* commit 'bfcd4b6a1691d20aebc6d2308424c2a88334a9f0': adpcmdec: set AVCodec.sample_fmts twinvq: use planar sample format ralf: use planar sample format mpc7/8: use planar sample format iac/imc: use planar sample format dcadec: use float planar sample format cook: use planar sample format atrac3: use float planar sample format apedec: output in planar sample format 8svx: use planar sample format Conflicts: libavcodec/8svx.c libavcodec/dcadec.c libavcodec/mpc7.c libavcodec/mpc8.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			1010 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1010 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * IMC compatible decoder
 | 
						|
 * Copyright (c) 2002-2004 Maxim Poliakovski
 | 
						|
 * Copyright (c) 2006 Benjamin Larsson
 | 
						|
 * Copyright (c) 2006 Konstantin Shishkov
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file
 | 
						|
 *  IMC - Intel Music Coder
 | 
						|
 *  A mdct based codec using a 256 points large transform
 | 
						|
 *  divided into 32 bands with some mix of scale factors.
 | 
						|
 *  Only mono is supported.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stddef.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "fft.h"
 | 
						|
#include "libavutil/audioconvert.h"
 | 
						|
#include "libavutil/libm.h"
 | 
						|
#include "sinewin.h"
 | 
						|
 | 
						|
#include "imcdata.h"
 | 
						|
 | 
						|
#define IMC_BLOCK_SIZE 64
 | 
						|
#define IMC_FRAME_ID 0x21
 | 
						|
#define BANDS 32
 | 
						|
#define COEFFS 256
 | 
						|
 | 
						|
typedef struct IMCChannel {
 | 
						|
    float old_floor[BANDS];
 | 
						|
    float flcoeffs1[BANDS];
 | 
						|
    float flcoeffs2[BANDS];
 | 
						|
    float flcoeffs3[BANDS];
 | 
						|
    float flcoeffs4[BANDS];
 | 
						|
    float flcoeffs5[BANDS];
 | 
						|
    float flcoeffs6[BANDS];
 | 
						|
    float CWdecoded[COEFFS];
 | 
						|
 | 
						|
    int bandWidthT[BANDS];     ///< codewords per band
 | 
						|
    int bitsBandT[BANDS];      ///< how many bits per codeword in band
 | 
						|
    int CWlengthT[COEFFS];     ///< how many bits in each codeword
 | 
						|
    int levlCoeffBuf[BANDS];
 | 
						|
    int bandFlagsBuf[BANDS];   ///< flags for each band
 | 
						|
    int sumLenArr[BANDS];      ///< bits for all coeffs in band
 | 
						|
    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
 | 
						|
    int skipFlagBits[BANDS];   ///< bits used to code skip flags
 | 
						|
    int skipFlagCount[BANDS];  ///< skipped coeffients per band
 | 
						|
    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
 | 
						|
    int codewords[COEFFS];     ///< raw codewords read from bitstream
 | 
						|
 | 
						|
    float last_fft_im[COEFFS];
 | 
						|
 | 
						|
    int decoder_reset;
 | 
						|
} IMCChannel;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    AVFrame frame;
 | 
						|
 | 
						|
    IMCChannel chctx[2];
 | 
						|
 | 
						|
    /** MDCT tables */
 | 
						|
    //@{
 | 
						|
    float mdct_sine_window[COEFFS];
 | 
						|
    float post_cos[COEFFS];
 | 
						|
    float post_sin[COEFFS];
 | 
						|
    float pre_coef1[COEFFS];
 | 
						|
    float pre_coef2[COEFFS];
 | 
						|
    //@}
 | 
						|
 | 
						|
    float sqrt_tab[30];
 | 
						|
    GetBitContext gb;
 | 
						|
 | 
						|
    DSPContext dsp;
 | 
						|
    FFTContext fft;
 | 
						|
    DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
 | 
						|
    float *out_samples;
 | 
						|
 | 
						|
    int8_t cyclTab[32], cyclTab2[32];
 | 
						|
    float  weights1[31], weights2[31];
 | 
						|
} IMCContext;
 | 
						|
 | 
						|
static VLC huffman_vlc[4][4];
 | 
						|
 | 
						|
#define VLC_TABLES_SIZE 9512
 | 
						|
 | 
						|
static const int vlc_offsets[17] = {
 | 
						|
    0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
 | 
						|
    4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
 | 
						|
};
 | 
						|
 | 
						|
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
 | 
						|
 | 
						|
static inline double freq2bark(double freq)
 | 
						|
{
 | 
						|
    return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
 | 
						|
{
 | 
						|
    double freqmin[32], freqmid[32], freqmax[32];
 | 
						|
    double scale = sampling_rate / (256.0 * 2.0 * 2.0);
 | 
						|
    double nyquist_freq = sampling_rate * 0.5;
 | 
						|
    double freq, bark, prev_bark = 0, tf, tb;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = 0; i < 32; i++) {
 | 
						|
        freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
 | 
						|
        bark = freq2bark(freq);
