Fixes: signed integer overflow: 2147483372 - -148624 cannot be represented in type 'int' Fixes: 45982/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_SONIC_fuzzer-5477177805373440 Fixes: 45982/clusterfuzz-testcase-minimized-ffmpeg_AV_CODEC_ID_SONIC_fuzzer-6681622236233728 Found-by: continuous fuzzing process https://github.com/google/oss-fuzz/tree/master/projects/ffmpeg Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			1126 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1126 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Simple free lossless/lossy audio codec
 | 
						|
 * Copyright (c) 2004 Alex Beregszaszi
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "config_components.h"
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "codec_internal.h"
 | 
						|
#include "decode.h"
 | 
						|
#include "encode.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "golomb.h"
 | 
						|
#include "put_golomb.h"
 | 
						|
#include "rangecoder.h"
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * Simple free lossless/lossy audio codec
 | 
						|
 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
 | 
						|
 * Written and designed by Alex Beregszaszi
 | 
						|
 *
 | 
						|
 * TODO:
 | 
						|
 *  - CABAC put/get_symbol
 | 
						|
 *  - independent quantizer for channels
 | 
						|
 *  - >2 channels support
 | 
						|
 *  - more decorrelation types
 | 
						|
 *  - more tap_quant tests
 | 
						|
 *  - selectable intlist writers/readers (bonk-style, golomb, cabac)
 | 
						|
 */
 | 
						|
 | 
						|
#define MAX_CHANNELS 2
 | 
						|
 | 
						|
#define MID_SIDE 0
 | 
						|
#define LEFT_SIDE 1
 | 
						|
#define RIGHT_SIDE 2
 | 
						|
 | 
						|
typedef struct SonicContext {
 | 
						|
    int version;
 | 
						|
    int minor_version;
 | 
						|
    int lossless, decorrelation;
 | 
						|
 | 
						|
    int num_taps, downsampling;
 | 
						|
    double quantization;
 | 
						|
 | 
						|
    int channels, samplerate, block_align, frame_size;
 | 
						|
 | 
						|
    int *tap_quant;
 | 
						|
    int *int_samples;
 | 
						|
    int *coded_samples[MAX_CHANNELS];
 | 
						|
 | 
						|
    // for encoding
 | 
						|
    int *tail;
 | 
						|
    int tail_size;
 | 
						|
    int *window;
 | 
						|
    int window_size;
 | 
						|
 | 
						|
    // for decoding
 | 
						|
    int *predictor_k;
 | 
						|
    int *predictor_state[MAX_CHANNELS];
 | 
						|
} SonicContext;
 | 
						|
 | 
						|
#define LATTICE_SHIFT   10
 | 
						|
#define SAMPLE_SHIFT    4
 | 
						|
#define LATTICE_FACTOR  (1 << LATTICE_SHIFT)
 | 
						|
#define SAMPLE_FACTOR   (1 << SAMPLE_SHIFT)
 | 
						|
 | 
						|
#define BASE_QUANT      0.6
 | 
						|
#define RATE_VARIATION  3.0
 | 
						|
 | 
						|
static inline int shift(int a,int b)
 | 
						|
{
 | 
						|
    return (a+(1<<(b-1))) >> b;
 | 
						|
}
 | 
						|
 | 
						|
static inline int shift_down(int a,int b)
 | 
						|
{
 | 
						|
    return (a>>b)+(a<0);
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
 | 
						|
    int i;
 | 
						|
 | 
						|
#define put_rac(C,S,B) \
 | 
						|
do{\
 | 
						|
    if(rc_stat){\
 | 
						|
        rc_stat[*(S)][B]++;\
 | 
						|
        rc_stat2[(S)-state][B]++;\
 | 
						|
    }\
 | 
						|
    put_rac(C,S,B);\
 | 
						|
}while(0)
 | 
						|
 | 
						|
    if(v){
 | 
						|
        const int a= FFABS(v);
 | 
						|
        const int e= av_log2(a);
 | 
						|
        put_rac(c, state+0, 0);
 | 
						|
        if(e<=9){
 | 
						|
            for(i=0; i<e; i++){
 | 
						|
                put_rac(c, state+1+i, 1);  //1..10
 | 
						|
            }
 | 
						|
            put_rac(c, state+1+i, 0);
 | 
						|
 | 
						|
            for(i=e-1; i>=0; i--){
 | 
						|
                put_rac(c, state+22+i, (a>>i)&1); //22..31
 | 
						|
            }
 | 
						|
 | 
						|
            if(is_signed)
 | 
						|
                put_rac(c, state+11 + e, v < 0); //11..21
 | 
						|
        }else{
 | 
						|
            for(i=0; i<e; i++){
 | 
						|
                put_rac(c, state+1+FFMIN(i,9), 1);  //1..10
 | 
						|
            }
 | 
						|
            put_rac(c, state+1+9, 0);
 | 
						|
 | 
						|
            for(i=e-1; i>=0; i--){
 | 
						|
                put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
 | 
						|
            }
 | 
						|
 | 
						|
            if(is_signed)
 | 
						|
                put_rac(c, state+11 + 10, v < 0); //11..21
 | 
						|
        }
 | 
						|
    }else{
 | 
						|
        put_rac(c, state+0, 1);
 | 
						|
    }
 | 
						|
#undef put_rac
 | 
						|
}
 | 
						|
 | 
						|
static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
 | 
						|
    if(get_rac(c, state+0))
 | 
						|
        return 0;
