1560 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1560 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * The simplest AC3 encoder
 | 
						|
 * Copyright (c) 2000 Fabrice Bellard.
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | 
						|
 */
 | 
						|
//#define DEBUG
 | 
						|
//#define DEBUG_BITALLOC
 | 
						|
#include "avcodec.h"
 | 
						|
 | 
						|
#include "ac3.h"
 | 
						|
 | 
						|
typedef struct AC3EncodeContext {
 | 
						|
    PutBitContext pb;
 | 
						|
    int nb_channels;
 | 
						|
    int nb_all_channels;
 | 
						|
    int lfe_channel;
 | 
						|
    int bit_rate;
 | 
						|
    int sample_rate;
 | 
						|
    int bsid;
 | 
						|
    int frame_size_min; /* minimum frame size in case rounding is necessary */
 | 
						|
    int frame_size; /* current frame size in words */
 | 
						|
    int halfratecod;
 | 
						|
    int frmsizecod;
 | 
						|
    int fscod; /* frequency */
 | 
						|
    int acmod;
 | 
						|
    int lfe;
 | 
						|
    int bsmod;
 | 
						|
    short last_samples[AC3_MAX_CHANNELS][256];
 | 
						|
    int chbwcod[AC3_MAX_CHANNELS];
 | 
						|
    int nb_coefs[AC3_MAX_CHANNELS];
 | 
						|
    
 | 
						|
    /* bitrate allocation control */
 | 
						|
    int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod; 
 | 
						|
    AC3BitAllocParameters bit_alloc;
 | 
						|
    int csnroffst;
 | 
						|
    int fgaincod[AC3_MAX_CHANNELS];
 | 
						|
    int fsnroffst[AC3_MAX_CHANNELS];
 | 
						|
    /* mantissa encoding */
 | 
						|
    int mant1_cnt, mant2_cnt, mant4_cnt;
 | 
						|
} AC3EncodeContext;
 | 
						|
 | 
						|
#include "ac3tab.h"
 | 
						|
 | 
						|
#define MDCT_NBITS 9
 | 
						|
#define N         (1 << MDCT_NBITS)
 | 
						|
 | 
						|
/* new exponents are sent if their Norm 1 exceed this number */
 | 
						|
#define EXP_DIFF_THRESHOLD 1000
 | 
						|
 | 
						|
static void fft_init(int ln);
 | 
						|
static void ac3_crc_init(void);
 | 
						|
 | 
						|
static inline INT16 fix15(float a)
 | 
						|
{
 | 
						|
    int v;
 | 
						|
    v = (int)(a * (float)(1 << 15));
 | 
						|
    if (v < -32767)
 | 
						|
        v = -32767;
 | 
						|
    else if (v > 32767) 
 | 
						|
        v = 32767;
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
static inline int calc_lowcomp1(int a, int b0, int b1)
 | 
						|
{
 | 
						|
    if ((b0 + 256) == b1) {
 | 
						|
        a = 384 ;
 | 
						|
    } else if (b0 > b1) { 
 | 
						|
        a = a - 64;
 | 
						|
        if (a < 0) a=0;
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
static inline int calc_lowcomp(int a, int b0, int b1, int bin)
 | 
						|
{
 | 
						|
    if (bin < 7) {
 | 
						|
        if ((b0 + 256) == b1) {
 | 
						|
            a = 384 ;
 | 
						|
        } else if (b0 > b1) { 
 | 
						|
            a = a - 64;
 | 
						|
            if (a < 0) a=0;
 | 
						|
        }
 | 
						|
    } else if (bin < 20) {
 | 
						|
        if ((b0 + 256) == b1) {
 | 
						|
            a = 320 ;
 | 
						|
        } else if (b0 > b1) {
 | 
						|
            a= a - 64;
 | 
						|
            if (a < 0) a=0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        a = a - 128;
 | 
						|
        if (a < 0) a=0;
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/* AC3 bit allocation. The algorithm is the one described in the AC3
 | 
						|
   spec. */
 | 
						|
void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, UINT8 *bap,
 | 
						|
                                   INT8 *exp, int start, int end,
 | 
						|
                                   int snroffset, int fgain, int is_lfe,
 | 
						|
                                   int deltbae,int deltnseg, 
 | 
						|
                                   UINT8 *deltoffst, UINT8 *deltlen, UINT8 *deltba)
 | 
						|
{
 | 
						|
    int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
 | 
						|
    int fastleak,slowleak,address,tmp;
 | 
						|
    INT16 psd[256]; /* scaled exponents */
 | 
						|
    INT16 bndpsd[50]; /* interpolated exponents */
 | 
						|
    INT16 excite[50]; /* excitation */
 | 
						|
    INT16 mask[50];   /* masking value */
 | 
						|
 | 
						|
    /* exponent mapping to PSD */
 | 
						|
    for(bin=start;bin<end;bin++) {
 | 
						|
        psd[bin]=(3072 - (exp[bin] << 7));
 | 
						|
    }
 | 
						|
 | 
						|
    /* PSD integration */
 | 
						|
    j=start;
 | 
						|
    k=masktab[start];
 | 
						|
    do {
 | 
						|
        v=psd[j];
 | 
						|
        j++;
 | 
						|
        end1=bndtab[k+1];
 | 
						|
        if (end1 > end) end1=end;
 | 
						|
        for(i=j;i<end1;i++) {
 | 
						|
            int c,adr;
 | 
						|
            /* logadd */
 | 
						|
            v1=psd[j];
 | 
						|
            c=v-v1;
 | 
						|
            if (c >= 0) {
 | 
						|
                adr=c >> 1;
 | 
						|
                if (adr > 255) adr=255;
 | 
						|
                v=v + latab[adr];
 | 
						|
            } else {
 | 
						|
                adr=(-c) >> 1;
 | 
						|
                if (adr > 255) adr=255;
 | 
						|
                v=v1 + latab[adr];
 | 
						|
            }
 | 
						|
            j++;
 | 
						|
        }
 | 
						|
        bndpsd[k]=v;
 | 
						|
        k++;
 | 
						|
    } while (end > bndtab[k]);
 | 
						|
 | 
						|
    /* excitation function */
 | 
						|
    bndstrt = masktab[start];
 | 
						|
    bndend = masktab[end-1] + 1;
 | 
						|
    
 | 
						|
    if (bndstrt == 0) {
 | 
						|
        lowcomp = 0;
 | 
						|
        lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
 | 
						|
        excite[0] = bndpsd[0] - fgain - lowcomp ;
 | 
						|
        lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
 | 
						|
        excite[1] = bndpsd[1] - fgain - lowcomp ;
 | 
						|
        begin = 7 ;
 | 
						|
        for (bin = 2; bin < 7; bin++) {
 | 
						|
            if (!(is_lfe && bin == 6))
 | 
						|
                lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
 | 
						|
            fastleak = bndpsd[bin] - fgain ;
 | 
						|
            slowleak = bndpsd[bin] - s->sgain ;
 | 
						|
            excite[bin] = fastleak - lowcomp ;
 | 
						|
            if (!(is_lfe && bin == 6)) {
 | 
						|
                if (bndpsd[bin] <= bndpsd[bin+1]) {
 | 
						|
                    begin = bin + 1 ;
 | 
						|
                    break ;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    
 | 
						|
        end1=bndend;
 | 
						|
        if (end1 > 22) end1=22;
 | 
						|
    
 | 
						|
        for (bin = begin; bin < end1; bin++) {
 | 
						|
            if (!(is_lfe && bin == 6))
 | 
						|
                lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
 | 
						|
        
 | 
						|
            fastleak -= s->fdecay ;
 | 
						|
            v = bndpsd[bin] - fgain;
 | 
						|
            if (fastleak < v) fastleak = v;
 | 
						|
        
