23705, 18050, 12266,  7041,  2873,
 | |
|       0, -1597, -2147, -1992, -1492,  -933,  -484,  -188,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * long interpolation filter (of length 129, according to spec)
 | |
|  * for computing signal with non-integer delay
 | |
|  */
 | |
| static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
 | |
|    0, 31915, 29436, 25569, 20676, 15206,  9639,  4439,
 | |
|    0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
 | |
|    0,  1595,  2727,  3303,  3319,  2850,  2030,  1023,
 | |
|    0,  -887, -1527, -1860, -1876, -1614, -1150,  -579,
 | |
|    0,   501,   859,  1041,  1044,   892,   631,   315,
 | |
|    0,  -266,  -453,  -543,  -538,  -455,  -317,  -156,
 | |
|    0,   130,   218,   258,   253,   212,   147,    72,
 | |
|    0,   -59,  -101,  -122,  -123,  -106,   -77,   -40,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
 | |
|  */
 | |
| static const int16_t formant_pp_factor_num_pow[10]= {
 | |
|   /* (0.15) */
 | |
|   18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
 | |
|  */
 | |
| static const int16_t formant_pp_factor_den_pow[10] = {
 | |
|   /* (0.15) */
 | |
|   22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * \brief Residual signal calculation (4.2.1 if G.729)
 | |
|  * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
 | |
|  * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
 | |
|  * \param in input speech data to process
 | |
|  * \param subframe_size size of one subframe
 | |
|  *
 | |
|  * \note in buffer must contain 10 items of previous speech data before top of the buffer
 | |
|  * \remark It is safe to pass the same buffer for input and output.
 | |
|  */
 | |
| static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
 | |
|                             int subframe_size)
 | |
| {
 | |
|     int i, n;
 | |
| 
 | |
|     for (n = subframe_size - 1; n >= 0; n--) {
 | |
|         int sum = 0x800;
 | |
|         for (i = 0; i < 10; i++)
 | |
|             sum += filter_coeffs[i] * in[n - i - 1];
 | |
| 
 | |
|         out[n] = in[n] + (sum >> 12);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * \brief long-term postfilter (4.2.1)
 | |
|  * \param dsp initialized DSP context
 | |
|  * \param pitch_delay_int integer part of the pitch delay in the first subframe
 | |
|  * \param residual filtering input data
 | |
|  * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
 | |
|  * \param subframe_size size of subframe
 | |
|  *
 | |
|  * \return 0 if long-term prediction gain is less than 3dB, 1 -  otherwise
 | |
|  */
 | |
| static int16_t long_term_filter(DSPContext *dsp, int pitch_delay_int,
 | |
|                                 const int16_t* residual, int16_t *residual_filt,
 | |
|                                 int subframe_size)
 | |
| {
 | |
|     int i, k, tmp, tmp2;
 | |
|     int sum;
 | |
|     int L_temp0;
 | |
|     int L_temp1;
 | |
|     int64_t L64_temp0;
 | |
|     int64_t L64_temp1;
 | |
|     int16_t shift;
 | |
|     int corr_int_num, corr_int_den;
 | |
| 
 | |
|     int ener;
 | |
|     int16_t sh_ener;
 | |
| 
 | |
|     int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
 | |
|     int16_t sh_gain_num, sh_gain_den;
 | |
|     int gain_num_square;
 | |
| 
 | |
|     int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
 | |
|     int16_t sh_gain_long_num, sh_gain_long_den;
 | |
| 
 | |
|     int16_t best_delay_int, best_delay_frac;
 | |
| 
 | |
|     int16_t delayed_signal_offset;
 | |
|     int lt_filt_factor_a, lt_filt_factor_b;
 | |
| 
 | |
|     int16_t * selected_signal;
 | |
|     const int16_t * selected_signal_const; //Necessary to avoid compiler warning
 | |
| 
 | |
|     int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
 | |
|     int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
 | |
|     int corr_den[ANALYZED_FRAC_DELAYS][2];
 | |
| 
 | |
|     tmp = 0;
 | |
|     for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
 | |
|         tmp |= FFABS(residual[i]);
 | |
| 
 | |
|     if(!tmp)
 | |
|         shift = 3;
 | |
|     else
 | |
|         shift = av_log2(tmp) - 11;
 | |
| 
 | |
|     if (shift > 0)
 | |
|         for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
 | |
|             sig_scaled[i] = residual[i] >> shift;
 | |
|     else
 | |
|         for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
 | |
|             sig_scaled[i] = residual[i] << -shift;
 | |
| 
 | |
|     /* Start of best delay searching code */
 | |
|     gain_num = 0;
 | |
| 
 | |
|     ener = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
 | |
|                                     sig_scaled + RES_PREV_DATA_SIZE,
 | |
|                                     subframe_size);
 | |
|     if (ener) {
 | |
|         sh_ener = FFMAX(av_log2(ener) - 14, 0);
 | |
|         ener >>= sh_ener;
 | |
|         /* Search for best pitch delay.