 | 
						|
    else{
 | 
						|
        int i, e;
 | 
						|
        unsigned a;
 | 
						|
        e= 0;
 | 
						|
        while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
 | 
						|
            e++;
 | 
						|
            if (e > 31)
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        a= 1;
 | 
						|
        for(i=e-1; i>=0; i--){
 | 
						|
            a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
 | 
						|
        }
 | 
						|
 | 
						|
        e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
 | 
						|
        return (a^e)-e;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if 1
 | 
						|
static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        put_symbol(c, state, buf[i], 1, NULL, NULL);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        buf[i] = get_symbol(c, state, 1);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
#elif 1
 | 
						|
static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        set_se_golomb(pb, buf[i]);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        buf[i] = get_se_golomb(gb);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#define ADAPT_LEVEL 8
 | 
						|
 | 
						|
static int bits_to_store(uint64_t x)
 | 
						|
{
 | 
						|
    int res = 0;
 | 
						|
 | 
						|
    while(x)
 | 
						|
    {
 | 
						|
        res++;
 | 
						|
        x >>= 1;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
 | 
						|
{
 | 
						|
    int i, bits;
 | 
						|
 | 
						|
    if (!max)
 | 
						|
        return;
 | 
						|
 | 
						|
    bits = bits_to_store(max);
 | 
						|
 | 
						|
    for (i = 0; i < bits-1; i++)
 | 
						|
        put_bits(pb, 1, value & (1 << i));
 | 
						|
 | 
						|
    if ( (value | (1 << (bits-1))) <= max)
 | 
						|
        put_bits(pb, 1, value & (1 << (bits-1)));
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int read_uint_max(GetBitContext *gb, int max)
 | 
						|
{
 | 
						|
    int i, bits, value = 0;
 | 
						|
 | 
						|
    if (!max)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    bits = bits_to_store(max);
 | 
						|
 | 
						|
    for (i = 0; i < bits-1; i++)
 | 
						|
        if (get_bits1(gb))
 | 
						|
            value += 1 << i;
 | 
						|
 | 
						|
    if ( (value | (1<<(bits-1))) <= max)
 | 
						|
        if (get_bits1(gb))
 | 
						|
            value += 1 << (bits-1);
 | 
						|
 | 
						|
    return value;
 | 
						|
}
 | 
						|
 | 
						|
static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i, j, x = 0, low_bits = 0, max = 0;
 | 
						|
    int step = 256, pos = 0, dominant = 0, any = 0;
 | 
						|
    int *copy, *bits;
 | 
						|
 | 
						|
    copy = av_calloc(entries, sizeof(*copy));
 | 
						|
    if (!copy)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    if (base_2_part)
 | 
						|
    {
 | 
						|
        int energy = 0;
 | 
						|
 | 
						|
        for (i = 0; i < entries; i++)
 | 
						|
            energy += abs(buf[i]);
 | 
						|
 | 
						|
        low_bits = bits_to_store(energy / (entries * 2));
 | 
						|
        if (low_bits > 15)
 | 
						|
            low_bits = 15;
 | 
						|
 | 
						|
        put_bits(pb, 4, low_bits);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
    {
 | 
						|
        put_bits(pb, low_bits, abs(buf[i]));
 | 
						|
        copy[i] = abs(buf[i]) >> low_bits;
 | 
						|
        if (copy[i] > max)
 | 
						|
            max = abs(copy[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    bits = av_calloc(entries*max, sizeof(*bits));
 | 
						|
    if (!bits)
 | 
						|
    {
 | 
						|
        av_free(copy);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i <= max; i++)
 | 
						|
    {
 | 
						|
        for (j = 0; j < entries; j++)
 | 
						|
            if (copy[j] >= i)
 | 
						|
                bits[x++] = copy[j] > i;
 | 
						|
    }
 | 
						|
 | 
						|
    // store bitstream
 | 
						|
    while (pos < x)
 | 
						|
    {
 | 
						|
        int steplet = step >> 8;
 | 
						|
 | 
						|
        if (pos + steplet > x)
 | 
						|
            steplet = x - pos;
 | 
						|
 | 
						|
        for (i = 0; i < steplet; i++)
 | 
						|
            if (bits[i+pos] != dominant)
 | 
						|
                any = 1;
 | 
						|
 | 
						|
        put_bits(pb, 1, any);
 | 
						|
 | 
						|
        if (!any)
 | 
						|
        {
 | 
						|
            pos += steplet;
 | 
						|
            step += step / ADAPT_LEVEL;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int interloper = 0;
 | 
						|
 | 
						|
            while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
 | 
						|
                interloper++;
 | 
						|
 | 
						|
            // note change
 | 
						|
