2402 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2402 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * The simplest AC-3 encoder
 | 
						|
 * Copyright (c) 2000 Fabrice Bellard
 | 
						|
 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 | 
						|
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 | 
						|
 *
 | 
						|
 * This file is part of Libav.
 | 
						|
 *
 | 
						|
 * Libav is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libav is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with Libav; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * The simplest AC-3 encoder.
 | 
						|
 */
 | 
						|
 | 
						|
//#define ASSERT_LEVEL 2
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include "libavutil/audioconvert.h"
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "libavutil/avstring.h"
 | 
						|
#include "libavutil/crc.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "ac3dsp.h"
 | 
						|
#include "ac3.h"
 | 
						|
#include "audioconvert.h"
 | 
						|
#include "fft.h"
 | 
						|
#include "ac3enc.h"
 | 
						|
#include "eac3enc.h"
 | 
						|
 | 
						|
typedef struct AC3Mant {
 | 
						|
    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
 | 
						|
    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
 | 
						|
} AC3Mant;
 | 
						|
 | 
						|
#define CMIXLEV_NUM_OPTIONS 3
 | 
						|
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
 | 
						|
    LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
 | 
						|
};
 | 
						|
 | 
						|
#define SURMIXLEV_NUM_OPTIONS 3
 | 
						|
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
 | 
						|
    LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
 | 
						|
};
 | 
						|
 | 
						|
#define EXTMIXLEV_NUM_OPTIONS 8
 | 
						|
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
 | 
						|
    LEVEL_PLUS_3DB,  LEVEL_PLUS_1POINT5DB,  LEVEL_ONE,       LEVEL_MINUS_4POINT5DB,
 | 
						|
    LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * LUT for number of exponent groups.
 | 
						|
 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
 | 
						|
 */
 | 
						|
static uint8_t exponent_group_tab[2][3][256];
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * List of supported channel layouts.
 | 
						|
 */
 | 
						|
const int64_t ff_ac3_channel_layouts[19] = {
 | 
						|
     AV_CH_LAYOUT_MONO,
 | 
						|
     AV_CH_LAYOUT_STEREO,
 | 
						|
     AV_CH_LAYOUT_2_1,
 | 
						|
     AV_CH_LAYOUT_SURROUND,
 | 
						|
     AV_CH_LAYOUT_2_2,
 | 
						|
     AV_CH_LAYOUT_QUAD,
 | 
						|
     AV_CH_LAYOUT_4POINT0,
 | 
						|
     AV_CH_LAYOUT_5POINT0,
 | 
						|
     AV_CH_LAYOUT_5POINT0_BACK,
 | 
						|
    (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
 | 
						|
    (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
 | 
						|
     AV_CH_LAYOUT_5POINT1,
 | 
						|
     AV_CH_LAYOUT_5POINT1_BACK,
 | 
						|
     0
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * LUT to select the bandwidth code based on the bit rate, sample rate, and
 | 
						|
 * number of full-bandwidth channels.
 | 
						|
 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
 | 
						|
 */
 | 
						|
static const uint8_t ac3_bandwidth_tab[5][3][19] = {
 | 
						|
//      32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 576 640
 | 
						|
 | 
						|
    { {  0,  0,  0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
 | 
						|
      {  0,  0,  0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
 | 
						|
      {  0,  0,  0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
 | 
						|
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
 | 
						|
      {  0,  0,  0,  0,  0,  0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
 | 
						|
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
 | 
						|
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
 | 
						|
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  8, 20, 32, 40, 48, 48, 48, 48 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 12, 24, 36, 44, 56, 56, 56, 56 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 28, 44, 60, 60, 60, 60, 60, 60 } }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * LUT to select the coupling start band based on the bit rate, sample rate, and
 | 
						|
 * number of full-bandwidth channels. -1 = coupling off
 | 
						|
 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
 | 
						|
 *
 | 
						|
 * TODO: more testing for optimal parameters.
 | 
						|
 *       multi-channel tests at 44.1kHz and 32kHz.
 | 
						|
 */
 | 
						|
static const int8_t ac3_coupling_start_tab[6][3][19] = {
 | 
						|
//      32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 576 640
 | 
						|
 | 
						|
    // 2/0
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  1,  1,  7,  8, 11, 12, -1, -1, -1, -1, -1, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  1,  3,  5,  7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
 | 
						|
      {  0,  0,  0,  0,  1,  2,  2,  9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
 | 
						|
    // 3/0
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
 | 
						|
      { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
 | 
						|
    // 2/1 - untested
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  2,  2,  6,  9, 11, 12, 13, -1, -1, -1, -1 },
 | 
						|
      { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
 | 
						|
    // 3/1
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
 | 
						|
      { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
 | 
						|
    // 2/2 - untested
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  3,  2, 10, 11, 11, 12, 12, 14, -1 },
 | 
						|
      { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
 | 
						|
    // 3/2
 | 
						|
    { {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  6,  8, 11, 12, 12, -1, -1 },
 | 
						|
      {  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  6,  8, 11, 12, 12, -1, -1 },
 | 
						|
      { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Adjust the frame size to make the average bit rate match the target bit rate.