 | |
| 
 | |
|                        sum{ r(n) * r(k,n) ] }^2
 | |
|            R'(k)^2 := -------------------------
 | |
|                        sum{ r(k,n) * r(k,n) }
 | |
| 
 | |
| 
 | |
|            R(T)    :=  sum{ r(n) * r(n-T) ] }
 | |
| 
 | |
| 
 | |
|            where
 | |
|            r(n-T) is integer delayed signal with delay T
 | |
|            r(k,n) is non-integer delayed signal with integer delay best_delay
 | |
|            and fractional delay k */
 | |
| 
 | |
|         /* Find integer delay best_delay which maximizes correlation R(T).
 | |
| 
 | |
|            This is also equals to numerator of R'(0),
 | |
|            since the fine search (second step) is done with 1/8
 | |
|            precision around best_delay. */
 | |
|         corr_int_num = 0;
 | |
|         best_delay_int = pitch_delay_int - 1;
 | |
|         for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
 | |
|             sum = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
 | |
|                                            sig_scaled + RES_PREV_DATA_SIZE - i,
 | |
|                                            subframe_size);
 | |
|             if (sum > corr_int_num) {
 | |
|                 corr_int_num = sum;
 | |
|                 best_delay_int = i;
 | |
|             }
 | |
|         }
 | |
|         if (corr_int_num) {
 | |
|             /* Compute denominator of pseudo-normalized correlation R'(0). */
 | |
|             corr_int_den = dsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
 | |
|                                                     sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
 | |
|                                                     subframe_size);
 | |
| 
 | |
|             /* Compute signals with non-integer delay k (with 1/8 precision),
 | |
|                where k is in [0;6] range.
 | |
|                Entire delay is qual to best_delay+(k+1)/8
 | |
|                This is archieved by applying an interpolation filter of
 | |
|                legth 33 to source signal. */
 | |
|             for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
 | |
|                 ff_acelp_interpolate(&delayed_signal[k][0],
 | |
|                                      &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
 | |
|                                      ff_g729_interp_filt_short,
 | |
|                                      ANALYZED_FRAC_DELAYS+1,
 | |
|                                      8 - k - 1,
 | |
|                                      SHORT_INT_FILT_LEN,
 | |
|                                      subframe_size + 1);
 | |
|             }
 | |
| 
 | |
|             /* Compute denominator of pseudo-normalized correlation R'(k).