            write_uint_max(pb, interloper, (step >> 8) - 1);
 | 
						|
 | 
						|
            pos += interloper + 1;
 | 
						|
            step -= step / ADAPT_LEVEL;
 | 
						|
        }
 | 
						|
 | 
						|
        if (step < 256)
 | 
						|
        {
 | 
						|
            step = 65536 / step;
 | 
						|
            dominant = !dominant;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // store signs
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        if (buf[i])
 | 
						|
            put_bits(pb, 1, buf[i] < 0);
 | 
						|
 | 
						|
    av_free(bits);
 | 
						|
    av_free(copy);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
 | 
						|
{
 | 
						|
    int i, low_bits = 0, x = 0;
 | 
						|
    int n_zeros = 0, step = 256, dominant = 0;
 | 
						|
    int pos = 0, level = 0;
 | 
						|
    int *bits = av_calloc(entries, sizeof(*bits));
 | 
						|
 | 
						|
    if (!bits)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    if (base_2_part)
 | 
						|
    {
 | 
						|
        low_bits = get_bits(gb, 4);
 | 
						|
 | 
						|
        if (low_bits)
 | 
						|
            for (i = 0; i < entries; i++)
 | 
						|
                buf[i] = get_bits(gb, low_bits);
 | 
						|
    }
 | 
						|
 | 
						|
//    av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
 | 
						|
 | 
						|
    while (n_zeros < entries)
 | 
						|
    {
 | 
						|
        int steplet = step >> 8;
 | 
						|
 | 
						|
        if (!get_bits1(gb))
 | 
						|
        {
 | 
						|
            for (i = 0; i < steplet; i++)
 | 
						|
                bits[x++] = dominant;
 | 
						|
 | 
						|
            if (!dominant)
 | 
						|
                n_zeros += steplet;
 | 
						|
 | 
						|
            step += step / ADAPT_LEVEL;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            int actual_run = read_uint_max(gb, steplet-1);
 | 
						|
 | 
						|
//            av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
 | 
						|
 | 
						|
            for (i = 0; i < actual_run; i++)
 | 
						|
                bits[x++] = dominant;
 | 
						|
 | 
						|
            bits[x++] = !dominant;
 | 
						|
 | 
						|
            if (!dominant)
 | 
						|
                n_zeros += actual_run;
 | 
						|
            else
 | 
						|
                n_zeros++;
 | 
						|
 | 
						|
            step -= step / ADAPT_LEVEL;
 | 
						|
        }
 | 
						|
 | 
						|
        if (step < 256)
 | 
						|
        {
 | 
						|
            step = 65536 / step;
 | 
						|
            dominant = !dominant;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // reconstruct unsigned values
 | 
						|
    n_zeros = 0;
 | 
						|
    for (i = 0; n_zeros < entries; i++)
 | 
						|
    {
 | 
						|
        while(1)
 | 
						|
        {
 | 
						|
            if (pos >= entries)
 | 
						|
            {
 | 
						|
                pos = 0;
 | 
						|
                level += 1 << low_bits;
 | 
						|
            }
 | 
						|
 | 
						|
            if (buf[pos] >= level)
 | 
						|
                break;
 | 
						|
 | 
						|
            pos++;
 | 
						|
        }
 | 
						|
 | 
						|
        if (bits[i])
 | 
						|
            buf[pos] += 1 << low_bits;
 | 
						|
        else
 | 
						|
            n_zeros++;
 | 
						|
 | 
						|
        pos++;
 | 
						|
    }
 | 
						|
    av_free(bits);
 | 
						|
 | 
						|
    // read signs
 | 
						|
    for (i = 0; i < entries; i++)
 | 
						|
        if (buf[i] && get_bits1(gb))
 | 
						|
            buf[i] = -buf[i];
 | 
						|
 | 
						|
//    av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void predictor_init_state(int *k, int *state, int order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = order-2; i >= 0; i--)
 | 
						|
    {
 | 
						|
        int j, p, x = state[i];
 | 
						|
 | 
						|
        for (j = 0, p = i+1; p < order; j++,p++)
 | 
						|
            {
 | 
						|
            int tmp = x + shift_down(k[j] * (unsigned)state[p], LATTICE_SHIFT);
 | 
						|
            state[p] += shift_down(k[j]* (unsigned)x, LATTICE_SHIFT);
 | 
						|
            x = tmp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int predictor_calc_error(int *k, int *state, int order, int error)
 | 
						|
{
 | 
						|
    int i, x = error - (unsigned)shift_down(k[order-1] *  (unsigned)state[order-1], LATTICE_SHIFT);
 | 
						|
 | 
						|
#if 1
 | 
						|
    int *k_ptr = &(k[order-2]),
 | 
						|
        *state_ptr = &(state[order-2]);
 | 
						|
    for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
 | 
						|
    {
 | 
						|
        int k_value = *k_ptr, state_value = *state_ptr;
 | 
						|
        x -= (unsigned)shift_down(k_value * (unsigned)state_value, LATTICE_SHIFT);
 | 
						|