 | 
						|
            slowleak -= s->sdecay ;
 | 
						|
            v = bndpsd[bin] - s->sgain;
 | 
						|
            if (slowleak < v) slowleak = v;
 | 
						|
        
 | 
						|
            v=fastleak - lowcomp;
 | 
						|
            if (slowleak > v) v=slowleak;
 | 
						|
        
 | 
						|
            excite[bin] = v;
 | 
						|
        }
 | 
						|
        begin = 22;
 | 
						|
    } else {
 | 
						|
        /* coupling channel */
 | 
						|
        begin = bndstrt;
 | 
						|
        
 | 
						|
        fastleak = (s->cplfleak << 8) + 768;
 | 
						|
        slowleak = (s->cplsleak << 8) + 768;
 | 
						|
    }
 | 
						|
 | 
						|
    for (bin = begin; bin < bndend; bin++) {
 | 
						|
        fastleak -= s->fdecay ;
 | 
						|
        v = bndpsd[bin] - fgain;
 | 
						|
        if (fastleak < v) fastleak = v;
 | 
						|
        slowleak -= s->sdecay ;
 | 
						|
        v = bndpsd[bin] - s->sgain;
 | 
						|
        if (slowleak < v) slowleak = v;
 | 
						|
 | 
						|
        v=fastleak;
 | 
						|
        if (slowleak > v) v = slowleak;
 | 
						|
        excite[bin] = v;
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute masking curve */
 | 
						|
 | 
						|
    for (bin = bndstrt; bin < bndend; bin++) {
 | 
						|
        v1 = excite[bin];
 | 
						|
        tmp = s->dbknee - bndpsd[bin];
 | 
						|
        if (tmp > 0) {
 | 
						|
            v1 += tmp >> 2;
 | 
						|
        }
 | 
						|
        v=hth[bin >> s->halfratecod][s->fscod];
 | 
						|
        if (v1 > v) v=v1;
 | 
						|
        mask[bin] = v;
 | 
						|
    }
 | 
						|
 | 
						|
    /* delta bit allocation */
 | 
						|
 | 
						|
    if (deltbae == 0 || deltbae == 1) {
 | 
						|
        int band, seg, delta;
 | 
						|
        band = 0 ;
 | 
						|
        for (seg = 0; seg < deltnseg; seg++) {
 | 
						|
            band += deltoffst[seg] ;
 | 
						|
            if (deltba[seg] >= 4) {
 | 
						|
                delta = (deltba[seg] - 3) << 7;
 | 
						|
            } else {
 | 
						|
                delta = (deltba[seg] - 4) << 7;
 | 
						|
            }
 | 
						|
            for (k = 0; k < deltlen[seg]; k++) {
 | 
						|
                mask[band] += delta ;
 | 
						|
                band++ ;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute bit allocation */
 | 
						|
    
 | 
						|
    i = start ;
 | 
						|
    j = masktab[start] ;
 | 
						|
    do {
 | 
						|
        v=mask[j];
 | 
						|
        v -= snroffset ;
 | 
						|
        v -= s->floor ;
 | 
						|
        if (v < 0) v = 0;
 | 
						|
        v &= 0x1fe0 ;
 | 
						|
        v += s->floor ;
 | 
						|
 | 
						|
        end1=bndtab[j] + bndsz[j];
 | 
						|
        if (end1 > end) end1=end;
 | 
						|
 | 
						|
        for (k = i; k < end1; k++) {
 | 
						|
            address = (psd[i] - v) >> 5 ;
 | 
						|
            if (address < 0) address=0;
 | 
						|
            else if (address > 63) address=63;
 | 
						|
            bap[i] = baptab[address];
 | 
						|
            i++;
 | 
						|
        }
 | 
						|
    } while (end > bndtab[j++]) ;
 | 
						|
}
 | 
						|
 | 
						|
typedef struct IComplex {
 | 
						|
    short re,im;
 | 
						|
} IComplex;
 | 
						|
 | 
						|
static void fft_init(int ln)
 | 
						|
{
 | 
						|
    int i, j, m, n;
 | 
						|
    float alpha;
 | 
						|
 | 
						|
    n = 1 << ln;
 | 
						|
 | 
						|
    for(i=0;i<(n/2);i++) {
 | 
						|
        alpha = 2 * M_PI * (float)i / (float)n;
 | 
						|
        costab[i] = fix15(cos(alpha));
 | 
						|
        sintab[i] = fix15(sin(alpha));
 | 
						|
    }
 | 
						|
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        m=0;
 | 
						|
        for(j=0;j<ln;j++) {
 | 
						|
            m |= ((i >> j) & 1) << (ln-j-1);
 | 
						|
        }
 | 
						|
        fft_rev[i]=m;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* butter fly op */
 | 
						|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
 | 
						|
{\
 | 
						|
  int ax, ay, bx, by;\
 | 
						|
  bx=pre1;\
 | 
						|
  by=pim1;\
 | 
						|
  ax=qre1;\
 | 
						|
  ay=qim1;\
 | 
						|
  pre = (bx + ax) >> 1;\
 | 
						|
  pim = (by + ay) >> 1;\
 | 
						|
  qre = (bx - ax) >> 1;\
 | 
						|
  qim = (by - ay) >> 1;\
 | 
						|
}
 | 
						|
 | 
						|
#define MUL16(a,b) ((a) * (b))
 | 
						|
 | 
						|
#define CMUL(pre, pim, are, aim, bre, bim) \
 | 
						|
{\
 | 
						|
   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
 | 
						|
   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* do a 2^n point complex fft on 2^ln points. */
 | 
						|
static void fft(IComplex *z, int ln)
 | 
						|
{
 | 
						|
    int	j, l, np, np2;
 | 
						|
    int	nblocks, nloops;
 | 
						|
    register IComplex *p,*q;
 | 
						|
    int tmp_re, tmp_im;
 | 
						|
 | 
						|
    np = 1 << ln;
 | 
						|
 | 
						|
    /* reverse */
 | 
						|
    for(j=0;j<np;j++) {
 | 
						|
        int k;
 | 
						|
        IComplex tmp;
 | 
						|
        k = fft_rev[j];
 | 
						|
        if (k < j) {
 | 
						|
            tmp = z[k];
 | 
						|
            z[k] = z[j];
 | 
						|
            z[j] = tmp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* pass 0 */
 | 
						|
 | 
						|
    p=&z[0];
 | 
						|
    j=(np >> 1);
 | 
						|
    do {
 | 
						|
        BF(p[0].re, p[0].im, p[1].re, p[1].im, 
 | 
						|
           p[0].re, p[0].im, p[1].re, p[1].im);
 | 
						|
        p+=2;
 | 
						|
    } while (--j != 0);
 | 
						|
 | 
						|
    /* pass 1 */
 | 
						|
 | 
						|
    p=&z[0];
 | 
						|
    j=np >> 2;
 | 
						|
    do {
 | 
						|
        BF(p[0].re, p[0].im, p[2].re, p[2].im, 
 | 
						|
           p[0].re, p[0].im, p[2].re, p[2].im);
 | 
						|
        BF(p[1].re, p[1].im, p[3].re, p[3].im, 
 | 
						|
           p[1].re, p[1].im, p[3].im, -p[3].re);
 | 
						|
        p+=4;
 | 
						|
    } while (--j != 0);
 | 
						|
 | 
						|
    /* pass 2 .. ln-1 */
 | 
						|
 | 
						|
    nblocks = np >> 3;
 | 
						|
    nloops = 1 << 2;
 | 
						|
    np2 = np >> 1;
 | 
						|
    do {
 | 
						|
        p = z;
 | 
						|
        q = z + nloops;
 | 
						|
        for (j = 0; j < nblocks; ++j) {
 | 
						|
 | 
						|
            BF(p->re, p->im, q->re, q->im,
 | 
						|
               p->re, p->im, q->re, q->im);
 | 
						|
            