 | 
						|
 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
 | 
						|
 */
 | 
						|
static void adjust_frame_size(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
 | 
						|
        s->bits_written    -= s->bit_rate;
 | 
						|
        s->samples_written -= s->sample_rate;
 | 
						|
    }
 | 
						|
    s->frame_size = s->frame_size_min +
 | 
						|
                    2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
 | 
						|
    s->bits_written    += s->frame_size * 8;
 | 
						|
    s->samples_written += AC3_FRAME_SIZE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void compute_coupling_strategy(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    int got_cpl_snr;
 | 
						|
 | 
						|
    /* set coupling use flags for each block/channel */
 | 
						|
    /* TODO: turn coupling on/off and adjust start band based on bit usage */
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++)
 | 
						|
            block->channel_in_cpl[ch] = s->cpl_on;
 | 
						|
    }
 | 
						|
 | 
						|
    /* enable coupling for each block if at least 2 channels have coupling
 | 
						|
       enabled for that block */
 | 
						|
    got_cpl_snr = 0;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        block->num_cpl_channels = 0;
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++)
 | 
						|
            block->num_cpl_channels += block->channel_in_cpl[ch];
 | 
						|
        block->cpl_in_use = block->num_cpl_channels > 1;
 | 
						|
        if (!block->cpl_in_use) {
 | 
						|
            block->num_cpl_channels = 0;
 | 
						|
            for (ch = 1; ch <= s->fbw_channels; ch++)
 | 
						|
                block->channel_in_cpl[ch] = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        block->new_cpl_strategy = !blk;
 | 
						|
        if (blk) {
 | 
						|
            for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
                if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
 | 
						|
                    block->new_cpl_strategy = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        block->new_cpl_leak = block->new_cpl_strategy;
 | 
						|
 | 
						|
        if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
 | 
						|
            block->new_snr_offsets = 1;
 | 
						|
            if (block->cpl_in_use)
 | 
						|
                got_cpl_snr = 1;
 | 
						|
        } else {
 | 
						|
            block->new_snr_offsets = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* set bandwidth for each channel */
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (block->channel_in_cpl[ch])
 | 
						|
                block->end_freq[ch] = s->start_freq[CPL_CH];
 | 
						|
            else
 | 
						|
                block->end_freq[ch] = s->bandwidth_code * 3 + 73;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Apply stereo rematrixing to coefficients based on rematrixing flags.
 | 
						|
 */
 | 
						|
static void apply_rematrixing(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int nb_coefs;
 | 
						|
    int blk, bnd, i;
 | 
						|
    int start, end;
 | 
						|
    uint8_t *flags;
 | 
						|
 | 
						|
    if (!s->rematrixing_enabled)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        if (block->new_rematrixing_strategy)
 | 
						|
            flags = block->rematrixing_flags;
 | 
						|
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
 | 
						|
        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
 | 
						|
            if (flags[bnd]) {
 | 
						|
                start = ff_ac3_rematrix_band_tab[bnd];
 | 
						|
                end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
 | 
						|
                for (i = start; i < end; i++) {
 | 
						|
                    int32_t lt = block->fixed_coef[1][i];
 | 
						|
                    int32_t rt = block->fixed_coef[2][i];
 | 
						|
                    block->fixed_coef[1][i] = (lt + rt) >> 1;
 | 
						|
                    block->fixed_coef[2][i] = (lt - rt) >> 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize exponent tables.
 | 
						|
 */
 | 
						|
static av_cold void exponent_init(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int expstr, i, grpsize;
 | 
						|
 | 
						|
    for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
 | 
						|
        grpsize = 3 << expstr;
 | 
						|
        for (i = 12; i < 256; i++) {
 | 
						|
            exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
 | 
						|
            exponent_group_tab[1][expstr][i] = (i              ) / grpsize;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* LFE */
 | 
						|
    exponent_group_tab[0][0][7] = 2;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Extract exponents from the MDCT coefficients.
 | 
						|
 * This takes into account the normalization that was done to the input samples
 | 
						|
 * by adjusting the exponents by the exponent shift values.
 | 
						|
 */
 | 
						|
static void extract_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch        = !s->cpl_on;
 | 
						|
    int chan_size = AC3_MAX_COEFS * AC3_MAX_BLOCKS * (s->channels - ch + 1);
 | 
						|
    AC3Block *block = &s->blocks[0];
 | 
						|
 | 
						|
    s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Exponent Difference Threshold.