        state_ptr[1] = state_value + shift_down(k_value * (unsigned)x, LATTICE_SHIFT);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    for (i = order-2; i >= 0; i--)
 | 
						|
    {
 | 
						|
        x -= (unsigned)shift_down(k[i] * state[i], LATTICE_SHIFT);
 | 
						|
        state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // don't drift too far, to avoid overflows
 | 
						|
    if (x >  (SAMPLE_FACTOR<<16)) x =  (SAMPLE_FACTOR<<16);
 | 
						|
    if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
 | 
						|
 | 
						|
    state[0] = x;
 | 
						|
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
 | 
						|
// Heavily modified Levinson-Durbin algorithm which
 | 
						|
// copes better with quantization, and calculates the
 | 
						|
// actual whitened result as it goes.
 | 
						|
 | 
						|
static void modified_levinson_durbin(int *window, int window_entries,
 | 
						|
        int *out, int out_entries, int channels, int *tap_quant)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int *state = window + window_entries;
 | 
						|
 | 
						|
    memcpy(state, window, window_entries * sizeof(*state));
 | 
						|
 | 
						|
    for (i = 0; i < out_entries; i++)
 | 
						|
    {
 | 
						|
        int step = (i+1)*channels, k, j;
 | 
						|
        double xx = 0.0, xy = 0.0;
 | 
						|
#if 1
 | 
						|
        int *x_ptr = &(window[step]);
 | 
						|
        int *state_ptr = &(state[0]);
 | 
						|
        j = window_entries - step;
 | 
						|
        for (;j>0;j--,x_ptr++,state_ptr++)
 | 
						|
        {
 | 
						|
            double x_value = *x_ptr;
 | 
						|
            double state_value = *state_ptr;
 | 
						|
            xx += state_value*state_value;
 | 
						|
            xy += x_value*state_value;
 | 
						|
        }
 | 
						|
#else
 | 
						|
        for (j = 0; j <= (window_entries - step); j++);
 | 
						|
        {
 | 
						|
            double stepval = window[step+j];
 | 
						|
            double stateval = window[j];
 | 
						|
//            xx += (double)window[j]*(double)window[j];
 | 
						|
//            xy += (double)window[step+j]*(double)window[j];
 | 
						|
            xx += stateval*stateval;
 | 
						|
            xy += stepval*stateval;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        if (xx == 0.0)
 | 
						|
            k = 0;
 | 
						|
        else
 | 
						|
            k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
 | 
						|
 | 
						|
        if (k > (LATTICE_FACTOR/tap_quant[i]))
 | 
						|
            k = LATTICE_FACTOR/tap_quant[i];
 | 
						|
        if (-k > (LATTICE_FACTOR/tap_quant[i]))
 | 
						|
            k = -(LATTICE_FACTOR/tap_quant[i]);
 | 
						|
 | 
						|
        out[i] = k;
 | 
						|
        k *= tap_quant[i];
 | 
						|
 | 
						|
#if 1
 | 
						|
        x_ptr = &(window[step]);
 | 
						|
        state_ptr = &(state[0]);
 | 
						|
        j = window_entries - step;
 | 
						|
        for (;j>0;j--,x_ptr++,state_ptr++)
 | 
						|
        {
 | 
						|
            int x_value = *x_ptr;
 | 
						|
            int state_value = *state_ptr;
 | 
						|
            *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
 | 
						|
            *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        for (j=0; j <= (window_entries - step); j++)
 | 
						|
        {
 | 
						|
            int stepval = window[step+j];
 | 
						|
            int stateval=state[j];
 | 
						|
            window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
 | 
						|
            state[j] += shift_down(k * stepval, LATTICE_SHIFT);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int code_samplerate(int samplerate)
 | 
						|
{
 | 
						|
    switch (samplerate)
 | 
						|
    {
 | 
						|
        case 44100: return 0;
 | 
						|
        case 22050: return 1;
 | 
						|
        case 11025: return 2;
 | 
						|
        case 96000: return 3;
 | 
						|
        case 48000: return 4;
 | 
						|
        case 32000: return 5;
 | 
						|
        case 24000: return 6;
 | 
						|
        case 16000: return 7;
 | 
						|
        case 8000: return 8;
 | 
						|
    }
 | 
						|
    return AVERROR(EINVAL);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int sonic_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
    int *coded_samples;
 | 
						|
    PutBitContext pb;
 | 
						|
    int i;
 | 
						|
 | 
						|
    s->version = 2;
 | 
						|
 | 
						|
    if (avctx->ch_layout.nb_channels > MAX_CHANNELS)
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
 | 
						|
        return AVERROR(EINVAL); /* only stereo or mono for now */
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->ch_layout.nb_channels == 2)
 | 
						|
        s->decorrelation = MID_SIDE;
 | 
						|
    else
 | 
						|