 | 
						|
            p++;
 | 
						|
            q++;
 | 
						|
            for(l = nblocks; l < np2; l += nblocks) {
 | 
						|
                CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
 | 
						|
                BF(p->re, p->im, q->re, q->im,
 | 
						|
                   p->re, p->im, tmp_re, tmp_im);
 | 
						|
                p++;
 | 
						|
                q++;
 | 
						|
            }
 | 
						|
            p += nloops;
 | 
						|
            q += nloops;
 | 
						|
        }
 | 
						|
        nblocks = nblocks >> 1;
 | 
						|
        nloops = nloops << 1;
 | 
						|
    } while (nblocks != 0);
 | 
						|
}
 | 
						|
 | 
						|
/* do a 512 point mdct */
 | 
						|
static void mdct512(INT32 *out, INT16 *in)
 | 
						|
{
 | 
						|
    int i, re, im, re1, im1;
 | 
						|
    INT16 rot[N]; 
 | 
						|
    IComplex x[N/4];
 | 
						|
 | 
						|
    /* shift to simplify computations */
 | 
						|
    for(i=0;i<N/4;i++)
 | 
						|
        rot[i] = -in[i + 3*N/4];
 | 
						|
    for(i=N/4;i<N;i++)
 | 
						|
        rot[i] = in[i - N/4];
 | 
						|
        
 | 
						|
    /* pre rotation */
 | 
						|
    for(i=0;i<N/4;i++) {
 | 
						|
        re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
 | 
						|
        im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
 | 
						|
        CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    fft(x, MDCT_NBITS - 2);
 | 
						|
  
 | 
						|
    /* post rotation */
 | 
						|
    for(i=0;i<N/4;i++) {
 | 
						|
        re = x[i].re;
 | 
						|
        im = x[i].im;
 | 
						|
        CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
 | 
						|
        out[2*i] = im1;
 | 
						|
        out[N/2-1-2*i] = re1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: use another norm ? */
 | 
						|
static int calc_exp_diff(UINT8 *exp1, UINT8 *exp2, int n)
 | 
						|
{
 | 
						|
    int sum, i;
 | 
						|
    sum = 0;
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        sum += abs(exp1[i] - exp2[i]);
 | 
						|
    }
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
static void compute_exp_strategy(UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | 
						|
                                 UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | 
						|
                                 int ch, int is_lfe)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    int exp_diff;
 | 
						|
    
 | 
						|
    /* estimate if the exponent variation & decide if they should be
 | 
						|
       reused in the next frame */
 | 
						|
    exp_strategy[0][ch] = EXP_NEW;
 | 
						|
    for(i=1;i<NB_BLOCKS;i++) {
 | 
						|
        exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
 | 
						|
#ifdef DEBUG            
 | 
						|
        printf("exp_diff=%d\n", exp_diff);
 | 
						|
#endif
 | 
						|
        if (exp_diff > EXP_DIFF_THRESHOLD)
 | 
						|
            exp_strategy[i][ch] = EXP_NEW;
 | 
						|
        else
 | 
						|
            exp_strategy[i][ch] = EXP_REUSE;
 | 
						|
    }
 | 
						|
    if (is_lfe)
 | 
						|
	return;
 | 
						|
 | 
						|
    /* now select the encoding strategy type : if exponents are often
 | 
						|
       recoded, we use a coarse encoding */
 | 
						|
    i = 0;
 | 
						|
    while (i < NB_BLOCKS) {
 | 
						|
        j = i + 1;
 | 
						|
        while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
 | 
						|
            j++;
 | 
						|
        switch(j - i) {
 | 
						|
        case 1:
 | 
						|
            exp_strategy[i][ch] = EXP_D45;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
        case 3:
 | 
						|
            exp_strategy[i][ch] = EXP_D25;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            exp_strategy[i][ch] = EXP_D15;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
	i = j;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* set exp[i] to min(exp[i], exp1[i]) */
 | 
						|
static void exponent_min(UINT8 exp[N/2], UINT8 exp1[N/2], int n)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        if (exp1[i] < exp[i])
 | 
						|
            exp[i] = exp1[i];
 | 
						|
    }
 | 
						|
}
 | 
						|
                                 
 | 
						|
/* update the exponents so that they are the ones the decoder will
 | 
						|
   decode. Return the number of bits used to code the exponents */
 | 
						|
static int encode_exp(UINT8 encoded_exp[N/2], 
 | 
						|
                      UINT8 exp[N/2], 
 | 
						|
                      int nb_exps,
 | 
						|
                      int exp_strategy)
 | 
						|
{
 | 
						|
    int group_size, nb_groups, i, j, k, recurse, exp_min, delta;
 | 
						|
    UINT8 exp1[N/2];
 | 
						|
 | 
						|
    switch(exp_strategy) {
 | 
						|
    case EXP_D15:
 | 
						|
        group_size = 1;
 | 
						|
        break;
 | 
						|
    case EXP_D25:
 | 
						|
        group_size = 2;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
    case EXP_D45:
 | 
						|
        group_size = 4;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
 | 
						|
 | 
						|
    /* for each group, compute the minimum exponent */
 | 
						|
    exp1[0] = exp[0]; /* DC exponent is handled separately */
 | 
						|
    k = 1;
 | 
						|
    for(i=1;i<=nb_groups;i++) {
 | 
						|
        exp_min = exp[k];
 | 
						|
        assert(exp_min >= 0 && exp_min <= 24);
 | 
						|
        for(j=1;j<group_size;j++) {
 | 
						|
            if (exp[k+j] < exp_min)
 | 
						|
                exp_min = exp[k+j];
 | 
						|
        }
 | 
						|
        exp1[i] = exp_min;
 | 
						|
        k += group_size;
 | 
						|
    }
 | 
						|
 | 
						|
    /* constraint for DC exponent */
 | 
						|
    if (exp1[0] > 15)
 | 
						|
        exp1[0] = 15;
 | 
						|
 | 
						|
    /* Iterate until the delta constraints between each groups are
 | 
						|
       satisfyed. I'm sure it is possible to find a better algorithm,
 | 
						|
       but I am lazy */
 | 
						|
    do {
 | 
						|
        recurse = 0;
 | 
						|
        for(i=1;i<=nb_groups;i++) {
 | 
						|
            delta = exp1[i] - exp1[i-1];
 | 
						|
            if (delta > 2) {
 | 
						|
                /* if delta too big, we encode a smaller exponent */
 | 
						|
                exp1[i] = exp1[i-1] + 2;
 | 
						|
            } else if (delta < -2) {
 | 
						|
                /* if delta is too small, we must decrease the previous
 | 
						|
               exponent, which means we must recurse */
 | 
						|
                recurse = 1;
 | 
						|
                exp1[i-1] = exp1[i] + 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } while (recurse);
 | 
						|
    
 | 
						|
    /* now we have the exponent values the decoder will see */
 | 
						|
    encoded_exp[0] = exp1[0];
 | 
						|
    k = 1;
 | 
						|
    for(i=1;i<=nb_groups;i++) {
 | 
						|
        for(j=0;j<group_size;j++) {
 | 
						|
            encoded_exp[k+j] = exp1[i];
 | 
						|
        }
 | 
						|
        k += group_size;
 | 
						|
    }
 | 
						|
    