 | 
						|
 * New exponents are sent if their SAD exceed this number.
 | 
						|
 */
 | 
						|
#define EXP_DIFF_THRESHOLD 500
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate exponent strategies for all channels.
 | 
						|
 * Array arrangement is reversed to simplify the per-channel calculation.
 | 
						|
 */
 | 
						|
static void compute_exp_strategy(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, blk, blk1;
 | 
						|
 | 
						|
    for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
 | 
						|
        uint8_t *exp_strategy = s->exp_strategy[ch];
 | 
						|
        uint8_t *exp          = s->blocks[0].exp[ch];
 | 
						|
        int exp_diff;
 | 
						|
 | 
						|
        /* estimate if the exponent variation & decide if they should be
 | 
						|
           reused in the next frame */
 | 
						|
        exp_strategy[0] = EXP_NEW;
 | 
						|
        exp += AC3_MAX_COEFS;
 | 
						|
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++, exp += AC3_MAX_COEFS) {
 | 
						|
            if ((ch == CPL_CH && (!s->blocks[blk].cpl_in_use || !s->blocks[blk-1].cpl_in_use)) ||
 | 
						|
                (ch  > CPL_CH && (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]))) {
 | 
						|
                exp_strategy[blk] = EXP_NEW;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
 | 
						|
            exp_strategy[blk] = EXP_REUSE;
 | 
						|
            if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
 | 
						|
                exp_strategy[blk] = EXP_NEW;
 | 
						|
            else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
 | 
						|
                exp_strategy[blk] = EXP_NEW;
 | 
						|
        }
 | 
						|
 | 
						|
        /* now select the encoding strategy type : if exponents are often
 | 
						|
           recoded, we use a coarse encoding */
 | 
						|
        blk = 0;
 | 
						|
        while (blk < AC3_MAX_BLOCKS) {
 | 
						|
            blk1 = blk + 1;
 | 
						|
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
 | 
						|
                blk1++;
 | 
						|
            switch (blk1 - blk) {
 | 
						|
            case 1:  exp_strategy[blk] = EXP_D45; break;
 | 
						|
            case 2:
 | 
						|
            case 3:  exp_strategy[blk] = EXP_D25; break;
 | 
						|
            default: exp_strategy[blk] = EXP_D15; break;
 | 
						|
            }
 | 
						|
            blk = blk1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (s->lfe_on) {
 | 
						|
        ch = s->lfe_channel;
 | 
						|
        s->exp_strategy[ch][0] = EXP_D15;
 | 
						|
        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->exp_strategy[ch][blk] = EXP_REUSE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Update the exponents so that they are the ones the decoder will decode.
 | 
						|
 */
 | 
						|
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
 | 
						|
                                    int cpl)
 | 
						|
{
 | 
						|
    int nb_groups, i, k;
 | 
						|
 | 
						|
    nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
 | 
						|
 | 
						|
    /* for each group, compute the minimum exponent */
 | 
						|
    switch(exp_strategy) {
 | 
						|
    case EXP_D25:
 | 
						|
        for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
 | 
						|
            uint8_t exp_min = exp[k];
 | 
						|
            if (exp[k+1] < exp_min)
 | 
						|
                exp_min = exp[k+1];
 | 
						|
            exp[i-cpl] = exp_min;
 | 
						|
            k += 2;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXP_D45:
 | 
						|
        for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
 | 
						|
            uint8_t exp_min = exp[k];
 | 
						|
            if (exp[k+1] < exp_min)
 | 
						|
                exp_min = exp[k+1];
 | 
						|
            if (exp[k+2] < exp_min)
 | 
						|
                exp_min = exp[k+2];
 | 
						|
            if (exp[k+3] < exp_min)
 | 
						|
                exp_min = exp[k+3];
 | 
						|
            exp[i-cpl] = exp_min;
 | 
						|
            k += 4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* constraint for DC exponent */
 | 
						|
    if (!cpl && exp[0] > 15)
 | 
						|
        exp[0] = 15;
 | 
						|
 | 
						|
    /* decrease the delta between each groups to within 2 so that they can be
 | 
						|
       differentially encoded */
 | 
						|
    for (i = 1; i <= nb_groups; i++)
 | 
						|
        exp[i] = FFMIN(exp[i], exp[i-1] + 2);
 | 
						|
    i--;
 | 
						|
    while (--i >= 0)
 | 
						|
        exp[i] = FFMIN(exp[i], exp[i+1] + 2);
 | 
						|
 | 
						|
    if (cpl)
 | 
						|
        exp[-1] = exp[0] & ~1;
 | 
						|
 | 
						|
    /* now we have the exponent values the decoder will see */
 | 
						|
    switch (exp_strategy) {
 | 
						|
    case EXP_D25:
 | 
						|
        for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
 | 
						|
            uint8_t exp1 = exp[i-cpl];
 | 
						|
            exp[k--] = exp1;
 | 
						|
            exp[k--] = exp1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXP_D45:
 | 
						|
        for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
 | 
						|
            exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
 | 
						|
            k -= 4;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode exponents from original extracted form to what the decoder will see.