        s->decorrelation = 3;
 | 
						|
 | 
						|
    if (avctx->codec->id == AV_CODEC_ID_SONIC_LS)
 | 
						|
    {
 | 
						|
        s->lossless = 1;
 | 
						|
        s->num_taps = 32;
 | 
						|
        s->downsampling = 1;
 | 
						|
        s->quantization = 0.0;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        s->num_taps = 128;
 | 
						|
        s->downsampling = 2;
 | 
						|
        s->quantization = 1.0;
 | 
						|
    }
 | 
						|
 | 
						|
    // max tap 2048
 | 
						|
    if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    // generate taps
 | 
						|
    s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
 | 
						|
    if (!s->tap_quant)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    for (i = 0; i < s->num_taps; i++)
 | 
						|
        s->tap_quant[i] = ff_sqrt(i+1);
 | 
						|
 | 
						|
    s->channels = avctx->ch_layout.nb_channels;
 | 
						|
    s->samplerate = avctx->sample_rate;
 | 
						|
 | 
						|
    s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
 | 
						|
    s->frame_size = s->channels*s->block_align*s->downsampling;
 | 
						|
 | 
						|
    s->tail_size = s->num_taps*s->channels;
 | 
						|
    s->tail = av_calloc(s->tail_size, sizeof(*s->tail));
 | 
						|
    if (!s->tail)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) );
 | 
						|
    if (!s->predictor_k)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    coded_samples = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
 | 
						|
    if (!coded_samples)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    for (i = 0; i < s->channels; i++, coded_samples += s->block_align)
 | 
						|
        s->coded_samples[i] = coded_samples;
 | 
						|
 | 
						|
    s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
 | 
						|
 | 
						|
    s->window_size = ((2*s->tail_size)+s->frame_size);
 | 
						|
    s->window = av_calloc(s->window_size, 2 * sizeof(*s->window));
 | 
						|
    if (!s->window || !s->int_samples)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    avctx->extradata = av_mallocz(16);
 | 
						|
    if (!avctx->extradata)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    init_put_bits(&pb, avctx->extradata, 16*8);
 | 
						|
 | 
						|
    put_bits(&pb, 2, s->version); // version
 | 
						|
    if (s->version >= 1)
 | 
						|
    {
 | 
						|
        if (s->version >= 2) {
 | 
						|
            put_bits(&pb, 8, s->version);
 | 
						|
            put_bits(&pb, 8, s->minor_version);
 | 
						|
        }
 | 
						|
        put_bits(&pb, 2, s->channels);
 | 
						|
        put_bits(&pb, 4, code_samplerate(s->samplerate));
 | 
						|
    }
 | 
						|
    put_bits(&pb, 1, s->lossless);
 | 
						|
    if (!s->lossless)
 | 
						|
        put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
 | 
						|
    put_bits(&pb, 2, s->decorrelation);
 | 
						|
    put_bits(&pb, 2, s->downsampling);
 | 
						|
    put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
 | 
						|
    put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
 | 
						|
 | 
						|
    flush_put_bits(&pb);
 | 
						|
    avctx->extradata_size = put_bytes_output(&pb);
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
 | 
						|
        s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
 | 
						|
 | 
						|
    avctx->frame_size = s->block_align*s->downsampling;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int sonic_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    av_freep(&s->coded_samples[0]);
 | 
						|
    av_freep(&s->predictor_k);
 | 
						|
    av_freep(&s->tail);
 | 
						|
    av_freep(&s->tap_quant);
 | 
						|
    av_freep(&s->window);
 | 
						|
    av_freep(&s->int_samples);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | 
						|
                              const AVFrame *frame, int *got_packet_ptr)
 | 
						|
{
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
    RangeCoder c;
 | 
						|
    int i, j, ch, quant = 0, x = 0;
 | 
						|
    int ret;
 | 
						|
    const short *samples = (const int16_t*)frame->data[0];
 | 
						|
    uint8_t state[32];
 | 
						|
 | 
						|
    if ((ret = ff_alloc_packet(avctx, avpkt, s->frame_size * 5 + 1000)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    ff_init_range_encoder(&c, avpkt->data, avpkt->size);
 | 
						|
    ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
 | 
						|
    memset(state, 128, sizeof(state));
 | 
						|
 | 
						|
    // short -> internal
 | 
						|
    for (i = 0; i < s->frame_size; i++)
 | 
						|
        s->int_samples[i] = samples[i];
 | 
						|
 | 
						|
    if (!s->lossless)
 | 
						|
        for (i = 0; i < s->frame_size; i++)
 | 
						|
            s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