 | 
						|
#if defined(DEBUG)
 | 
						|
    printf("exponents: strategy=%d\n", exp_strategy);
 | 
						|
    for(i=0;i<=nb_groups * group_size;i++) {
 | 
						|
        printf("%d ", encoded_exp[i]);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
#endif
 | 
						|
 | 
						|
    return 4 + (nb_groups / 3) * 7;
 | 
						|
}
 | 
						|
 | 
						|
/* return the size in bits taken by the mantissa */
 | 
						|
int compute_mantissa_size(AC3EncodeContext *s, UINT8 *m, int nb_coefs)
 | 
						|
{
 | 
						|
    int bits, mant, i;
 | 
						|
 | 
						|
    bits = 0;
 | 
						|
    for(i=0;i<nb_coefs;i++) {
 | 
						|
        mant = m[i];
 | 
						|
        switch(mant) {
 | 
						|
        case 0:
 | 
						|
            /* nothing */
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            /* 3 mantissa in 5 bits */
 | 
						|
            if (s->mant1_cnt == 0) 
 | 
						|
                bits += 5;
 | 
						|
            if (++s->mant1_cnt == 3)
 | 
						|
                s->mant1_cnt = 0;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            /* 3 mantissa in 7 bits */
 | 
						|
            if (s->mant2_cnt == 0) 
 | 
						|
                bits += 7;
 | 
						|
            if (++s->mant2_cnt == 3)
 | 
						|
                s->mant2_cnt = 0;
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            bits += 3;
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            /* 2 mantissa in 7 bits */
 | 
						|
            if (s->mant4_cnt == 0)
 | 
						|
                bits += 7;
 | 
						|
            if (++s->mant4_cnt == 2) 
 | 
						|
                s->mant4_cnt = 0;
 | 
						|
            break;
 | 
						|
        case 14:
 | 
						|
            bits += 14;
 | 
						|
            break;
 | 
						|
        case 15:
 | 
						|
            bits += 16;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            bits += mant - 1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int bit_alloc(AC3EncodeContext *s,
 | 
						|
                     UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | 
						|
                     UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | 
						|
                     UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | 
						|
                     int frame_bits, int csnroffst, int fsnroffst)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
 | 
						|
    /* compute size */
 | 
						|
    for(i=0;i<NB_BLOCKS;i++) {
 | 
						|
        s->mant1_cnt = 0;
 | 
						|
        s->mant2_cnt = 0;
 | 
						|
        s->mant4_cnt = 0;
 | 
						|
        for(ch=0;ch<s->nb_all_channels;ch++) {
 | 
						|
            ac3_parametric_bit_allocation(&s->bit_alloc, 
 | 
						|
                                          bap[i][ch], (INT8 *)encoded_exp[i][ch], 
 | 
						|
                                          0, s->nb_coefs[ch], 
 | 
						|
                                          (((csnroffst-15) << 4) + 
 | 
						|
                                           fsnroffst) << 2, 
 | 
						|
                                          fgaintab[s->fgaincod[ch]],
 | 
						|
                                          ch == s->lfe_channel,
 | 
						|
                                          2, 0, NULL, NULL, NULL);
 | 
						|
            frame_bits += compute_mantissa_size(s, bap[i][ch], 
 | 
						|
                                                 s->nb_coefs[ch]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#if 0
 | 
						|
    printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n", 
 | 
						|
           csnroffst, fsnroffst, frame_bits, 
 | 
						|
           16 * s->frame_size - ((frame_bits + 7) & ~7));
 | 
						|
#endif
 | 
						|
    return 16 * s->frame_size - frame_bits;
 | 
						|
}
 | 
						|
 | 
						|
#define SNR_INC1 4
 | 
						|
 | 
						|
static int compute_bit_allocation(AC3EncodeContext *s,
 | 
						|
                                  UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | 
						|
                                  UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | 
						|
                                  UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | 
						|
                                  int frame_bits)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
    int csnroffst, fsnroffst;
 | 
						|
    UINT8 bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | 
						|
    static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
 | 
						|
 | 
						|
    /* init default parameters */
 | 
						|
    s->sdecaycod = 2;
 | 
						|
    s->fdecaycod = 1;
 | 
						|
    s->sgaincod = 1;
 | 
						|
    s->dbkneecod = 2;
 | 
						|
    s->floorcod = 4;
 | 
						|
    for(ch=0;ch<s->nb_all_channels;ch++) 
 | 
						|
        s->fgaincod[ch] = 4;
 | 
						|
    
 | 
						|
    /* compute real values */
 | 
						|
    s->bit_alloc.fscod = s->fscod;
 | 
						|
    s->bit_alloc.halfratecod = s->halfratecod;
 | 
						|
    s->bit_alloc.sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod;
 | 
						|
    s->bit_alloc.fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod;
 | 
						|
    s->bit_alloc.sgain = sgaintab[s->sgaincod];
 | 
						|
    s->bit_alloc.dbknee = dbkneetab[s->dbkneecod];
 | 
						|
    s->bit_alloc.floor = floortab[s->floorcod];
 | 
						|
    
 | 
						|
    /* header size */
 | 
						|
    frame_bits += 65;
 | 
						|
    // if (s->acmod == 2)
 | 
						|
    //    frame_bits += 2;
 | 
						|
    frame_bits += frame_bits_inc[s->acmod];
 | 
						|
 | 
						|
    /* audio blocks */
 | 
						|
    for(i=0;i<NB_BLOCKS;i++) {
 | 
						|
        frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
 | 
						|
        if (s->acmod == 2)
 | 
						|
            frame_bits++; /* rematstr */
 | 
						|
        frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
 | 
						|
	if (s->lfe)
 | 
						|
	    frame_bits++; /* lfeexpstr */
 | 
						|
        for(ch=0;ch<s->nb_channels;ch++) {
 | 
						|
            if (exp_strategy[i][ch] != EXP_REUSE)
 | 
						|
                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
 | 
						|
        }
 | 
						|
        frame_bits++; /* baie */
 | 
						|
        frame_bits++; /* snr */
 | 
						|
        frame_bits += 2; /* delta / skip */
 | 
						|
    }
 | 
						|
    frame_bits++; /* cplinu for block 0 */
 | 
						|
    /* bit alloc info */
 | 
						|
    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
 | 
						|
    /* csnroffset[6] */
 | 
						|
    /* (fsnoffset[4] + fgaincod[4]) * c */
 | 
						|
    frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
 | 
						|
 | 
						|
    /* CRC */
 | 
						|
    frame_bits += 16;
 | 
						|
 | 
						|
    /* now the big work begins : do the bit allocation. Modify the snr
 | 
						|
       offset until we can pack everything in the requested frame size */
 | 
						|
 | 
						|
    csnroffst = s->csnroffst;
 | 
						|
    while (csnroffst >= 0 && 
 | 
						|
	   bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
 | 
						|
	csnroffst -= SNR_INC1;
 | 
						|
    if (csnroffst < 0) {
 | 
						|
	fprintf(stderr, "Yack, Error !!!\n");
 | 
						|
	return -1;
 | 
						|
    }
 | 
						|
    while ((csnroffst + SNR_INC1) <= 63 && 
 | 
						|
           bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
 | 
						|
                     csnroffst + SNR_INC1, 0) >= 0) {
 | 
						|
        csnroffst += SNR_INC1;
 | 
						|
        memcpy(bap, bap1, sizeof(bap1));
 | 
						|
    }
 | 
						|
    while ((csnroffst + 1) <= 63 && 
 | 
						|
           bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
 | 
						|
        csnroffst++;
 | 
						|
        memcpy(bap, bap1, sizeof(bap1));
 | 
						|
    }
 | 
						|
 | 
						|
    fsnroffst = 0;
 | 
						|
    while ((fsnroffst + SNR_INC1) <= 15 && 
 | 
						|
           bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
 | 
						|
                     csnroffst, fsnroffst + SNR_INC1) >= 0) {
 | 
						|
        fsnroffst += SNR_INC1;
 | 
						|
        memcpy(bap, bap1, sizeof(bap1));
 | 
						|
    }
 | 
						|
    while ((fsnroffst + 1) <= 15 && 
 | 
						|
           bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, 
 | 
						|
                     csnroffst, fsnroffst + 1) >= 0) {
 | 
						|
        fsnroffst++;
 | 
						|
        memcpy(bap, bap1, sizeof(bap1));
 | 
						|
    }
 | 
						|
    
