172 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * rational numbers
 | 
						|
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This file is part of Libav.
 | 
						|
 *
 | 
						|
 * Libav is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libav is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with Libav; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * rational numbers
 | 
						|
 * @author Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 */
 | 
						|
 | 
						|
#include "avassert.h"
 | 
						|
//#include <math.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#include "mathematics.h"
 | 
						|
#include "rational.h"
 | 
						|
 | 
						|
int av_reduce(int *dst_num, int *dst_den,
 | 
						|
              int64_t num, int64_t den, int64_t max)
 | 
						|
{
 | 
						|
    AVRational a0 = { 0, 1 }, a1 = { 1, 0 };
 | 
						|
    int sign = (num < 0) ^ (den < 0);
 | 
						|
    int64_t gcd = av_gcd(FFABS(num), FFABS(den));
 | 
						|
 | 
						|
    if (gcd) {
 | 
						|
        num = FFABS(num) / gcd;
 | 
						|
        den = FFABS(den) / gcd;
 | 
						|
    }
 | 
						|
    if (num <= max && den <= max) {
 | 
						|
        a1 = (AVRational) { num, den };
 | 
						|
        den = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    while (den) {
 | 
						|
        uint64_t x        = num / den;
 | 
						|
        int64_t next_den  = num - den * x;
 | 
						|
        int64_t a2n       = x * a1.num + a0.num;
 | 
						|
        int64_t a2d       = x * a1.den + a0.den;
 | 
						|
 | 
						|
        if (a2n > max || a2d > max) {
 | 
						|
            if (a1.num) x =          (max - a0.num) / a1.num;
 | 
						|
            if (a1.den) x = FFMIN(x, (max - a0.den) / a1.den);
 | 
						|
 | 
						|
            if (den * (2 * x * a1.den + a0.den) > num * a1.den)
 | 
						|
                a1 = (AVRational) { x * a1.num + a0.num, x * a1.den + a0.den };
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        a0  = a1;
 | 
						|
        a1  = (AVRational) { a2n, a2d };
 | 
						|
        num = den;
 | 
						|
        den = next_den;
 | 
						|
    }
 | 
						|
    av_assert2(av_gcd(a1.num, a1.den) <= 1U);
 | 
						|
 | 
						|
    *dst_num = sign ? -a1.num : a1.num;
 | 
						|
    *dst_den = a1.den;
 | 
						|
 | 
						|
    return den == 0;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_mul_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    av_reduce(&b.num, &b.den,
 | 
						|
               b.num * (int64_t) c.num,
 | 
						|
               b.den * (int64_t) c.den, INT_MAX);
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_div_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    return av_mul_q(b, (AVRational) { c.den, c.num });
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_add_q(AVRational b, AVRational c) {
 | 
						|
    av_reduce(&b.num, &b.den,
 | 
						|
               b.num * (int64_t) c.den +
 | 
						|
               c.num * (int64_t) b.den,
 | 
						|
               b.den * (int64_t) c.den, INT_MAX);
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_sub_q(AVRational b, AVRational c)
 | 
						|
{
 | 
						|
    return av_add_q(b, (AVRational) { -c.num, c.den });
 | 
						|
}
 | 
						|
 | 
						|
AVRational av_d2q(double d, int max)
 | 
						|
{
 | 
						|
    AVRational a;
 | 
						|
#define LOG2  0.69314718055994530941723212145817656807550013436025
 | 
						|
    int exponent;
 | 
						|
    int64_t den;
 | 
						|
    if (isnan(d))
 | 
						|
        return (AVRational) { 0,0 };
 | 
						|
    if (isinf(d))
 | 
						|
        return (AVRational) { d < 0 ? -1 : 1, 0 };
 | 
						|
    exponent = FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
 | 
						|
    den = 1LL << (61 - exponent);
 | 
						|
    av_reduce(&a.num, &a.den, (int64_t)(d * den + 0.5), den, max);
 | 
						|
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
 | 
						|
{
 | 
						|
    /* n/d is q, a/b is the median between q1 and q2 */
 | 
						|
    int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
 | 
						|
    int64_t b = 2 * (int64_t)q1.den * q2.den;
 | 
						|
 | 
						|
    /* rnd_up(a*d/b) > n => a*d/b > n */
 | 
						|
    int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
 | 
						|
 | 
						|
    /* rnd_down(a*d/b) < n => a*d/b < n */
 | 
						|
    int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
 | 
						|
 | 
						|
    return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
 | 
						|
}
 | 
						|
 | 
						|
int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
 | 
						|
{
 | 
						|
    int i, nearest_q_idx = 0;
 | 
						|
    for (i = 0; q_list[i].den; i++)
 | 
						|
        if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
 | 
						|
            nearest_q_idx = i;
 | 
						|
 | 
						|
    return nearest_q_idx;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TEST
 | 
						|
int main(void)
 | 
						|
{
 | 
						|
    AVRational a,b;
 | 
						|
    for (a.num = -2; a.num <= 2; a.num++) {
 | 
						|
        for (a.den = -2; a.den <= 2; a.den++) {
 | 
						|
            for (b.num = -2; b.num <= 2; b.num++) {
 | 
						|
                for (b.den = -2; b.den <= 2; b.den++) {
 | 
						|
                    int c = av_cmp_q(a,b);
 | 
						|
                    double d = av_q2d(a) == av_q2d(b) ?
 | 
						|
                               0 : (av_q2d(a) - av_q2d(b));
 | 
						|
                    if (d > 0)       d = 1;
 | 
						|
                    else if (d < 0)  d = -1;
 | 
						|
                    else if (d != d) d = INT_MIN;
 | 
						|
                    if (c != d)
 | 
						|
                        av_log(0, AV_LOG_ERROR, "%d/%d %d/%d, %d %f\n", a.num,
 | 
						|
                               a.den, b.num, b.den, c,d);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 |