 | 
						|
 | 
						|
    switch(s->decorrelation)
 | 
						|
    {
 | 
						|
        case MID_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
            {
 | 
						|
                s->int_samples[i] += s->int_samples[i+1];
 | 
						|
                s->int_samples[i+1] -= shift(s->int_samples[i], 1);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case LEFT_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
                s->int_samples[i+1] -= s->int_samples[i];
 | 
						|
            break;
 | 
						|
        case RIGHT_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
                s->int_samples[i] -= s->int_samples[i+1];
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(s->window, 0, s->window_size * sizeof(*s->window));
 | 
						|
 | 
						|
    for (i = 0; i < s->tail_size; i++)
 | 
						|
        s->window[x++] = s->tail[i];
 | 
						|
 | 
						|
    for (i = 0; i < s->frame_size; i++)
 | 
						|
        s->window[x++] = s->int_samples[i];
 | 
						|
 | 
						|
    for (i = 0; i < s->tail_size; i++)
 | 
						|
        s->window[x++] = 0;
 | 
						|
 | 
						|
    for (i = 0; i < s->tail_size; i++)
 | 
						|
        s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
 | 
						|
 | 
						|
    // generate taps
 | 
						|
    modified_levinson_durbin(s->window, s->window_size,
 | 
						|
                s->predictor_k, s->num_taps, s->channels, s->tap_quant);
 | 
						|
 | 
						|
    if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
    {
 | 
						|
        x = s->tail_size+ch;
 | 
						|
        for (i = 0; i < s->block_align; i++)
 | 
						|
        {
 | 
						|
            int sum = 0;
 | 
						|
            for (j = 0; j < s->downsampling; j++, x += s->channels)
 | 
						|
                sum += s->window[x];
 | 
						|
            s->coded_samples[ch][i] = sum;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // simple rate control code
 | 
						|
    if (!s->lossless)
 | 
						|
    {
 | 
						|
        double energy1 = 0.0, energy2 = 0.0;
 | 
						|
        for (ch = 0; ch < s->channels; ch++)
 | 
						|
        {
 | 
						|
            for (i = 0; i < s->block_align; i++)
 | 
						|
            {
 | 
						|
                double sample = s->coded_samples[ch][i];
 | 
						|
                energy2 += sample*sample;
 | 
						|
                energy1 += fabs(sample);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        energy2 = sqrt(energy2/(s->channels*s->block_align));
 | 
						|
        energy1 = M_SQRT2*energy1/(s->channels*s->block_align);
 | 
						|
 | 
						|
        // increase bitrate when samples are like a gaussian distribution
 | 
						|
        // reduce bitrate when samples are like a two-tailed exponential distribution
 | 
						|
 | 
						|
        if (energy2 > energy1)
 | 
						|
            energy2 += (energy2-energy1)*RATE_VARIATION;
 | 
						|
 | 
						|
        quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
 | 
						|
//        av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
 | 
						|
 | 
						|
        quant = av_clip(quant, 1, 65534);
 | 
						|
 | 
						|
        put_symbol(&c, state, quant, 0, NULL, NULL);
 | 
						|
 | 
						|
        quant *= SAMPLE_FACTOR;
 | 
						|
    }
 | 
						|
 | 
						|
    // write out coded samples
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
    {
 | 
						|
        if (!s->lossless)
 | 
						|
            for (i = 0; i < s->block_align; i++)
 | 
						|
                s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant);
 | 
						|
 | 
						|
        if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    avpkt->size = ff_rac_terminate(&c, 0);
 | 
						|
    *got_packet_ptr = 1;
 | 
						|
    return 0;
 | 
						|
 | 
						|
}
 | 
						|
#endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
 | 
						|
 | 
						|
#if CONFIG_SONIC_DECODER
 | 
						|
static const int samplerate_table[] =
 | 
						|
    { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
 | 
						|
 | 
						|
static av_cold int sonic_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
    int *tmp;
 | 
						|
    GetBitContext gb;
 | 
						|
    int i;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    s->channels = avctx->ch_layout.nb_channels;
 | 
						|
    s->samplerate = avctx->sample_rate;
 | 
						|
 | 
						|
    if (!avctx->extradata)
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->version = get_bits(&gb, 2);
 | 
						|
    if (s->version >= 2) {
 | 
						|
        s->version       = get_bits(&gb, 8);
 | 
						|
        s->minor_version = get_bits(&gb, 8);
 | 
						|
    }
 | 
						|
    if (s->version != 2)
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->version >= 1)
 | 
						|
    {
 | 
						|