 | 
						|
    s->csnroffst = csnroffst;
 | 
						|
    for(ch=0;ch<s->nb_all_channels;ch++)
 | 
						|
        s->fsnroffst[ch] = fsnroffst;
 | 
						|
#if defined(DEBUG_BITALLOC)
 | 
						|
    {
 | 
						|
        int j;
 | 
						|
 | 
						|
        for(i=0;i<6;i++) {
 | 
						|
            for(ch=0;ch<s->nb_all_channels;ch++) {
 | 
						|
                printf("Block #%d Ch%d:\n", i, ch);
 | 
						|
                printf("bap=");
 | 
						|
                for(j=0;j<s->nb_coefs[ch];j++) {
 | 
						|
                    printf("%d ",bap[i][ch][j]);
 | 
						|
                }
 | 
						|
                printf("\n");
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ac3_common_init(void)
 | 
						|
{
 | 
						|
    int i, j, k, l, v;
 | 
						|
    /* compute bndtab and masktab from bandsz */
 | 
						|
    k = 0;
 | 
						|
    l = 0;
 | 
						|
    for(i=0;i<50;i++) {
 | 
						|
        bndtab[i] = l;
 | 
						|
        v = bndsz[i];
 | 
						|
        for(j=0;j<v;j++) masktab[k++]=i;
 | 
						|
        l += v;
 | 
						|
    }
 | 
						|
    bndtab[50] = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int AC3_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int freq = avctx->sample_rate;
 | 
						|
    int bitrate = avctx->bit_rate;
 | 
						|
    int channels = avctx->channels;
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    int i, j, ch;
 | 
						|
    float alpha;
 | 
						|
    static const UINT8 acmod_defs[6] = {
 | 
						|
	0x01, /* C */
 | 
						|
	0x02, /* L R */
 | 
						|
	0x03, /* L C R */
 | 
						|
	0x06, /* L R SL SR */
 | 
						|
	0x07, /* L C R SL SR */
 | 
						|
	0x07, /* L C R SL SR (+LFE) */
 | 
						|
    };
 | 
						|
 | 
						|
    avctx->frame_size = AC3_FRAME_SIZE;
 | 
						|
    
 | 
						|
    /* number of channels */
 | 
						|
    if (channels < 1 || channels > 6)
 | 
						|
	return -1;
 | 
						|
    s->acmod = acmod_defs[channels - 1];
 | 
						|
    s->lfe = (channels == 6) ? 1 : 0;
 | 
						|
    s->nb_all_channels = channels;
 | 
						|
    s->nb_channels = channels > 5 ? 5 : channels;
 | 
						|
    s->lfe_channel = s->lfe ? 5 : -1;
 | 
						|
 | 
						|
    /* frequency */
 | 
						|
    for(i=0;i<3;i++) {
 | 
						|
        for(j=0;j<3;j++) 
 | 
						|
            if ((ac3_freqs[j] >> i) == freq)
 | 
						|
                goto found;
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
 found:    
 | 
						|
    s->sample_rate = freq;
 | 
						|
    s->halfratecod = i;
 | 
						|
    s->fscod = j;
 | 
						|
    s->bsid = 8 + s->halfratecod;
 | 
						|
    s->bsmod = 0; /* complete main audio service */
 | 
						|
 | 
						|
    /* bitrate & frame size */
 | 
						|
    bitrate /= 1000;
 | 
						|
    for(i=0;i<19;i++) {
 | 
						|
        if ((ac3_bitratetab[i] >> s->halfratecod) == bitrate)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (i == 19)
 | 
						|
        return -1;
 | 
						|
    s->bit_rate = bitrate;
 | 
						|
    s->frmsizecod = i << 1;
 | 
						|
    s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16);
 | 
						|
    /* for now we do not handle fractional sizes */
 | 
						|
    s->frame_size = s->frame_size_min;
 | 
						|
    
 | 
						|
    /* bit allocation init */
 | 
						|
    for(ch=0;ch<s->nb_channels;ch++) {
 | 
						|
        /* bandwidth for each channel */
 | 
						|
        /* XXX: should compute the bandwidth according to the frame
 | 
						|
           size, so that we avoid anoying high freq artefacts */
 | 
						|
        s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
 | 
						|
        s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
 | 
						|
    }
 | 
						|
    if (s->lfe) {
 | 
						|
	s->nb_coefs[s->lfe_channel] = 7; /* fixed */
 | 
						|
    }
 | 
						|
    /* initial snr offset */
 | 
						|
    s->csnroffst = 40;
 | 
						|
 | 
						|
    ac3_common_init();
 | 
						|
 | 
						|
    /* mdct init */
 | 
						|
    fft_init(MDCT_NBITS - 2);
 | 
						|
    for(i=0;i<N/4;i++) {
 | 
						|
        alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
 | 
						|
        xcos1[i] = fix15(-cos(alpha));
 | 
						|
        xsin1[i] = fix15(-sin(alpha));
 | 
						|
    }
 | 
						|
 | 
						|
    ac3_crc_init();
 | 
						|
    