 | 
						|
 * This copies and groups exponents based on exponent strategy and reduces
 | 
						|
 * deltas between adjacent exponent groups so that they can be differentially
 | 
						|
 * encoded.
 | 
						|
 */
 | 
						|
static void encode_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, blk1, ch, cpl;
 | 
						|
    uint8_t *exp, *exp_strategy;
 | 
						|
    int nb_coefs, num_reuse_blocks;
 | 
						|
 | 
						|
    for (ch = !s->cpl_on; ch <= s->channels; ch++) {
 | 
						|
        exp          = s->blocks[0].exp[ch] + s->start_freq[ch];
 | 
						|
        exp_strategy = s->exp_strategy[ch];
 | 
						|
 | 
						|
        cpl = (ch == CPL_CH);
 | 
						|
        blk = 0;
 | 
						|
        while (blk < AC3_MAX_BLOCKS) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            if (cpl && !block->cpl_in_use) {
 | 
						|
                exp += AC3_MAX_COEFS;
 | 
						|
                blk++;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            nb_coefs = block->end_freq[ch] - s->start_freq[ch];
 | 
						|
            blk1 = blk + 1;
 | 
						|
 | 
						|
            /* count the number of EXP_REUSE blocks after the current block
 | 
						|
               and set exponent reference block numbers */
 | 
						|
            s->exp_ref_block[ch][blk] = blk;
 | 
						|
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) {
 | 
						|
                s->exp_ref_block[ch][blk1] = blk;
 | 
						|
                blk1++;
 | 
						|
            }
 | 
						|
            num_reuse_blocks = blk1 - blk - 1;
 | 
						|
 | 
						|
            /* for the EXP_REUSE case we select the min of the exponents */
 | 
						|
            s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
 | 
						|
                                       AC3_MAX_COEFS);
 | 
						|
 | 
						|
            encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
 | 
						|
 | 
						|
            exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
 | 
						|
            blk = blk1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* reference block numbers have been changed, so reset ref_bap_set */
 | 
						|
    s->ref_bap_set = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Group exponents.
 | 
						|
 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
 | 
						|
 * varies depending on exponent strategy and bandwidth.
 | 
						|
 */
 | 
						|
static void group_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch, i, cpl;
 | 
						|
    int group_size, nb_groups, bit_count;
 | 
						|
    uint8_t *p;
 | 
						|
    int delta0, delta1, delta2;
 | 
						|
    int exp0, exp1;
 | 
						|
 | 
						|
    bit_count = 0;
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
 | 
						|
            int exp_strategy = s->exp_strategy[ch][blk];
 | 
						|
            if (exp_strategy == EXP_REUSE)
 | 
						|
                continue;
 | 
						|
            cpl = (ch == CPL_CH);
 | 
						|
            group_size = exp_strategy + (exp_strategy == EXP_D45);
 | 
						|
            nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
 | 
						|
            bit_count += 4 + (nb_groups * 7);
 | 
						|
            p = block->exp[ch] + s->start_freq[ch] - cpl;
 | 
						|
 | 
						|
            /* DC exponent */
 | 
						|
            exp1 = *p++;
 | 
						|
            block->grouped_exp[ch][0] = exp1;
 | 
						|
 | 
						|
            /* remaining exponents are delta encoded */
 | 
						|
            for (i = 1; i <= nb_groups; i++) {
 | 
						|
                /* merge three delta in one code */
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta0 = exp1 - exp0 + 2;
 | 
						|
                av_assert2(delta0 >= 0 && delta0 <= 4);
 | 
						|
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta1 = exp1 - exp0 + 2;
 | 
						|
                av_assert2(delta1 >= 0 && delta1 <= 4);
 | 
						|
 | 
						|
                exp0   = exp1;
 | 
						|
                exp1   = p[0];
 | 
						|
                p     += group_size;
 | 
						|
                delta2 = exp1 - exp0 + 2;
 | 
						|
                av_assert2(delta2 >= 0 && delta2 <= 4);
 | 
						|
 | 
						|
                block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->exponent_bits = bit_count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
 | 
						|
 * Extract exponents from MDCT coefficients, calculate exponent strategies,
 | 
						|
 * and encode final exponents.
 | 
						|
 */
 | 
						|
static void process_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    extract_exponents(s);
 | 
						|
 | 
						|
    compute_exp_strategy(s);
 | 
						|
 | 
						|
    encode_exponents(s);
 | 
						|
 | 
						|
    group_exponents(s);
 | 
						|
 | 
						|
    emms_c();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Count frame bits that are based solely on fixed parameters.