 | 
						|
 | 
						|
        if (i > 0) {
 | 
						|
            tb = bark - prev_bark;
 | 
						|
            q->weights1[i - 1] = pow(10.0, -1.0 * tb);
 | 
						|
            q->weights2[i - 1] = pow(10.0, -2.7 * tb);
 | 
						|
        }
 | 
						|
        prev_bark = bark;
 | 
						|
 | 
						|
        freqmid[i] = freq;
 | 
						|
 | 
						|
        tf = freq;
 | 
						|
        while (tf < nyquist_freq) {
 | 
						|
            tf += 0.5;
 | 
						|
            tb =  freq2bark(tf);
 | 
						|
            if (tb > bark + 0.5)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        freqmax[i] = tf;
 | 
						|
 | 
						|
        tf = freq;
 | 
						|
        while (tf > 0.0) {
 | 
						|
            tf -= 0.5;
 | 
						|
            tb =  freq2bark(tf);
 | 
						|
            if (tb <= bark - 0.5)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        freqmin[i] = tf;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 32; i++) {
 | 
						|
        freq = freqmax[i];
 | 
						|
        for (j = 31; j > 0 && freq <= freqmid[j]; j--);
 | 
						|
        q->cyclTab[i] = j + 1;
 | 
						|
 | 
						|
        freq = freqmin[i];
 | 
						|
        for (j = 0; j < 32 && freq >= freqmid[j]; j++);
 | 
						|
        q->cyclTab2[i] = j - 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int imc_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int i, j, ret;
 | 
						|
    IMCContext *q = avctx->priv_data;
 | 
						|
    double r1, r2;
 | 
						|
 | 
						|
    if ((avctx->codec_id == AV_CODEC_ID_IMC && avctx->channels != 1)
 | 
						|
        || (avctx->codec_id == AV_CODEC_ID_IAC && avctx->channels > 2)) {
 | 
						|
        av_log_ask_for_sample(avctx, "Number of channels is not supported\n");
 | 
						|
        return AVERROR_PATCHWELCOME;
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = 0; j < avctx->channels; j++) {
 | 
						|
        q->chctx[j].decoder_reset = 1;
 | 
						|
 | 
						|
        for (i = 0; i < BANDS; i++)
 | 
						|
            q->chctx[j].old_floor[i] = 1.0;
 | 
						|
 | 
						|
        for (i = 0; i < COEFFS / 2; i++)
 | 
						|
            q->chctx[j].last_fft_im[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Build mdct window, a simple sine window normalized with sqrt(2) */
 | 
						|
    ff_sine_window_init(q->mdct_sine_window, COEFFS);
 | 
						|
    for (i = 0; i < COEFFS; i++)
 | 
						|
        q->mdct_sine_window[i] *= sqrt(2.0);
 | 
						|
    for (i = 0; i < COEFFS / 2; i++) {
 | 
						|
        q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
 | 
						|
        q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
 | 
						|
 | 
						|
        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
 | 
						|
        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
 | 
						|
 | 
						|
        if (i & 0x1) {
 | 
						|
            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
 | 
						|
            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
 | 
						|
        } else {
 | 
						|
            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
 | 
						|
            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Generate a square root table */
 | 
						|
 | 
						|
    for (i = 0; i < 30; i++)
 | 
						|
        q->sqrt_tab[i] = sqrt(i);
 | 
						|
 | 
						|
    /* initialize the VLC tables */
 | 
						|
    for (i = 0; i < 4 ; i++) {
 | 
						|
        for (j = 0; j < 4; j++) {
 | 
						|
            huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
 | 
						|
            huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
 | 
						|
            init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
 | 
						|
                     imc_huffman_lens[i][j], 1, 1,
 | 
						|
                     imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
 | 
						|
        iac_generate_tabs(q, avctx->sample_rate);
 | 
						|
    } else {
 | 
						|
        memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
 | 
						|
        memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
 | 
						|
        memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
 | 
						|
        memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
 | 
						|
    }
 | 
						|
 | 
						|
    if ((ret = ff_fft_init(&q->fft, 7, 1))) {
 | 
						|
        av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    ff_dsputil_init(&q->dsp, avctx);
 | 
						|
    avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
 | 
						|
    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
 | 
						|
                                                 : AV_CH_LAYOUT_STEREO;