 | 
						|
    avctx->coded_frame= avcodec_alloc_frame();
 | 
						|
    avctx->coded_frame->key_frame= 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* output the AC3 frame header */
 | 
						|
static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
 | 
						|
{
 | 
						|
    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE, NULL, NULL);
 | 
						|
 | 
						|
    put_bits(&s->pb, 16, 0x0b77); /* frame header */
 | 
						|
    put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
 | 
						|
    put_bits(&s->pb, 2, s->fscod);
 | 
						|
    put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
 | 
						|
    put_bits(&s->pb, 5, s->bsid);
 | 
						|
    put_bits(&s->pb, 3, s->bsmod);
 | 
						|
    put_bits(&s->pb, 3, s->acmod);
 | 
						|
    if ((s->acmod & 0x01) && s->acmod != 0x01)
 | 
						|
	put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
 | 
						|
    if (s->acmod & 0x04)
 | 
						|
	put_bits(&s->pb, 2, 1); /* XXX -6 dB */
 | 
						|
    if (s->acmod == 0x02)
 | 
						|
        put_bits(&s->pb, 2, 0); /* surround not indicated */
 | 
						|
    put_bits(&s->pb, 1, s->lfe); /* LFE */
 | 
						|
    put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no compression control word */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no lang code */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no audio production info */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no copyright */
 | 
						|
    put_bits(&s->pb, 1, 1); /* original bitstream */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no time code 1 */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no time code 2 */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
 | 
						|
}
 | 
						|
 | 
						|
/* symetric quantization on 'levels' levels */
 | 
						|
static inline int sym_quant(int c, int e, int levels)
 | 
						|
{
 | 
						|
    int v;
 | 
						|
 | 
						|
    if (c >= 0) {
 | 
						|
        v = (levels * (c << e)) >> 24;
 | 
						|
        v = (v + 1) >> 1;
 | 
						|
        v = (levels >> 1) + v;
 | 
						|
    } else {
 | 
						|
        v = (levels * ((-c) << e)) >> 24;
 | 
						|
        v = (v + 1) >> 1;
 | 
						|
        v = (levels >> 1) - v;
 | 
						|
    }
 | 
						|
    assert (v >= 0 && v < levels);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/* asymetric quantization on 2^qbits levels */
 | 
						|
static inline int asym_quant(int c, int e, int qbits)
 | 
						|
{
 | 
						|
    int lshift, m, v;
 | 
						|
 | 
						|
    lshift = e + qbits - 24;
 | 
						|
    if (lshift >= 0)
 | 
						|
        v = c << lshift;
 | 
						|
    else
 | 
						|
        v = c >> (-lshift);
 | 
						|
    /* rounding */
 | 
						|
    v = (v + 1) >> 1;
 | 
						|
    m = (1 << (qbits-1));
 | 
						|
    if (v >= m)
 | 
						|
        v = m - 1;
 | 
						|
    assert(v >= -m);
 | 
						|
    return v & ((1 << qbits)-1);
 | 
						|
}
 | 
						|
 | 
						|
/* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
 | 
						|
   frame */
 | 
						|
static void output_audio_block(AC3EncodeContext *s,
 | 
						|
                               UINT8 exp_strategy[AC3_MAX_CHANNELS],
 | 
						|
                               UINT8 encoded_exp[AC3_MAX_CHANNELS][N/2],
 | 
						|
                               UINT8 bap[AC3_MAX_CHANNELS][N/2],
 | 
						|
                               INT32 mdct_coefs[AC3_MAX_CHANNELS][N/2],
 | 
						|
                               INT8 global_exp[AC3_MAX_CHANNELS],
 | 
						|
                               int block_num)
 | 
						|
{
 | 
						|
    int ch, nb_groups, group_size, i, baie;
 | 
						|
    UINT8 *p;
 | 
						|
    UINT16 qmant[AC3_MAX_CHANNELS][N/2];
 | 
						|
    int exp0, exp1;
 | 
						|
    int mant1_cnt, mant2_cnt, mant4_cnt;
 | 
						|
    UINT16 *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
 | 
						|
    int delta0, delta1, delta2;
 | 
						|
 | 
						|
    for(ch=0;ch<s->nb_channels;ch++) 
 | 
						|
        put_bits(&s->pb, 1, 0); /* 512 point MDCT */
 | 
						|
    for(ch=0;ch<s->nb_channels;ch++) 
 | 
						|
        put_bits(&s->pb, 1, 1); /* no dither */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no dynamic range */
 | 
						|
    if (block_num == 0) {
 | 
						|
        /* for block 0, even if no coupling, we must say it. This is a
 | 
						|
           waste of bit :-) */
 | 
						|
        put_bits(&s->pb, 1, 1); /* coupling strategy present */
 | 
						|
        put_bits(&s->pb, 1, 0); /* no coupling strategy */
 | 
						|
    } else {
 | 
						|
        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->acmod == 2) {
 | 
						|
        put_bits(&s->pb, 1, 0); /* no matrixing (but should be used in the future) */
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(DEBUG) 
 | 
						|
    {
 | 
						|
        static int count = 0;
 | 
						|
        printf("Block #%d (%d)\n", block_num, count++);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* exponent strategy */
 | 
						|
    for(ch=0;ch<s->nb_channels;ch++) {
 | 
						|
        put_bits(&s->pb, 2, exp_strategy[ch]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (s->lfe) {
 | 
						|
	put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
 | 
						|
    }
 | 
						|
 | 
						|
    for(ch=0;ch<s->nb_channels;ch++) {
 | 
						|
        if (exp_strategy[ch] != EXP_REUSE)
 | 
						|
            put_bits(&s->pb, 6, s->chbwcod[ch]);
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* exponents */
 | 
						|
    for (ch = 0; ch < s->nb_all_channels; ch++) {
 | 
						|
        switch(exp_strategy[ch]) {
 | 
						|
        case EXP_REUSE:
 | 
						|
            continue;
 | 
						|
        case EXP_D15:
 | 
						|
            group_size = 1;
 | 
						|
            break;
 | 
						|
        case EXP_D25:
 | 
						|
            group_size = 2;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
        case EXP_D45:
 | 
						|
            group_size = 4;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
	nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
 | 
						|
        p = encoded_exp[ch];
 | 
						|
 | 
						|
        /* first exponent */
 | 
						|
        exp1 = *p++;
 | 
						|
        put_bits(&s->pb, 4, exp1);
 | 
						|
 | 
						|
        /* next ones are delta encoded */
 | 
						|
        for(i=0;i<nb_groups;i++) {
 | 
						|
            /* merge three delta in one code */
 | 
						|
            exp0 = exp1;
 | 
						|
            exp1 = p[0];
 | 
						|
            p += group_size;
 | 
						|
            delta0 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
            exp0 = exp1;
 | 
						|
            exp1 = p[0];
 | 
						|
            p += group_size;
 | 
						|
            delta1 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
            exp0 = exp1;
 | 
						|
            exp1 = p[0];
 | 
						|
            p += group_size;
 | 
						|
            delta2 = exp1 - exp0 + 2;
 | 
						|
 | 
						|
            put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
 | 
						|
        }
 | 
						|
 | 
						|
	if (ch != s->lfe_channel)
 | 
						|
	    put_bits(&s->pb, 2, 0); /* no gain range info */
 | 
						|
    }
 | 
						|
 | 
						|
    /* bit allocation info */
 | 
						|
    baie = (block_num == 0);
 | 
						|
    put_bits(&s->pb, 1, baie);
 | 
						|
    if (baie) {
 | 
						|
        put_bits(&s->pb, 2, s->sdecaycod);
 | 
						|
        put_bits(&s->pb, 2, s->fdecaycod);
 | 
						|
        put_bits(&s->pb, 2, s->sgaincod);
 | 
						|
        put_bits(&s->pb, 2, s->dbkneecod);
 | 
						|
        put_bits(&s->pb, 3, s->floorcod);
 | 
						|
    }
 | 
						|
 | 
						|
    /* snr offset */
 | 
						|
    put_bits(&s->pb, 1, baie); /* always present with bai */
 | 
						|
    if (baie) {
 | 
						|
        put_bits(&s->pb, 6, s->csnroffst);
 | 
						|
        for(ch=0;ch<s->nb_all_channels;ch++) {
 | 
						|
            put_bits(&s->pb, 4, s->fsnroffst[ch]);
 | 
						|
            put_bits(&s->pb, 3, s->fgaincod[ch]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    
 | 
						|
    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
 | 
						|
    put_bits(&s->pb, 1, 0); /* no data to skip */
 | 
						|
 | 
						|
    /* mantissa encoding : we use two passes to handle the grouping. A
 | 
						|
       one pass method may be faster, but it would necessitate to
 | 
						|
       modify the output stream. */
 | 
						|
 | 
						|
    /* first pass: quantize */
 | 
						|
    mant1_cnt = mant2_cnt = mant4_cnt = 0;
 | 
						|
    qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->nb_all_channels; ch++) {
 | 
						|
        int b, c, e, v;
 | 
						|
 | 
						|
        for(i=0;i<s->nb_coefs[ch];i++) {
 | 
						|
            c = mdct_coefs[ch][i];
 | 
						|
            e = encoded_exp[ch][i] - global_exp[ch];
 | 
						|
            b = bap[ch][i];
 | 
						|
            switch(b) {
 | 
						|
            case 0:
 | 
						|
                v = 0;
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                v = sym_quant(c, e, 3);
 | 
						|
                switch(mant1_cnt) {
 | 
						|
                case 0:
 | 
						|
                    qmant1_ptr = &qmant[ch][i];
 | 
						|
                    v = 9 * v;
 | 
						|
                    mant1_cnt = 1;
 | 
						|
                    break;
 | 
						|
                case 1:
 | 
						|
                    *qmant1_ptr += 3 * v;
 | 
						|
                    mant1_cnt = 2;
 | 
						|
                    v = 128;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    *qmant1_ptr += v;
 | 
						|
                    mant1_cnt = 0;
 | 
						|
                    v = 128;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                v = sym_quant(c, e, 5);
 | 
						|
                switch(mant2_cnt) {
 | 
						|
                case 0:
 | 
						|
                    qmant2_ptr = &qmant[ch][i];
 | 
						|
                    v = 25 * v;
 | 
						|
                    mant2_cnt = 1;
 | 
						|
                    break;
 | 
						|
                case 1:
 | 
						|
                    *qmant2_ptr += 5 * v;
 | 
						|
                    mant2_cnt = 2;
 | 
						|
                    v = 128;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    *qmant2_ptr += v;
 | 
						|
                    mant2_cnt = 0;
 | 
						|
                    v = 128;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case 3:
 | 
						|
                v = sym_quant(c, e, 7);
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                v = sym_quant(c, e, 11);
 | 
						|
                switch(mant4_cnt) {
 | 
						|
                case 0:
 | 
						|
                    qmant4_ptr = &qmant[ch][i];
 | 
						|
                    v = 11 * v;
 | 
						|
                    mant4_cnt = 1;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    *qmant4_ptr += v;
 | 
						|
                    mant4_cnt = 0;
 | 
						|
                    v = 128;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case 5:
 | 
						|
                v = sym_quant(c, e, 15);
 | 
						|
                break;
 | 
						|
            case 14:
 | 
						|
                v = asym_quant(c, e, 14);
 | 
						|
                break;
 | 
						|
            case 15:
 | 
						|
                v = asym_quant(c, e, 16);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                v = asym_quant(c, e, b - 1);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            qmant[ch][i] = v;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* second pass : output the values */
 | 
						|
    for (ch = 0; ch < s->nb_all_channels; ch++) {
 | 
						|
        int b, q;
 | 
						|
        