 | 
						|
 * This only has to be run once when the encoder is initialized.
 | 
						|
 */
 | 
						|
static void count_frame_bits_fixed(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
 | 
						|
    int blk;
 | 
						|
    int frame_bits;
 | 
						|
 | 
						|
    /* assumptions:
 | 
						|
     *   no dynamic range codes
 | 
						|
     *   bit allocation parameters do not change between blocks
 | 
						|
     *   no delta bit allocation
 | 
						|
     *   no skipped data
 | 
						|
     *   no auxilliary data
 | 
						|
     *   no E-AC-3 metadata
 | 
						|
     */
 | 
						|
 | 
						|
    /* header */
 | 
						|
    frame_bits = 16; /* sync info */
 | 
						|
    if (s->eac3) {
 | 
						|
        /* bitstream info header */
 | 
						|
        frame_bits += 35;
 | 
						|
        frame_bits += 1 + 1 + 1;
 | 
						|
        /* audio frame header */
 | 
						|
        frame_bits += 2;
 | 
						|
        frame_bits += 10;
 | 
						|
        /* exponent strategy */
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            frame_bits += 2 * s->fbw_channels + s->lfe_on;
 | 
						|
        /* converter exponent strategy */
 | 
						|
        frame_bits += s->fbw_channels * 5;
 | 
						|
        /* snr offsets */
 | 
						|
        frame_bits += 10;
 | 
						|
        /* block start info */
 | 
						|
        frame_bits++;
 | 
						|
    } else {
 | 
						|
        frame_bits += 49;
 | 
						|
        frame_bits += frame_bits_inc[s->channel_mode];
 | 
						|
    }
 | 
						|
 | 
						|
    /* audio blocks */
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        if (!s->eac3) {
 | 
						|
            /* block switch flags */
 | 
						|
            frame_bits += s->fbw_channels;
 | 
						|
 | 
						|
            /* dither flags */
 | 
						|
            frame_bits += s->fbw_channels;
 | 
						|
        }
 | 
						|
 | 
						|
        /* dynamic range */
 | 
						|
        frame_bits++;
 | 
						|
 | 
						|
        /* spectral extension */
 | 
						|
        if (s->eac3)
 | 
						|
            frame_bits++;
 | 
						|
 | 
						|
        if (!s->eac3) {
 | 
						|
            /* exponent strategy */
 | 
						|
            frame_bits += 2 * s->fbw_channels;
 | 
						|
            if (s->lfe_on)
 | 
						|
                frame_bits++;
 | 
						|
 | 
						|
            /* bit allocation params */
 | 
						|
            frame_bits++;
 | 
						|
            if (!blk)
 | 
						|
                frame_bits += 2 + 2 + 2 + 2 + 3;
 | 
						|
        }
 | 
						|
 | 
						|
        /* converter snr offset */
 | 
						|
        if (s->eac3)
 | 
						|
            frame_bits++;
 | 
						|
 | 
						|
        if (!s->eac3) {
 | 
						|
            /* delta bit allocation */
 | 
						|
            frame_bits++;
 | 
						|
 | 
						|
            /* skipped data */
 | 
						|
            frame_bits++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* auxiliary data */
 | 
						|
    frame_bits++;
 | 
						|
 | 
						|
    /* CRC */
 | 
						|
    frame_bits += 1 + 16;
 | 
						|
 | 
						|
    s->frame_bits_fixed = frame_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize bit allocation.
 | 
						|
 * Set default parameter codes and calculate parameter values.
 | 
						|
 */
 | 
						|
static void bit_alloc_init(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
 | 
						|
    /* init default parameters */
 | 
						|
    s->slow_decay_code = 2;
 | 
						|
    s->fast_decay_code = 1;
 | 
						|
    s->slow_gain_code  = 1;
 | 
						|
    s->db_per_bit_code = s->eac3 ? 2 : 3;
 | 
						|
    s->floor_code      = 7;
 | 
						|
    for (ch = 0; ch <= s->channels; ch++)
 | 
						|
        s->fast_gain_code[ch] = 4;
 | 
						|
 | 
						|
    /* initial snr offset */
 | 
						|
    s->coarse_snr_offset = 40;
 | 
						|
 | 
						|
    /* compute real values */
 | 
						|
    /* currently none of these values change during encoding, so we can just
 | 
						|
       set them once at initialization */
 | 
						|
    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
 | 
						|
    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
 | 
						|
    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
 | 
						|
    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
 | 
						|
    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
 | 
						|
    s->bit_alloc.cpl_fast_leak = 0;
 | 
						|
    s->bit_alloc.cpl_slow_leak = 0;
 | 
						|
 | 
						|
    count_frame_bits_fixed(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Count the bits used to encode the frame, minus exponents and mantissas.