        int sample_rate_index;
 | 
						|
        s->channels = get_bits(&gb, 2);
 | 
						|
        sample_rate_index = get_bits(&gb, 4);
 | 
						|
        if (sample_rate_index >= FF_ARRAY_ELEMS(samplerate_table)) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Invalid sample_rate_index %d\n", sample_rate_index);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        s->samplerate = samplerate_table[sample_rate_index];
 | 
						|
        av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
 | 
						|
            s->channels, s->samplerate);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->channels > MAX_CHANNELS || s->channels < 1)
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    av_channel_layout_uninit(&avctx->ch_layout);
 | 
						|
    avctx->ch_layout.order       = AV_CHANNEL_ORDER_UNSPEC;
 | 
						|
    avctx->ch_layout.nb_channels = s->channels;
 | 
						|
 | 
						|
    s->lossless = get_bits1(&gb);
 | 
						|
    if (!s->lossless)
 | 
						|
        skip_bits(&gb, 3); // XXX FIXME
 | 
						|
    s->decorrelation = get_bits(&gb, 2);
 | 
						|
    if (s->decorrelation != 3 && s->channels != 2) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    s->downsampling = get_bits(&gb, 2);
 | 
						|
    if (!s->downsampling) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    s->num_taps = (get_bits(&gb, 5)+1)<<5;
 | 
						|
    if (get_bits1(&gb)) // XXX FIXME
 | 
						|
        av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
 | 
						|
 | 
						|
    s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
 | 
						|
    s->frame_size = s->channels*s->block_align*s->downsampling;
 | 
						|
//    avctx->frame_size = s->block_align;
 | 
						|
 | 
						|
    if (s->num_taps * s->channels > s->frame_size) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR,
 | 
						|
               "number of taps times channels (%d * %d) larger than frame size %d\n",
 | 
						|
               s->num_taps, s->channels, s->frame_size);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
 | 
						|
        s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
 | 
						|
 | 
						|
    // generate taps
 | 
						|
    s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
 | 
						|
    if (!s->tap_quant)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    for (i = 0; i < s->num_taps; i++)
 | 
						|
        s->tap_quant[i] = ff_sqrt(i+1);
 | 
						|
 | 
						|
    s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k));
 | 
						|
 | 
						|
    tmp = av_calloc(s->num_taps, s->channels * sizeof(**s->predictor_state));
 | 
						|
    if (!tmp)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    for (i = 0; i < s->channels; i++, tmp += s->num_taps)
 | 
						|
        s->predictor_state[i] = tmp;
 | 
						|
 | 
						|
    tmp = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
 | 
						|
    if (!tmp)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    for (i = 0; i < s->channels; i++, tmp += s->block_align)
 | 
						|
        s->coded_samples[i]   = tmp;
 | 
						|
 | 
						|
    s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
 | 
						|
    if (!s->int_samples)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int sonic_decode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    av_freep(&s->int_samples);
 | 
						|
    av_freep(&s->tap_quant);
 | 
						|
    av_freep(&s->predictor_k);
 | 
						|
    av_freep(&s->predictor_state[0]);
 | 
						|
    av_freep(&s->coded_samples[0]);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int sonic_decode_frame(AVCodecContext *avctx, AVFrame *frame,
 | 
						|
                              int *got_frame_ptr, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf = avpkt->data;
 | 
						|
    int buf_size = avpkt->size;
 | 
						|
    SonicContext *s = avctx->priv_data;
 | 
						|
    RangeCoder c;
 | 
						|
    uint8_t state[32];
 | 
						|
    int i, quant, ch, j, ret;
 | 
						|
    int16_t *samples;
 | 
						|
 | 
						|
    if (buf_size == 0) return 0;
 | 
						|
 | 
						|
    frame->nb_samples = s->frame_size / avctx->ch_layout.nb_channels;
 | 
						|
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
 | 
						|
        return ret;
 | 
						|
    samples = (int16_t *)frame->data[0];
 | 
						|
 | 
						|
//    av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
 | 
						|
 | 
						|
    memset(state, 128, sizeof(state));
 | 
						|
    ff_init_range_decoder(&c, buf, buf_size);
 | 
						|
    ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
 | 
						|
 | 
						|
    intlist_read(&c, state, s->predictor_k, s->num_taps, 0);
 | 
						|
 | 
						|
    // dequantize
 | 
						|
    for (i = 0; i < s->num_taps; i++)
 | 
						|
        s->predictor_k[i] *= (unsigned) s->tap_quant[i];