 | 
						|
        for(i=0;i<s->nb_coefs[ch];i++) {
 | 
						|
            q = qmant[ch][i];
 | 
						|
            b = bap[ch][i];
 | 
						|
            switch(b) {
 | 
						|
            case 0:
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                if (q != 128) 
 | 
						|
                    put_bits(&s->pb, 5, q);
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                if (q != 128) 
 | 
						|
                    put_bits(&s->pb, 7, q);
 | 
						|
                break;
 | 
						|
            case 3:
 | 
						|
                put_bits(&s->pb, 3, q);
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                if (q != 128)
 | 
						|
                    put_bits(&s->pb, 7, q);
 | 
						|
                break;
 | 
						|
            case 14:
 | 
						|
                put_bits(&s->pb, 14, q);
 | 
						|
                break;
 | 
						|
            case 15:
 | 
						|
                put_bits(&s->pb, 16, q);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                put_bits(&s->pb, b - 1, q);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* compute the ac3 crc */
 | 
						|
 | 
						|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
 | 
						|
 | 
						|
static void ac3_crc_init(void)
 | 
						|
{
 | 
						|
    unsigned int c, n, k;
 | 
						|
 | 
						|
    for(n=0;n<256;n++) {
 | 
						|
        c = n << 8;
 | 
						|
        for (k = 0; k < 8; k++) {
 | 
						|
            if (c & (1 << 15)) 
 | 
						|
                c = ((c << 1) & 0xffff) ^ (CRC16_POLY & 0xffff);
 | 
						|
            else
 | 
						|
                c = c << 1;
 | 
						|
        }
 | 
						|
        crc_table[n] = c;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int ac3_crc(UINT8 *data, int n, unsigned int crc)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        crc = (crc_table[data[i] ^ (crc >> 8)] ^ (crc << 8)) & 0xffff;
 | 
						|
    }
 | 
						|
    return crc;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int c;
 | 
						|
 | 
						|
    c = 0;
 | 
						|
    while (a) {
 | 
						|
        if (a & 1)
 | 
						|
            c ^= b;
 | 
						|
        a = a >> 1;
 | 
						|
        b = b << 1;
 | 
						|
        if (b & (1 << 16))
 | 
						|
            b ^= poly;
 | 
						|
    }
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int r;
 | 
						|
    r = 1;
 | 
						|
    while (n) {
 | 
						|
        if (n & 1)
 | 
						|
            r = mul_poly(r, a, poly);
 | 
						|
        a = mul_poly(a, a, poly);
 | 
						|
        n >>= 1;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* compute log2(max(abs(tab[]))) */
 | 
						|
static int log2_tab(INT16 *tab, int n)
 | 
						|
{
 | 
						|
    int i, v;
 | 
						|
 | 
						|
    v = 0;
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        v |= abs(tab[i]);
 | 
						|
    }
 | 
						|
    return av_log2(v);
 | 
						|
}
 | 
						|
 | 
						|
static void lshift_tab(INT16 *tab, int n, int lshift)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (lshift > 0) {
 | 
						|
        for(i=0;i<n;i++) {
 | 
						|
            tab[i] <<= lshift;
 | 
						|
        }
 | 
						|
    } else if (lshift < 0) {
 | 
						|
        lshift = -lshift;
 | 
						|
        for(i=0;i<n;i++) {
 | 
						|
            tab[i] >>= lshift;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* fill the end of the frame and compute the two crcs */
 | 
						|
static int output_frame_end(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
 | 
						|
    UINT8 *frame;
 | 
						|
 | 
						|
    frame_size = s->frame_size; /* frame size in words */
 | 
						|
    /* align to 8 bits */
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    /* add zero bytes to reach the frame size */
 | 
						|
    frame = s->pb.buf;
 | 
						|
    n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
 | 
						|
    assert(n >= 0);
 | 
						|
    memset(pbBufPtr(&s->pb), 0, n);
 | 
						|
    
 | 
						|
    /* Now we must compute both crcs : this is not so easy for crc1
 | 
						|
       because it is at the beginning of the data... */
 | 
						|
    frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
 | 
						|
    crc1 = ac3_crc(frame + 4, (2 * frame_size_58) - 4, 0);
 | 
						|
    /* XXX: could precompute crc_inv */
 | 
						|
    crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
 | 
						|
    crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
 | 
						|
    frame[2] = crc1 >> 8;
 | 
						|
    frame[3] = crc1;
 | 
						|
    
 | 
						|
    crc2 = ac3_crc(frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2, 0);
 | 
						|
    frame[2*frame_size - 2] = crc2 >> 8;
 | 
						|
    frame[2*frame_size - 1] = crc2;
 | 
						|
 | 
						|
    //    printf("n=%d frame_size=%d\n", n, frame_size);
 | 
						|
    return frame_size * 2;
 | 
						|
}
 | 
						|
 | 
						|
static int AC3_encode_frame(AVCodecContext *avctx,
 | 
						|
                            unsigned char *frame, int buf_size, void *data)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    short *samples = data;
 | 
						|
    int i, j, k, v, ch;
 | 
						|
    INT16 input_samples[N];
 | 
						|
    INT32 mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | 
						|
    UINT8 exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | 
						|
    UINT8 exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
 | 
						|
    UINT8 encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | 
						|
    UINT8 bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | 
						|
    INT8 exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
 | 
						|
    int frame_bits;
 | 
						|
 | 
						|
    frame_bits = 0;
 | 
						|
    for(ch=0;ch<s->nb_all_channels;ch++) {
 | 
						|
        /* fixed mdct to the six sub blocks & exponent computation */
 | 
						|
        for(i=0;i<NB_BLOCKS;i++) {
 | 
						|
            INT16 *sptr;
 | 
						|
            int sinc;
 | 
						|
 | 
						|
            /* compute input samples */
 | 
						|
            memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(INT16));
 | 
						|
            sinc = s->nb_all_channels;
 | 
						|
            sptr = samples + (sinc * (N/2) * i) + ch;
 | 
						|
            for(j=0;j<N/2;j++) {
 | 
						|
                v = *sptr;
 | 
						|
                input_samples[j + N/2] = v;
 | 
						|
                s->last_samples[ch][j] = v; 
 | 
						|
                sptr += sinc;
 | 
						|
            }
 | 
						|
 | 
						|
            /* apply the MDCT window */
 | 
						|
            for(j=0;j<N/2;j++) {
 | 
						|
                input_samples[j] = MUL16(input_samples[j], 
 | 
						|
                                         ac3_window[j]) >> 15;
 | 
						|
                input_samples[N-j-1] = MUL16(input_samples[N-j-1], 
 | 
						|
                                             ac3_window[j]) >> 15;
 | 
						|
            }
 | 
						|
        