 | 
						|
 | 
						|
    avcodec_get_frame_defaults(&q->frame);
 | 
						|
    avctx->coded_frame = &q->frame;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
 | 
						|
                                 float *flcoeffs2, int *bandWidthT,
 | 
						|
                                 float *flcoeffs3, float *flcoeffs5)
 | 
						|
{
 | 
						|
    float   workT1[BANDS];
 | 
						|
    float   workT2[BANDS];
 | 
						|
    float   workT3[BANDS];
 | 
						|
    float   snr_limit = 1.e-30;
 | 
						|
    float   accum = 0.0;
 | 
						|
    int i, cnt2;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        flcoeffs5[i] = workT2[i] = 0.0;
 | 
						|
        if (bandWidthT[i]) {
 | 
						|
            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
 | 
						|
            flcoeffs3[i] = 2.0 * flcoeffs2[i];
 | 
						|
        } else {
 | 
						|
            workT1[i]    = 0.0;
 | 
						|
            flcoeffs3[i] = -30000.0;
 | 
						|
        }
 | 
						|
        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
 | 
						|
        if (workT3[i] <= snr_limit)
 | 
						|
            workT3[i] = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
 | 
						|
            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
 | 
						|
        workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 1; i < BANDS; i++) {
 | 
						|
        accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
 | 
						|
        flcoeffs5[i] += accum;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++)
 | 
						|
        workT2[i] = 0.0;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
 | 
						|
            flcoeffs5[cnt2] += workT3[i];
 | 
						|
        workT2[cnt2+1] += workT3[i];
 | 
						|
    }
 | 
						|
 | 
						|
    accum = 0.0;
 | 
						|
 | 
						|
    for (i = BANDS-2; i >= 0; i--) {
 | 
						|
        accum = (workT2[i+1] + accum) * q->weights2[i];
 | 
						|
        flcoeffs5[i] += accum;
 | 
						|
        // there is missing code here, but it seems to never be triggered
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
 | 
						|
                                  int *levlCoeffs)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    VLC *hufftab[4];
 | 
						|
    int start = 0;
 | 
						|
    const uint8_t *cb_sel;
 | 
						|
    int s;
 | 
						|
 | 
						|
    s = stream_format_code >> 1;
 | 
						|
    hufftab[0] = &huffman_vlc[s][0];
 | 
						|
    hufftab[1] = &huffman_vlc[s][1];
 | 
						|
    hufftab[2] = &huffman_vlc[s][2];
 | 
						|
    hufftab[3] = &huffman_vlc[s][3];
 | 
						|
    cb_sel = imc_cb_select[s];
 | 
						|
 | 
						|
    if (stream_format_code & 4)
 | 
						|
        start = 1;
 | 
						|
    if (start)
 | 
						|
        levlCoeffs[0] = get_bits(&q->gb, 7);
 | 
						|
    for (i = start; i < BANDS; i++) {
 | 
						|
        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
 | 
						|
                                 hufftab[cb_sel[i]]->bits, 2);
 | 
						|
        if (levlCoeffs[i] == 17)
 | 
						|
            levlCoeffs[i] += get_bits(&q->gb, 4);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
 | 
						|
                                          float *flcoeffs1, float *flcoeffs2)
 | 
						|
{
 | 
						|
    int i, level;
 | 
						|
    float tmp, tmp2;
 | 
						|
    // maybe some frequency division thingy
 | 
						|
 | 
						|
    flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
 | 
						|
    flcoeffs2[0] = log2f(flcoeffs1[0]);
 | 
						|
    tmp  = flcoeffs1[0];
 | 
						|
    tmp2 = flcoeffs2[0];
 | 
						|
 | 
						|
    for (i = 1; i < BANDS; i++) {
 | 
						|
        level = levlCoeffBuf[i];
 | 
						|
        if (level == 16) {
 | 
						|
            flcoeffs1[i] = 1.0;
 | 
						|
            flcoeffs2[i] = 0.0;
 | 
						|
        } else {
 | 
						|
            if (level < 17)
 | 
						|
                level -= 7;
 | 
						|
            else if (level <= 24)
 | 
						|
                level -= 32;
 | 
						|
            else
 | 
						|
                level -= 16;
 | 
						|
 | 
						|
            tmp  *= imc_exp_tab[15 + level];
 | 
						|
            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
 | 
						|
            flcoeffs1[i] = tmp;
 | 
						|
            flcoeffs2[i] = tmp2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
 | 
						|
                                           float *old_floor, float *flcoeffs1,
 | 
						|
                                           float *flcoeffs2)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
 | 
						|
     *       and flcoeffs2 old scale factors
 | 
						|