 | 
						|
 * Bits based on fixed parameters have already been counted, so now we just
 | 
						|
 * have to add the bits based on parameters that change during encoding.
 | 
						|
 */
 | 
						|
static void count_frame_bits(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    AC3EncOptions *opt = &s->options;
 | 
						|
    int blk, ch;
 | 
						|
    int frame_bits = 0;
 | 
						|
 | 
						|
    /* header */
 | 
						|
    if (s->eac3) {
 | 
						|
        /* coupling */
 | 
						|
        if (s->channel_mode > AC3_CHMODE_MONO) {
 | 
						|
            frame_bits++;
 | 
						|
            for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
                AC3Block *block = &s->blocks[blk];
 | 
						|
                frame_bits++;
 | 
						|
                if (block->new_cpl_strategy)
 | 
						|
                    frame_bits++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* coupling exponent strategy */
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            frame_bits += 2 * s->blocks[blk].cpl_in_use;
 | 
						|
    } else {
 | 
						|
        if (opt->audio_production_info)
 | 
						|
            frame_bits += 7;
 | 
						|
        if (s->bitstream_id == 6) {
 | 
						|
            if (opt->extended_bsi_1)
 | 
						|
                frame_bits += 14;
 | 
						|
            if (opt->extended_bsi_2)
 | 
						|
                frame_bits += 14;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* audio blocks */
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
 | 
						|
        /* coupling strategy */
 | 
						|
        if (!s->eac3)
 | 
						|
            frame_bits++;
 | 
						|
        if (block->new_cpl_strategy) {
 | 
						|
            if (!s->eac3)
 | 
						|
                frame_bits++;
 | 
						|
            if (block->cpl_in_use) {
 | 
						|
                if (s->eac3)
 | 
						|
                    frame_bits++;
 | 
						|
                if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
 | 
						|
                    frame_bits += s->fbw_channels;
 | 
						|
                if (s->channel_mode == AC3_CHMODE_STEREO)
 | 
						|
                    frame_bits++;
 | 
						|
                frame_bits += 4 + 4;
 | 
						|
                if (s->eac3)
 | 
						|
                    frame_bits++;
 | 
						|
                else
 | 
						|
                    frame_bits += s->num_cpl_subbands - 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* coupling coordinates */
 | 
						|
        if (block->cpl_in_use) {
 | 
						|
            for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
                if (block->channel_in_cpl[ch]) {
 | 
						|
                    if (!s->eac3 || block->new_cpl_coords != 2)
 | 
						|
                        frame_bits++;
 | 
						|
                    if (block->new_cpl_coords) {
 | 
						|
                        frame_bits += 2;
 | 
						|
                        frame_bits += (4 + 4) * s->num_cpl_bands;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* stereo rematrixing */
 | 
						|
        if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
            if (!s->eac3 || blk > 0)
 | 
						|
                frame_bits++;
 | 
						|
            if (s->blocks[blk].new_rematrixing_strategy)
 | 
						|
                frame_bits += block->num_rematrixing_bands;
 | 
						|
        }
 | 
						|
 | 
						|
        /* bandwidth codes & gain range */
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (s->exp_strategy[ch][blk] != EXP_REUSE) {
 | 
						|
                if (!block->channel_in_cpl[ch])
 | 
						|
                    frame_bits += 6;
 | 
						|
                frame_bits += 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* coupling exponent strategy */
 | 
						|
        if (!s->eac3 && block->cpl_in_use)
 | 
						|
            frame_bits += 2;
 | 
						|
 | 
						|
        /* snr offsets and fast gain codes */
 | 
						|
        if (!s->eac3) {
 | 
						|
            frame_bits++;
 | 
						|
            if (block->new_snr_offsets)
 | 
						|
                frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
 | 
						|
        }
 | 
						|
 | 
						|
        /* coupling leak info */
 | 
						|
        if (block->cpl_in_use) {
 | 
						|
            if (!s->eac3 || block->new_cpl_leak != 2)
 | 
						|
                frame_bits++;
 | 
						|
            if (block->new_cpl_leak)
 | 
						|
                frame_bits += 3 + 3;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->frame_bits = s->frame_bits_fixed + frame_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate masking curve based on the final exponents.
 | 
						|
 * Also calculate the power spectral densities to use in future calculations.
 | 
						|
 */
 | 
						|
static void bit_alloc_masking(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
 | 
						|
            /* We only need psd and mask for calculating bap.