 | |
| 
 | |
|                  corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
 | |
|                  corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
 | |
| 
 | |
|               Also compute maximum value of above denominators over all k. */
 | |
|             tmp = corr_int_den;
 | |
|             for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
 | |
|                 sum = dsp->scalarproduct_int16(&delayed_signal[k][1],
 | |
|                                                &delayed_signal[k][1],
 | |
|                                                subframe_size - 1);
 | |
|                 corr_den[k][0] = sum + delayed_signal[k][0            ] * delayed_signal[k][0            ];
 | |
|                 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
 | |
| 
 | |
|                 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
 | |
|             }
 | |
| 
 | |
|             sh_gain_den = av_log2(tmp) - 14;
 | |
|             if (sh_gain_den >= 0) {
 | |
| 
 | |
|                 sh_gain_num =  FFMAX(sh_gain_den, sh_ener);
 | |
|                 /* Loop through all k and find delay that maximizes
 | |
|                    R'(k) correlation.
 | |
|                    Search is done in [int(T0)-1; intT(0)+1] range
 | |
|                    with 1/8 precision. */
 | |
|                 delayed_signal_offset = 1;
 | |
|                 best_delay_frac = 0;
 | |
|                 gain_den = corr_int_den >> sh_gain_den;
 | |
|                 gain_num = corr_int_num >> sh_gain_num;
 | |
|                 gain_num_square = gain_num * gain_num;
 | |
|                 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
 | |
|                     for (i = 0; i < 2; i++) {
 | |
|                         int16_t gain_num_short, gain_den_short;
 | |
|                         int gain_num_short_square;
 | |
|                         /* Compute numerator of pseudo-normalized
 | |
|                            correlation R'(k). */
 | |
|                         sum = dsp->scalarproduct_int16(&delayed_signal[k][i],
 | |
|                                                        sig_scaled + RES_PREV_DATA_SIZE,
 | |
|                                                        subframe_size);
 | |
|                         gain_num_short = FFMAX(sum >> sh_gain_num, 0);
 | |
| 
 | |
|                         /*
 | |
|                                       gain_num_short_square                gain_num_square
 | |
|                            R'(T)^2 = -----------------------, max R'(T)^2= --------------
 | |
|                                            den                                 gain_den
 | |
|                         */
 | |
|                         gain_num_short_square = gain_num_short * gain_num_short;
 | |
|                         gain_den_short = corr_den[k][i] >> sh_gain_den;
 | |
| 
 | |
|                         tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
 | |
|                         tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
 | |
| 
 | |
|                         // R'(T)^2 > max R'(T)^2
 | |
|                         if (tmp > tmp2) {
 | |
|                             gain_num = gain_num_short;
 | |
|                             gain_den = gain_den_short;
 | |
|                             gain_num_square = gain_num_short_square;
 | |
|                             delayed_signal_offset = i;
 | |
|                             best_delay_frac = k + 1;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 /*
 | |
|                        R'(T)^2
 | |
|                   2 * --------- < 1
 | |
|                         R(0)
 | |
|                 */
 | |
|                 L64_temp0 =  (int64_t)gain_num_square  << ((sh_gain_num << 1) + 1);
 | |
|                 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
 | |
|                 if (L64_temp0 < L64_temp1)
 | |
|                     gain_num = 0;
 | |
|             } // if(sh_gain_den >= 0)
 | |
|         } // if(corr_int_num)
 | |
|     } // if(ener)
 | |
|     /* End of best delay searching code  */
 | |
| 
 | |
|     if (!gain_num) {
 | |
|         memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
 | |
| 
 | |
|         /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
 | |
|         return 0;
 | |
|     }
 | |
|     if (best_delay_frac) {
 | |
|         /* Recompute delayed signal with an interpolation filter of length 129. */
 | |
|         ff_acelp_interpolate(residual_filt,
 | |
|                              &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
 | |
|                              ff_g729_interp_filt_long,
 | |
|                              ANALYZED_FRAC_DELAYS + 1,
 | |
|                              8 - best_delay_frac,
 | |
|                              LONG_INT_FILT_LEN,
 | |
|                              subframe_size + 1);
 | |
|         /* Compute R'(k) correlation's numerator. */
 | |
|         sum = dsp->scalarproduct_int16(residual_filt,
 | |
|                                        sig_scaled + RES_PREV_DATA_SIZE,
 | |
|                                        subframe_size);
 | |
| 
 | |
|         if (sum < 0) {
 | |
|             gain_long_num = 0;
 | |
|             sh_gain_long_num = 0;
 | |
|         } else {
 | |
|             tmp = FFMAX(av_log2(sum) - 14, 0);
 | |
|             sum >>= tmp;
 | |
|             gain_long_num = sum;
 | |
|             sh_gain_long_num = tmp;
 | |
|         }
 | |
| 
 | |
|         /* Compute R'(k) correlation's denominator. */
 | |
|         sum = dsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
 | |
| 
 | |
|         tmp = FFMAX(av_log2(sum) - 14, 0);
 | |
|         sum >>= tmp;
 | |
|         gain_long_den = sum;
 | |
|         sh_gain_long_den = tmp;
 | |
| 
 | |
|         /* Select between original and delayed signal.