     *       might be incomplete due to a missing table that is in the binary code
 | 
						|
     */
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        flcoeffs1[i] = 0;
 | 
						|
        if (levlCoeffBuf[i] < 16) {
 | 
						|
            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
 | 
						|
            flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
 | 
						|
        } else {
 | 
						|
            flcoeffs1[i] = old_floor[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Perform bit allocation depending on bits available
 | 
						|
 */
 | 
						|
static int bit_allocation(IMCContext *q, IMCChannel *chctx,
 | 
						|
                          int stream_format_code, int freebits, int flag)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    const float limit = -1.e20;
 | 
						|
    float highest = 0.0;
 | 
						|
    int indx;
 | 
						|
    int t1 = 0;
 | 
						|
    int t2 = 1;
 | 
						|
    float summa = 0.0;
 | 
						|
    int iacc = 0;
 | 
						|
    int summer = 0;
 | 
						|
    int rres, cwlen;
 | 
						|
    float lowest = 1.e10;
 | 
						|
    int low_indx = 0;
 | 
						|
    float workT[32];
 | 
						|
    int flg;
 | 
						|
    int found_indx = 0;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++)
 | 
						|
        highest = FFMAX(highest, chctx->flcoeffs1[i]);
 | 
						|
 | 
						|
    for (i = 0; i < BANDS - 1; i++)
 | 
						|
        chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
 | 
						|
    chctx->flcoeffs4[BANDS - 1] = limit;
 | 
						|
 | 
						|
    highest = highest * 0.25;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        indx = -1;
 | 
						|
        if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
 | 
						|
            indx = 0;
 | 
						|
 | 
						|
        if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
 | 
						|
            indx = 1;
 | 
						|
 | 
						|
        if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
 | 
						|
            indx = 2;
 | 
						|
 | 
						|
        if (indx == -1)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
        chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
 | 
						|
    }
 | 
						|
 | 
						|
    if (stream_format_code & 0x2) {
 | 
						|
        chctx->flcoeffs4[0] = limit;
 | 
						|
        chctx->flcoeffs4[1] = limit;
 | 
						|
        chctx->flcoeffs4[2] = limit;
 | 
						|
        chctx->flcoeffs4[3] = limit;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
 | 
						|
        iacc  += chctx->bandWidthT[i];
 | 
						|
        summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
 | 
						|
    }
 | 
						|
    chctx->bandWidthT[BANDS - 1] = 0;
 | 
						|
    summa = (summa * 0.5 - freebits) / iacc;
 | 
						|
 | 
						|
 | 
						|
    for (i = 0; i < BANDS / 2; i++) {
 | 
						|
        rres = summer - freebits;
 | 
						|
        if ((rres >= -8) && (rres <= 8))
 | 
						|
            break;
 | 
						|
 | 
						|
        summer = 0;
 | 
						|
        iacc   = 0;
 | 
						|
 | 
						|
        for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
 | 
						|
            cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
 | 
						|
 | 
						|
            chctx->bitsBandT[j] = cwlen;
 | 
						|
            summer += chctx->bandWidthT[j] * cwlen;
 | 
						|
 | 
						|
            if (cwlen > 0)
 | 
						|
                iacc += chctx->bandWidthT[j];
 | 
						|
        }
 | 
						|
 | 
						|
        flg = t2;
 | 
						|
        t2 = 1;
 | 
						|
        if (freebits < summer)
 | 
						|
            t2 = -1;
 | 
						|
        if (i == 0)
 | 
						|
            flg = t2;
 | 
						|
        if (flg != t2)
 | 
						|
            t1++;
 | 
						|
 | 
						|
        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
 | 
						|
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
 | 
						|
            chctx->CWlengthT[j] = chctx->bitsBandT[i];
 | 
						|
    }
 | 
						|
 | 
						|
    if (freebits > summer) {
 | 
						|
        for (i = 0; i < BANDS; i++) {
 | 
						|
            workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
 | 
						|
                                              : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
 | 
						|
        }
 | 
						|
 | 
						|
        highest = 0.0;
 | 
						|
 | 
						|
        do {
 | 
						|
            if (highest <= -1.e20)
 | 
						|
                break;
 | 
						|
 | 
						|
            found_indx = 0;
 | 
						|
            highest = -1.e20;
 | 
						|
 | 
						|
            for (i = 0; i < BANDS; i++) {
 | 
						|
                if (workT[i] > highest) {