 | 
						|
               Since we currently do not calculate bap when exponent
 | 
						|
               strategy is EXP_REUSE we do not need to calculate psd or mask. */
 | 
						|
            if (s->exp_strategy[ch][blk] != EXP_REUSE) {
 | 
						|
                ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
 | 
						|
                                          block->end_freq[ch], block->psd[ch],
 | 
						|
                                          block->band_psd[ch]);
 | 
						|
                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
 | 
						|
                                           s->start_freq[ch], block->end_freq[ch],
 | 
						|
                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
 | 
						|
                                           ch == s->lfe_channel,
 | 
						|
                                           DBA_NONE, 0, NULL, NULL, NULL,
 | 
						|
                                           block->mask[ch]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Ensure that bap for each block and channel point to the current bap_buffer.
 | 
						|
 * They may have been switched during the bit allocation search.
 | 
						|
 */
 | 
						|
static void reset_block_bap(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    uint8_t *ref_bap;
 | 
						|
 | 
						|
    if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
 | 
						|
        return;
 | 
						|
 | 
						|
    ref_bap = s->bap_buffer;
 | 
						|
    for (ch = 0; ch <= s->channels; ch++) {
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
 | 
						|
        ref_bap += AC3_MAX_COEFS * AC3_MAX_BLOCKS;
 | 
						|
    }
 | 
						|
    s->ref_bap_set = 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize mantissa counts.
 | 
						|
 * These are set so that they are padded to the next whole group size when bits
 | 
						|
 * are counted in compute_mantissa_size.
 | 
						|
 */
 | 
						|
static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
 | 
						|
{
 | 
						|
    int blk;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
 | 
						|
        mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
 | 
						|
        mant_cnt[blk][4] = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
 | 
						|
 * range.
 | 
						|
 */
 | 
						|
static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
 | 
						|
                                          uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
 | 
						|
                                          int start, int end)
 | 
						|
{
 | 
						|
    int blk;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        if (ch == CPL_CH && !block->cpl_in_use)
 | 
						|
            continue;
 | 
						|
        s->ac3dsp.update_bap_counts(mant_cnt[blk],
 | 
						|
                                    s->ref_bap[ch][blk] + start,
 | 
						|
                                    FFMIN(end, block->end_freq[ch]) - start);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Count the number of mantissa bits in the frame based on the bap values.
 | 
						|
 */
 | 
						|
static int count_mantissa_bits(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, max_end_freq;
 | 
						|
    LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
 | 
						|
 | 
						|
    count_mantissa_bits_init(mant_cnt);
 | 
						|
 | 
						|
    max_end_freq = s->bandwidth_code * 3 + 73;
 | 
						|
    for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
 | 
						|
        count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
 | 
						|
                                      max_end_freq);
 | 
						|
 | 
						|
    return s->ac3dsp.compute_mantissa_size(mant_cnt);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Run the bit allocation with a given SNR offset.
 | 
						|
 * This calculates the bit allocation pointers that will be used to determine
 | 
						|
 * the quantization of each mantissa.
 | 
						|
 * @return the number of bits needed for mantissas if the given SNR offset is
 | 
						|
 *         is used.
 | 
						|
 */
 | 
						|
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
 | 
						|
    snr_offset = (snr_offset - 240) << 2;
 | 
						|
 | 
						|
    reset_block_bap(s);
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
 | 
						|
        for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
 | 
						|
            /* Currently the only bit allocation parameters which vary across
 | 
						|
               blocks within a frame are the exponent values.  We can take
 | 
						|
               advantage of that by reusing the bit allocation pointers
 | 
						|
               whenever we reuse exponents. */
 | 
						|
            if (s->exp_strategy[ch][blk] != EXP_REUSE) {
 | 
						|
                s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
 | 
						|
                                             s->start_freq[ch], block->end_freq[ch],
 | 
						|
                                             snr_offset, s->bit_alloc.floor,
 | 
						|
                                             ff_ac3_bap_tab, s->ref_bap[ch][blk]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count_mantissa_bits(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Constant bitrate bit allocation search.
 | 
						|
 * Find the largest SNR offset that will allow data to fit in the frame.
 | 
						|
 */
 | 
						|
static int cbr_bit_allocation(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
    int bits_left;
 | 
						|
    int snr_offset, snr_incr;
 | 
						|
 | 
						|
    bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
 | 
						|
    if (bits_left < 0)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
 | 
						|
    snr_offset = s->coarse_snr_offset << 4;
 | 
						|
 | 
						|
    /* if previous frame SNR offset was 1023, check if current frame can also
 | 
						|
       use SNR offset of 1023. if so, skip the search. */
 | 
						|
    if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
 | 
						|
        if (bit_alloc(s, 1023) <= bits_left)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    while (snr_offset >= 0 &&
 | 
						|
           bit_alloc(s, snr_offset) > bits_left) {
 | 
						|
        snr_offset -= 64;
 | 
						|
    }
 | 
						|
    if (snr_offset < 0)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
 | 
						|
    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
    for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
 | 
						|
        while (snr_offset + snr_incr <= 1023 &&
 | 
						|
               bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
 | 
						|
            snr_offset += snr_incr;
 | 
						|
            FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
 | 
						|
    reset_block_bap(s);
 | 
						|
 | 
						|
    s->coarse_snr_offset = snr_offset >> 4;
 | 
						|
    for (ch = !s->cpl_on; ch <= s->channels; ch++)
 | 
						|
        s->fine_snr_offset[ch] = snr_offset & 0xF;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Downgrade exponent strategies to reduce the bits used by the exponents.