 | 
						|
            /* Normalize the samples to use the maximum available
 | 
						|
               precision */
 | 
						|
            v = 14 - log2_tab(input_samples, N);
 | 
						|
            if (v < 0)
 | 
						|
                v = 0;
 | 
						|
            exp_samples[i][ch] = v - 8;
 | 
						|
            lshift_tab(input_samples, N, v);
 | 
						|
 | 
						|
            /* do the MDCT */
 | 
						|
            mdct512(mdct_coef[i][ch], input_samples);
 | 
						|
            
 | 
						|
            /* compute "exponents". We take into account the
 | 
						|
               normalization there */
 | 
						|
            for(j=0;j<N/2;j++) {
 | 
						|
                int e;
 | 
						|
                v = abs(mdct_coef[i][ch][j]);
 | 
						|
                if (v == 0)
 | 
						|
                    e = 24;
 | 
						|
                else {
 | 
						|
                    e = 23 - av_log2(v) + exp_samples[i][ch];
 | 
						|
                    if (e >= 24) {
 | 
						|
                        e = 24;
 | 
						|
                        mdct_coef[i][ch][j] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                exp[i][ch][j] = e;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        
 | 
						|
        compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
 | 
						|
 | 
						|
        /* compute the exponents as the decoder will see them. The
 | 
						|
           EXP_REUSE case must be handled carefully : we select the
 | 
						|
           min of the exponents */
 | 
						|
        i = 0;
 | 
						|
        while (i < NB_BLOCKS) {
 | 
						|
            j = i + 1;
 | 
						|
            while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
 | 
						|
                exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
 | 
						|
                j++;
 | 
						|
            }
 | 
						|
            frame_bits += encode_exp(encoded_exp[i][ch],
 | 
						|
                                     exp[i][ch], s->nb_coefs[ch], 
 | 
						|
                                     exp_strategy[i][ch]);
 | 
						|
            /* copy encoded exponents for reuse case */
 | 
						|
            for(k=i+1;k<j;k++) {
 | 
						|
                memcpy(encoded_exp[k][ch], encoded_exp[i][ch], 
 | 
						|
                       s->nb_coefs[ch] * sizeof(UINT8));
 | 
						|
            }
 | 
						|
            i = j;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
 | 
						|
    /* everything is known... let's output the frame */
 | 
						|
    output_frame_header(s, frame);
 | 
						|
        
 | 
						|
    for(i=0;i<NB_BLOCKS;i++) {
 | 
						|
        output_audio_block(s, exp_strategy[i], encoded_exp[i], 
 | 
						|
                           bap[i], mdct_coef[i], exp_samples[i], i);
 | 
						|
    }
 | 
						|
    return output_frame_end(s);
 | 
						|
}
 | 
						|
 | 
						|
static int AC3_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*************************************************************************/
 | 
						|
/* TEST */
 | 
						|
 | 
						|
#define FN (N/4)
 | 
						|
 | 
						|
void fft_test(void)
 | 
						|
{
 | 
						|
    IComplex in[FN], in1[FN];
 | 
						|
    int k, n, i;
 | 
						|
    float sum_re, sum_im, a;
 | 
						|
 | 
						|
    /* FFT test */
 | 
						|
 | 
						|
    for(i=0;i<FN;i++) {
 | 
						|
        in[i].re = random() % 65535 - 32767;
 | 
						|
        in[i].im = random() % 65535 - 32767;
 | 
						|
        in1[i] = in[i];
 | 
						|
    }
 | 
						|
    fft(in, 7);
 | 
						|
 | 
						|
    /* do it by hand */
 | 
						|
    for(k=0;k<FN;k++) {
 | 
						|
        sum_re = 0;
 | 
						|
        sum_im = 0;
 | 
						|
        for(n=0;n<FN;n++) {
 | 
						|
            a = -2 * M_PI * (n * k) / FN;
 | 
						|
            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
 | 
						|
            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
 | 
						|
        }
 | 
						|
        printf("%3d: %6d,%6d %6.0f,%6.0f\n", 
 | 
						|
               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); 
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void mdct_test(void)
 | 
						|
{
 | 
						|
    INT16 input[N];
 | 
						|
    INT32 output[N/2];
 | 
						|
    float input1[N];
 | 
						|
    float output1[N/2];
 | 
						|
    float s, a, err, e, emax;
 | 
						|
    int i, k, n;
 | 
						|
 | 
						|
    for(i=0;i<N;i++) {
 | 
						|
        input[i] = (random() % 65535 - 32767) * 9 / 10;
 | 
						|
        input1[i] = input[i];
 | 
						|
    }
 | 
						|
 | 
						|
    mdct512(output, input);
 | 
						|
    
 | 
						|
    /* do it by hand */
 | 
						|
    for(k=0;k<N/2;k++) {
 | 
						|
        s = 0;
 | 
						|
        for(n=0;n<N;n++) {
 | 
						|
            a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
 | 
						|
            s += input1[n] * cos(a);
 | 
						|
        }
 | 
						|
        output1[k] = -2 * s / N;
 | 
						|
    }
 | 
						|
    
 | 
						|
    err = 0;
 | 
						|
    emax = 0;
 | 
						|
    for(i=0;i<N/2;i++) {
 | 
						|
        printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
 | 
						|
        e = output[i] - output1[i];
 | 
						|
        if (e > emax)
 | 
						|
            emax = e;
 | 
						|
        err += e * e;
 | 
						|
    }
 | 
						|
    printf("err2=%f emax=%f\n", err / (N/2), emax);
 | 
						|
}
 | 
						|
 | 
						|
void test_ac3(void)
 | 
						|
{
 | 
						|
    AC3EncodeContext ctx;
 | 
						|
    unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
 | 
						|
    short samples[AC3_FRAME_SIZE];
 | 
						|
    int ret, i;
 | 
						|
    
 | 
						|
    AC3_encode_init(&ctx, 44100, 64000, 1);
 | 
						|
 | 
						|
    fft_test();
 | 
						|
    mdct_test();
 | 
						|
 | 
						|
    for(i=0;i<AC3_FRAME_SIZE;i++)
 | 
						|
        samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
 | 
						|
    ret = AC3_encode_frame(&ctx, frame, samples);
 | 
						|
    printf("ret=%d\n", ret);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
AVCodec ac3_encoder = {
 | 
						|
    "ac3",
 | 
						|
    CODEC_TYPE_AUDIO,
 | 
						|
    CODEC_ID_AC3,
 | 
						|
    sizeof(AC3EncodeContext),
 | 
						|
    AC3_encode_init,
 | 
						|
    AC3_encode_frame,
 | 
						|
    AC3_encode_close,
 | 
						|
    NULL,
 | 
						|
};
 |