 | 
						|
                    highest = workT[i];
 | 
						|
                    found_indx = i;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (highest > -1.e20) {
 | 
						|
                workT[found_indx] -= 2.0;
 | 
						|
                if (++chctx->bitsBandT[found_indx] == 6)
 | 
						|
                    workT[found_indx] = -1.e20;
 | 
						|
 | 
						|
                for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
 | 
						|
                    chctx->CWlengthT[j]++;
 | 
						|
                    summer++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } while (freebits > summer);
 | 
						|
    }
 | 
						|
    if (freebits < summer) {
 | 
						|
        for (i = 0; i < BANDS; i++) {
 | 
						|
            workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
 | 
						|
                                       : 1.e20;
 | 
						|
        }
 | 
						|
        if (stream_format_code & 0x2) {
 | 
						|
            workT[0] = 1.e20;
 | 
						|
            workT[1] = 1.e20;
 | 
						|
            workT[2] = 1.e20;
 | 
						|
            workT[3] = 1.e20;
 | 
						|
        }
 | 
						|
        while (freebits < summer) {
 | 
						|
            lowest   = 1.e10;
 | 
						|
            low_indx = 0;
 | 
						|
            for (i = 0; i < BANDS; i++) {
 | 
						|
                if (workT[i] < lowest) {
 | 
						|
                    lowest   = workT[i];
 | 
						|
                    low_indx = i;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            // if (lowest >= 1.e10)
 | 
						|
            //     break;
 | 
						|
            workT[low_indx] = lowest + 2.0;
 | 
						|
 | 
						|
            if (!--chctx->bitsBandT[low_indx])
 | 
						|
                workT[low_indx] = 1.e20;
 | 
						|
 | 
						|
            for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
 | 
						|
                if (chctx->CWlengthT[j] > 0) {
 | 
						|
                    chctx->CWlengthT[j]--;
 | 
						|
                    summer--;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
 | 
						|
    memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
 | 
						|
            continue;
 | 
						|
 | 
						|
        if (!chctx->skipFlagRaw[i]) {
 | 
						|
            chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
 | 
						|
 | 
						|
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
 | 
						|
                chctx->skipFlags[j] = get_bits1(&q->gb);
 | 
						|
                if (chctx->skipFlags[j])
 | 
						|
                    chctx->skipFlagCount[i]++;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
 | 
						|
                if (!get_bits1(&q->gb)) { // 0
 | 
						|
                    chctx->skipFlagBits[i]++;
 | 
						|
                    chctx->skipFlags[j]      = 1;
 | 
						|
                    chctx->skipFlags[j + 1]  = 1;
 | 
						|
                    chctx->skipFlagCount[i] += 2;
 | 
						|
                } else {
 | 
						|
                    if (get_bits1(&q->gb)) { // 11
 | 
						|
                        chctx->skipFlagBits[i] += 2;
 | 
						|
                        chctx->skipFlags[j]     = 0;
 | 
						|
                        chctx->skipFlags[j + 1] = 1;
 | 
						|
                        chctx->skipFlagCount[i]++;
 | 
						|
                    } else {
 | 
						|
                        chctx->skipFlagBits[i] += 3;
 | 
						|
                        chctx->skipFlags[j + 1] = 0;
 | 
						|
                        if (!get_bits1(&q->gb)) { // 100
 | 
						|
                            chctx->skipFlags[j] = 1;
 | 
						|
                            chctx->skipFlagCount[i]++;
 | 
						|
                        } else { // 101
 | 
						|
                            chctx->skipFlags[j] = 0;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (j < band_tab[i + 1]) {
 | 
						|
                chctx->skipFlagBits[i]++;
 | 
						|
                if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
 | 
						|
                    chctx->skipFlagCount[i]++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Increase highest' band coefficient sizes as some bits won't be used
 | 
						|
 */
 | 
						|
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
 | 
						|
                                      int summer)
 | 
						|
{
 | 
						|
    float workT[32];
 | 
						|
    int corrected = 0;
 | 
						|
    int i, j;
 | 
						|
    float highest  = 0;
 | 
						|
    int found_indx = 0;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
 | 
						|
                                          : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
 | 
						|