 | |
|            Delayed signal will be selected if it increases R'(k)
 | |
|            correlation. */
 | |
|         L_temp0 = gain_num * gain_num;
 | |
|         L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
 | |
| 
 | |
|         L_temp1 = gain_long_num * gain_long_num;
 | |
|         L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
 | |
| 
 | |
|         tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den);
 | |
|         if (tmp > 0)
 | |
|             L_temp0 >>= tmp;
 | |
|         else
 | |
|             L_temp1 >>= -tmp;
 | |
| 
 | |
|         /* Check if longer filter increases the values of R'(k). */
 | |
|         if (L_temp1 > L_temp0) {
 | |
|             /* Select long filter. */
 | |
|             selected_signal = residual_filt;
 | |
|             gain_num = gain_long_num;
 | |
|             gain_den = gain_long_den;
 | |
|             sh_gain_num = sh_gain_long_num;
 | |
|             sh_gain_den = sh_gain_long_den;
 | |
|         } else
 | |
|             /* Select short filter. */
 | |
|             selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
 | |
| 
 | |
|         /* Rescale selected signal to original value. */
 | |
|         if (shift > 0)
 | |
|             for (i = 0; i < subframe_size; i++)
 | |
|                 selected_signal[i] <<= shift;
 | |
|         else
 | |
|             for (i = 0; i < subframe_size; i++)
 | |
|                 selected_signal[i] >>= -shift;
 | |
| 
 | |
|         /* necessary to avoid compiler warning */
 | |
|         selected_signal_const = selected_signal;
 | |
|     } // if(best_delay_frac)
 | |
|     else
 | |
|         selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
 | |
| #ifdef G729_BITEXACT
 | |
|     tmp = sh_gain_num - sh_gain_den;
 | |
|     if (tmp > 0)
 | |
|         gain_den >>= tmp;
 | |
|     else
 | |
|         gain_num >>= -tmp;
 | |
| 
 | |
|     if (gain_num > gain_den)
 | |
|         lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
 | |
|     else {
 | |
|         gain_num >>= 2;
 | |
|         gain_den >>= 1;
 | |
|         lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
 | |
|     }
 | |
| #else
 | |
|     L64_temp0 = ((int64_t)gain_num) << (sh_gain_num - 1);
 | |
|     L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
 | |
|     lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
 | |
| #endif
 | |
| 
 | |
|     /* Filter through selected filter. */
 | |
|     lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
 | |
| 
 | |
|     ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
 | |
|                                  selected_signal_const,
 | |
|                                  lt_filt_factor_a, lt_filt_factor_b,
 | |
|                                  1<<14, 15, subframe_size);
 | |
| 
 | |
|     // Long-term prediction gain is larger than 3dB.