 | 
						|
 | 
						|
    if (s->lossless)
 | 
						|
        quant = 1;
 | 
						|
    else
 | 
						|
        quant = get_symbol(&c, state, 0) * (unsigned)SAMPLE_FACTOR;
 | 
						|
 | 
						|
//    av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
    {
 | 
						|
        int x = ch;
 | 
						|
 | 
						|
        if (c.overread > MAX_OVERREAD)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
        predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
 | 
						|
 | 
						|
        intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1);
 | 
						|
 | 
						|
        for (i = 0; i < s->block_align; i++)
 | 
						|
        {
 | 
						|
            for (j = 0; j < s->downsampling - 1; j++)
 | 
						|
            {
 | 
						|
                s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
 | 
						|
                x += s->channels;
 | 
						|
            }
 | 
						|
 | 
						|
            s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * (unsigned)quant);
 | 
						|
            x += s->channels;
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < s->num_taps; i++)
 | 
						|
            s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
 | 
						|
    }
 | 
						|
 | 
						|
    switch(s->decorrelation)
 | 
						|
    {
 | 
						|
        case MID_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
            {
 | 
						|
                s->int_samples[i+1] += shift(s->int_samples[i], 1);
 | 
						|
                s->int_samples[i] -= s->int_samples[i+1];
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case LEFT_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
                s->int_samples[i+1] += s->int_samples[i];
 | 
						|
            break;
 | 
						|
        case RIGHT_SIDE:
 | 
						|
            for (i = 0; i < s->frame_size; i += s->channels)
 | 
						|
                s->int_samples[i] += s->int_samples[i+1];
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->lossless)
 | 
						|
        for (i = 0; i < s->frame_size; i++)
 | 
						|
            s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
 | 
						|
 | 
						|
    // internal -> short
 | 
						|
    for (i = 0; i < s->frame_size; i++)
 | 
						|
        samples[i] = av_clip_int16(s->int_samples[i]);
 | 
						|
 | 
						|
    *got_frame_ptr = 1;
 | 
						|
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
 | 
						|
const FFCodec ff_sonic_decoder = {
 | 
						|
    .p.name         = "sonic",
 | 
						|
    CODEC_LONG_NAME("Sonic"),
 | 
						|
    .p.type         = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .p.id           = AV_CODEC_ID_SONIC,
 | 
						|
    .priv_data_size = sizeof(SonicContext),
 | 
						|
    .init           = sonic_decode_init,
 | 
						|
    .close          = sonic_decode_close,
 | 
						|
    FF_CODEC_DECODE_CB(sonic_decode_frame),
 | 
						|
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_CHANNEL_CONF,
 | 
						|
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
 | 
						|
};
 | 
						|
#endif /* CONFIG_SONIC_DECODER */
 | 
						|
 | 
						|
#if CONFIG_SONIC_ENCODER
 | 
						|
const FFCodec ff_sonic_encoder = {
 | 
						|
    .p.name         = "sonic",
 | 
						|
    CODEC_LONG_NAME("Sonic"),
 | 
						|
    .p.type         = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .p.id           = AV_CODEC_ID_SONIC,
 | 
						|
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL |
 | 
						|
                      AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
 | 
						|
    .priv_data_size = sizeof(SonicContext),
 | 
						|
    .init           = sonic_encode_init,
 | 
						|
    FF_CODEC_ENCODE_CB(sonic_encode_frame),
 | 
						|
    .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
 | 
						|
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
 | 
						|
    .close          = sonic_encode_close,
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_SONIC_LS_ENCODER
 | 
						|
const FFCodec ff_sonic_ls_encoder = {
 | 
						|
    .p.name         = "sonicls",
 | 
						|
    CODEC_LONG_NAME("Sonic lossless"),
 | 
						|
    .p.type         = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .p.id           = AV_CODEC_ID_SONIC_LS,
 | 
						|
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL |
 | 
						|
                      AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
 | 
						|
    .priv_data_size = sizeof(SonicContext),
 | 
						|
    .init           = sonic_encode_init,
 | 
						|
    FF_CODEC_ENCODE_CB(sonic_encode_frame),
 | 
						|
    .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
 | 
						|
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
 | 
						|
    .close          = sonic_encode_close,
 | 
						|
};
 | 
						|
#endif
 |