    }
 | 
						|
 | 
						|
    while (corrected < summer) {
 | 
						|
        if (highest <= -1.e20)
 | 
						|
            break;
 | 
						|
 | 
						|
        highest = -1.e20;
 | 
						|
 | 
						|
        for (i = 0; i < BANDS; i++) {
 | 
						|
            if (workT[i] > highest) {
 | 
						|
                highest = workT[i];
 | 
						|
                found_indx = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (highest > -1.e20) {
 | 
						|
            workT[found_indx] -= 2.0;
 | 
						|
            if (++(chctx->bitsBandT[found_indx]) == 6)
 | 
						|
                workT[found_indx] = -1.e20;
 | 
						|
 | 
						|
            for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
 | 
						|
                if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
 | 
						|
                    chctx->CWlengthT[j]++;
 | 
						|
                    corrected++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    float re, im;
 | 
						|
    float *dst1 = q->out_samples;
 | 
						|
    float *dst2 = q->out_samples + (COEFFS - 1);
 | 
						|
 | 
						|
    /* prerotation */
 | 
						|
    for (i = 0; i < COEFFS / 2; i++) {
 | 
						|
        q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
 | 
						|
                            (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
 | 
						|
        q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
 | 
						|
                            (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* FFT */
 | 
						|
    q->fft.fft_permute(&q->fft, q->samples);
 | 
						|
    q->fft.fft_calc(&q->fft, q->samples);
 | 
						|
 | 
						|
    /* postrotation, window and reorder */
 | 
						|
    for (i = 0; i < COEFFS / 2; i++) {
 | 
						|
        re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
 | 
						|
        im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
 | 
						|
        *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
 | 
						|
               + (q->mdct_sine_window[i * 2] * re);
 | 
						|
        *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
 | 
						|
               - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
 | 
						|
        dst1 += 2;
 | 
						|
        dst2 -= 2;
 | 
						|
        chctx->last_fft_im[i] = im;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
 | 
						|
                               int stream_format_code)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    int middle_value, cw_len, max_size;
 | 
						|
    const float *quantizer;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
 | 
						|
            chctx->CWdecoded[j] = 0;
 | 
						|
            cw_len = chctx->CWlengthT[j];
 | 
						|
 | 
						|
            if (cw_len <= 0 || chctx->skipFlags[j])
 | 
						|
                continue;
 | 
						|
 | 
						|
            max_size     = 1 << cw_len;
 | 
						|
            middle_value = max_size >> 1;
 | 
						|
 | 
						|
            if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
            if (cw_len >= 4) {
 | 
						|
                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
 | 
						|
                if (chctx->codewords[j] >= middle_value)
 | 
						|
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
 | 
						|
                else
 | 
						|
                    chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
 | 
						|
            }else{
 | 
						|
                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
 | 
						|
                if (chctx->codewords[j] >= middle_value)
 | 
						|
                    chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
 | 
						|
                else
 | 
						|
                    chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int imc_get_coeffs(IMCContext *q, IMCChannel *chctx)
 | 
						|
{
 | 
						|
    int i, j, cw_len, cw;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        if (!chctx->sumLenArr[i])
 | 
						|
            continue;
 | 
						|
        if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
 | 
						|
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
 | 
						|
                cw_len = chctx->CWlengthT[j];
 | 
						|
                cw = 0;
 | 
						|
 | 
						|
                if (get_bits_count(&q->gb) + cw_len > 512) {
 | 
						|
                    av_dlog(NULL, "Band %i coeff %i cw_len %i\n", i, j, cw_len);
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
 | 
						|
                if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j]))
 | 
						|
                    cw = get_bits(&q->gb, cw_len);
 | 
						|
 | 
						|