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
 | |
|  * \param dsp initialized DSP context
 | |
|  * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
 | |
|  * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
 | |
|  * \param speech speech to update
 | |
|  * \param subframe_size size of subframe
 | |
|  *
 | |
|  * \return (3.12) reflection coefficient
 | |
|  *
 | |
|  * \remark The routine also calculates the gain term for the short-term
 | |
|  *         filter (gf) and multiplies the speech data by 1/gf.
 | |
|  *
 | |
|  * \note All members of lp_gn, except 10-19 must be equal to zero.
 | |
|  */
 | |
| static int16_t get_tilt_comp(DSPContext *dsp, int16_t *lp_gn,
 | |
|                              const int16_t *lp_gd, int16_t* speech,
 | |
|                              int subframe_size)
 | |
| {
 | |
|     int rh1,rh0; // (3.12)
 | |
|     int temp;
 | |
|     int i;
 | |
|     int gain_term;
 | |
| 
 | |
|     lp_gn[10] = 4096; //1.0 in (3.12)
 | |
| 
 | |
|     /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
 | |
|     ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
 | |
|     /* Now lp_gn (starting with 10) contains impulse response
 | |
|        of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
 | |
| 
 | |
|     rh0 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
 | |
|     rh1 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
 | |
| 
 | |
|     /* downscale to avoid overflow */
 | |
|     temp = av_log2(rh0) - 14;
 | |
|     if (temp > 0) {
 | |
|         rh0 >>= temp;
 | |
|         rh1 >>= temp;
 | |
|     }
 | |
| 
 | |
|     if (FFABS(rh1) > rh0 || !rh0)
 | |
|         return 0;
 | |
| 
 | |
|     gain_term = 0;
 | |
|     for (i = 0; i < 20; i++)
 | |
|         gain_term += FFABS(lp_gn[i + 10]);
 | |
|     gain_term >>= 2; // (3.12) -> (5.10)
 | |
| 
 | |
|     if (gain_term > 0x400) { // 1.0 in (5.10)
 | |
|         temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
 | |
|         for (i = 0; i < subframe_size; i++)
 | |
|             speech[i] = (speech[i] * temp + 0x4000) >> 15;
 | |
|     }
 | |
| 
 | |
|     return -(rh1 << 15) / rh0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * \brief Apply tilt compensation filter (4.2.3).
 | |
|  * \param res_pst [in/out] residual signal (partially filtered)
 | |
|  * \param k1 (3.12) reflection coefficient
 | |
|  * \param subframe_size size of subframe
 | |
|  * \param ht_prev_data previous data for 4.2.3, equation 86
 | |
|  *
 | |
|  * \return new value for ht_prev_data
 | |
| */
 | |
| static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
 | |
|                                int subframe_size, int16_t ht_prev_data)
 | |
| {
 | |
|     int tmp, tmp2;
 | |
|     int i;
 | |
|     int gt, ga;
 | |
|     int fact, sh_fact;
 | |
| 
 | |
|     if (refl_coeff > 0) {
 | |
|         gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
 | |
|         fact = 0x4000; // 0.5 in (0.15)
 | |
|         sh_fact = 15;
 | |
|     } else {
 | |
|         gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
 | |
|         fact = 0x800; // 0.5 in (3.12)
 | |
|         sh_fact = 12;
 | |
|     }
 | |
|     ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt));
 | |
|     gt >>= 1;
 | |
| 
 | |
|     /* Apply tilt compensation filter to signal. */
 | |
|     tmp = res_pst[subframe_size - 1];
 | |
| 
 | |
|     for (i = subframe_size - 1; i >= 1; i--) {
 | |
|         tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1);
 | |
|         tmp2 = (tmp2 + 0x4000) >> 15;
 | |
| 
 | |
|         tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
 | |
|         out[i] = tmp2;
 | |
|     }
 | |
|     tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1);
 | |
|     tmp2 = (tmp2 + 0x4000) >> 15;
 | |
|     tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
 | |
|     out[0] = tmp2;
 | |
| 
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing,
 | |
|                      const int16_t *lp_filter_coeffs, int pitch_delay_int,
 | |
|                      int16_t* residual, int16_t* res_filter_data,
 | |
|                      int16_t* pos_filter_data, int16_t *speech, int subframe_size)