                chctx->codewords[j] = cw;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
 | 
						|
{
 | 
						|
    int stream_format_code;
 | 
						|
    int imc_hdr, i, j, ret;
 | 
						|
    int flag;
 | 
						|
    int bits, summer;
 | 
						|
    int counter, bitscount;
 | 
						|
    IMCChannel *chctx = q->chctx + ch;
 | 
						|
 | 
						|
 | 
						|
    /* Check the frame header */
 | 
						|
    imc_hdr = get_bits(&q->gb, 9);
 | 
						|
    if (imc_hdr & 0x18) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    stream_format_code = get_bits(&q->gb, 3);
 | 
						|
 | 
						|
    if (stream_format_code & 1) {
 | 
						|
        av_log_ask_for_sample(avctx, "Stream format %X is not supported\n",
 | 
						|
                              stream_format_code);
 | 
						|
        return AVERROR_PATCHWELCOME;
 | 
						|
    }
 | 
						|
 | 
						|
    if (stream_format_code & 0x04)
 | 
						|
        chctx->decoder_reset = 1;
 | 
						|
 | 
						|
    if (chctx->decoder_reset) {
 | 
						|
        for (i = 0; i < BANDS; i++)
 | 
						|
            chctx->old_floor[i] = 1.0;
 | 
						|
        for (i = 0; i < COEFFS; i++)
 | 
						|
            chctx->CWdecoded[i] = 0;
 | 
						|
        chctx->decoder_reset = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    flag = get_bits1(&q->gb);
 | 
						|
    imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
 | 
						|
 | 
						|
    if (stream_format_code & 0x4)
 | 
						|
        imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
 | 
						|
                                      chctx->flcoeffs1, chctx->flcoeffs2);
 | 
						|
    else
 | 
						|
        imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
 | 
						|
                                       chctx->flcoeffs1, chctx->flcoeffs2);
 | 
						|
 | 
						|
    memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
 | 
						|
 | 
						|
    counter = 0;
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        if (chctx->levlCoeffBuf[i] == 16) {
 | 
						|
            chctx->bandWidthT[i] = 0;
 | 
						|
            counter++;
 | 
						|
        } else
 | 
						|
            chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
 | 
						|
    }
 | 
						|
    memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
 | 
						|
    for (i = 0; i < BANDS - 1; i++) {
 | 
						|
        if (chctx->bandWidthT[i])
 | 
						|
            chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
 | 
						|
    }
 | 
						|
 | 
						|
    imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2, chctx->bandWidthT, chctx->flcoeffs3, chctx->flcoeffs5);
 | 
						|
 | 
						|
    bitscount = 0;
 | 
						|
    /* first 4 bands will be assigned 5 bits per coefficient */
 | 
						|
    if (stream_format_code & 0x2) {
 | 
						|
        bitscount += 15;
 | 
						|
 | 
						|
        chctx->bitsBandT[0] = 5;
 | 
						|
        chctx->CWlengthT[0] = 5;
 | 
						|
        chctx->CWlengthT[1] = 5;
 | 
						|
        chctx->CWlengthT[2] = 5;
 | 
						|
        for (i = 1; i < 4; i++) {
 | 
						|
            bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
 | 
						|
            chctx->bitsBandT[i] = bits;
 | 
						|
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
 | 
						|
                chctx->CWlengthT[j] = bits;
 | 
						|
                bitscount      += bits;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (avctx->codec_id == AV_CODEC_ID_IAC) {
 | 
						|
        bitscount += !!chctx->bandWidthT[BANDS - 1];
 | 
						|
        if (!(stream_format_code & 0x2))
 | 
						|
            bitscount += 16;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((ret = bit_allocation(q, chctx, stream_format_code,
 | 
						|
                              512 - bitscount - get_bits_count(&q->gb),
 | 
						|
                              flag)) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
 | 
						|
        chctx->decoder_reset = 1;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        chctx->sumLenArr[i]   = 0;
 | 
						|
        chctx->skipFlagRaw[i] = 0;
 | 
						|
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
 | 
						|
            chctx->sumLenArr[i] += chctx->CWlengthT[j];
 | 
						|
        if (chctx->bandFlagsBuf[i])
 | 
						|
            if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
 | 
						|
                chctx->skipFlagRaw[i] = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    imc_get_skip_coeff(q, chctx);
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
 | 
						|
        /* band has flag set and at least one coded coefficient */
 | 
						|