 | |
| {
 | |
|     int16_t residual_filt_buf[SUBFRAME_SIZE+11];
 | |
|     int16_t lp_gn[33]; // (3.12)
 | |
|     int16_t lp_gd[11]; // (3.12)
 | |
|     int tilt_comp_coeff;
 | |
|     int i;
 | |
| 
 | |
|     /* Zero-filling is necessary for tilt-compensation filter. */
 | |
|     memset(lp_gn, 0, 33 * sizeof(int16_t));
 | |
| 
 | |
|     /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
 | |
|     for (i = 0; i < 10; i++)
 | |
|         lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
 | |
| 
 | |
|     /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
 | |
|     for (i = 0; i < 10; i++)
 | |
|         lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
 | |
| 
 | |
|     /* residual signal calculation (one-half of short-term postfilter) */
 | |
|     memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
 | |
|     residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
 | |
|     /* Save data to use it in the next subframe. */
 | |
|     memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
 | |
| 
 | |
|     /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
 | |
|        nonzero) then declare current subframe as periodic. */
 | |
|     *voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int,
 | |
|                                                 residual, residual_filt_buf + 10,
 | |
|                                                 subframe_size));
 | |
| 
 | |
|     /* shift residual for using in next subframe */
 | |
|     memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
 | |
| 
 | |
|     /* short-term filter tilt compensation */
 | |
|     tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
 | |
| 
 | |
|     /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
 | |
|     ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
 | |
|                                 residual_filt_buf + 10,
 | |
|                                 subframe_size, 10, 0, 0, 0x800);
 | |
|     memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
 | |
| 
 | |
|     *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
 | |
|                                     subframe_size, *ht_prev_data);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * \brief Adaptive gain control (4.2.4)
 | |
|  * \param gain_before gain of speech before applying postfilters
 | |
|  * \param gain_after  gain of speech after applying postfilters
 | |
|  * \param speech [in/out] signal buffer
 | |
|  * \param subframe_size length of subframe
 | |
|  * \param gain_prev (3.12) previous value of gain coefficient
 | |
|  *
 | |
|  * \return (3.12) last value of gain coefficient
 | |
|  */
 | |
| int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
 | |
|                                    int subframe_size, int16_t gain_prev)
 | |
| {
 | |
|     int gain; // (3.12)
 | |
|     int n;
 | |
|     int exp_before, exp_after;
 | |
| 
 | |
|     if(!gain_after && gain_before)
 | |
|         return 0;
 | |
| 
 | |
|     if (gain_before) {
 | |
| 
 | |
|         exp_before  = 14 - av_log2(gain_before);
 | |
|         gain_before = bidir_sal(gain_before, exp_before);
 | |
| 
 | |
|         exp_after  = 14 - av_log2(gain_after);
 | |
|         gain_after = bidir_sal(gain_after, exp_after);
 | |
| 
 | |
|         if (gain_before < gain_after) {
 | |
|             gain = (gain_before << 15) / gain_after;
 | |
|             gain = bidir_sal(gain, exp_after - exp_before - 1);
 | |
|         } else {
 | |
|             gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
 | |
|             gain = bidir_sal(gain, exp_after - exp_before);
 | |
|         }
 | |
|         gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
 | |
|     } else
 | |
|         gain = 0;
 | |
| 
 | |
|     for (n = 0; n < subframe_size; n++) {
 | |
|         // gain_prev = gain + 0.9875 * gain_prev
 | |
|         gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
 | |
|         gain_prev = av_clip_int16(gain + gain_prev);
 | |
|         speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
 | |
|     }
 | |
|     return gain_prev;
 | |
| }
 |