        if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
 | 
						|
            chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
 | 
						|
                                   q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate bits left, bits needed and adjust bit allocation */
 | 
						|
    bits = summer = 0;
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        if (chctx->bandFlagsBuf[i]) {
 | 
						|
            for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
 | 
						|
                if (chctx->skipFlags[j]) {
 | 
						|
                    summer += chctx->CWlengthT[j];
 | 
						|
                    chctx->CWlengthT[j] = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            bits   += chctx->skipFlagBits[i];
 | 
						|
            summer -= chctx->skipFlagBits[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    imc_adjust_bit_allocation(q, chctx, summer);
 | 
						|
 | 
						|
    for (i = 0; i < BANDS; i++) {
 | 
						|
        chctx->sumLenArr[i] = 0;
 | 
						|
 | 
						|
        for (j = band_tab[i]; j < band_tab[i + 1]; j++)
 | 
						|
            if (!chctx->skipFlags[j])
 | 
						|
                chctx->sumLenArr[i] += chctx->CWlengthT[j];
 | 
						|
    }
 | 
						|
 | 
						|
    memset(chctx->codewords, 0, sizeof(chctx->codewords));
 | 
						|
 | 
						|
    if (imc_get_coeffs(q, chctx) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
 | 
						|
        chctx->decoder_reset = 1;
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
 | 
						|
        chctx->decoder_reset = 1;
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
 | 
						|
 | 
						|
    imc_imdct256(q, chctx, avctx->channels);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int imc_decode_frame(AVCodecContext *avctx, void *data,
 | 
						|
                            int *got_frame_ptr, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf = avpkt->data;
 | 
						|
    int buf_size = avpkt->size;
 | 
						|
    int ret, i;
 | 
						|
 | 
						|
    IMCContext *q = avctx->priv_data;
 | 
						|
 | 
						|
    LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2]);
 | 
						|
 | 
						|
    if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /* get output buffer */
 | 
						|
    q->frame.nb_samples = COEFFS;
 | 
						|
    if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < avctx->channels; i++) {
 | 
						|
        q->out_samples = (float *)q->frame.extended_data[i];
 | 
						|
 | 
						|
        q->dsp.bswap16_buf(buf16, (const uint16_t*)buf, IMC_BLOCK_SIZE / 2);
 | 
						|
 | 
						|
        init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
 | 
						|
 | 
						|
        buf += IMC_BLOCK_SIZE;
 | 
						|
 | 
						|
        if ((ret = imc_decode_block(avctx, q, i)) < 0)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->channels == 2) {
 | 
						|
        q->dsp.butterflies_float((float *)q->frame.extended_data[0],
 | 
						|
                                 (float *)q->frame.extended_data[1], COEFFS);
 | 
						|
    }
 | 
						|
 | 
						|
    *got_frame_ptr   = 1;
 | 
						|
    *(AVFrame *)data = q->frame;
 | 
						|
 | 
						|
    return IMC_BLOCK_SIZE * avctx->channels;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int imc_decode_close(AVCodecContext * avctx)
 | 
						|
{
 | 
						|
    IMCContext *q = avctx->priv_data;
 | 
						|
 | 
						|
    ff_fft_end(&q->fft);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_IMC_DECODER
 | 
						|
AVCodec ff_imc_decoder = {
 | 
						|
    .name           = "imc",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_IMC,
 | 
						|
    .priv_data_size = sizeof(IMCContext),
 | 
						|
    .init           = imc_decode_init,
 | 
						|
    .close          = imc_decode_close,
 | 
						|
    .decode         = imc_decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
 | 
						|
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | 
						|
                                                      AV_SAMPLE_FMT_NONE },
 | 
						|
};
 | 
						|
#endif
 | 
						|
#if CONFIG_IAC_DECODER
 | 
						|
AVCodec ff_iac_decoder = {
 | 
						|
    .name           = "iac",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_IAC,
 | 
						|
    .priv_data_size = sizeof(IMCContext),
 | 
						|
    .init           = imc_decode_init,
 | 
						|
    .close          = imc_decode_close,
 | 
						|
    .decode         = imc_decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
 | 
						|
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
 | 
						|
                                                      AV_SAMPLE_FMT_NONE },
 | 
						|
};
 | 
						|
#endif
 |