 | 
						|
 * This is a fallback for when bit allocation fails with the normal exponent
 | 
						|
 * strategies.  Each time this function is run it only downgrades the
 | 
						|
 * strategy in 1 channel of 1 block.
 | 
						|
 * @return non-zero if downgrade was unsuccessful
 | 
						|
 */
 | 
						|
static int downgrade_exponents(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, blk;
 | 
						|
 | 
						|
    for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
 | 
						|
        for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (s->exp_strategy[ch][blk] == EXP_D15) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_D25;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
 | 
						|
        for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (s->exp_strategy[ch][blk] == EXP_D25) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_D45;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
 | 
						|
       the block number > 0 */
 | 
						|
    for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
 | 
						|
        for (ch = !s->blocks[blk].cpl_in_use; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (s->exp_strategy[ch][blk] > EXP_REUSE) {
 | 
						|
                s->exp_strategy[ch][blk] = EXP_REUSE;
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Perform bit allocation search.
 | 
						|
 * Finds the SNR offset value that maximizes quality and fits in the specified
 | 
						|
 * frame size.  Output is the SNR offset and a set of bit allocation pointers
 | 
						|
 * used to quantize the mantissas.
 | 
						|
 */
 | 
						|
static int compute_bit_allocation(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    count_frame_bits(s);
 | 
						|
 | 
						|
    bit_alloc_masking(s);
 | 
						|
 | 
						|
    ret = cbr_bit_allocation(s);
 | 
						|
    while (ret) {
 | 
						|
        /* fallback 1: disable channel coupling */
 | 
						|
        if (s->cpl_on) {
 | 
						|
            s->cpl_on = 0;
 | 
						|
            compute_coupling_strategy(s);
 | 
						|
            s->compute_rematrixing_strategy(s);
 | 
						|
            apply_rematrixing(s);
 | 
						|
            process_exponents(s);
 | 
						|
            ret = compute_bit_allocation(s);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* fallback 2: downgrade exponents */
 | 
						|
        if (!downgrade_exponents(s)) {
 | 
						|
            extract_exponents(s);
 | 
						|
            encode_exponents(s);
 | 
						|
            group_exponents(s);
 | 
						|
            ret = compute_bit_allocation(s);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* fallbacks were not enough... */
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Symmetric quantization on 'levels' levels.
 | 
						|
 */
 | 
						|
static inline int sym_quant(int c, int e, int levels)
 | 
						|
{
 | 
						|
    int v = (((levels * c) >> (24 - e)) + levels) >> 1;
 | 
						|
    av_assert2(v >= 0 && v < levels);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Asymmetric quantization on 2^qbits levels.
 | 
						|
 */
 | 
						|
static inline int asym_quant(int c, int e, int qbits)
 | 
						|
{
 | 
						|
    int lshift, m, v;
 | 
						|
 | 
						|
    lshift = e + qbits - 24;
 | 
						|
    if (lshift >= 0)
 | 
						|
        v = c << lshift;
 | 
						|
    else
 | 
						|
        v = c >> (-lshift);
 | 
						|
    /* rounding */
 | 
						|
    v = (v + 1) >> 1;
 | 
						|
    m = (1 << (qbits-1));
 | 
						|
    if (v >= m)
 | 
						|
        v = m - 1;
 | 
						|
    av_assert2(v >= -m);
 | 
						|
    return v & ((1 << qbits)-1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Quantize a set of mantissas for a single channel in a single block.
 | 
						|
 */
 | 
						|
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
 | 
						|
                                      uint8_t *exp, uint8_t *bap,
 | 
						|
                                      uint16_t *qmant, int start_freq,
 | 
						|
                                      int end_freq)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = start_freq; i < end_freq; i++) {
 | 
						|
        int v;
 | 
						|
        int c = fixed_coef[i];
 | 
						|
        int e = exp[i];
 | 
						|
        int b = bap[i];
 | 
						|
        switch (b) {
 | 
						|
        case 0:
 | 
						|
            v = 0;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            v = sym_quant(c, e, 3);
 | 
						|
            switch (s->mant1_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant1_ptr = &qmant[i];
 | 
						|
                v = 9 * v;
 | 
						|
                s->mant1_cnt = 1;
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                *s->qmant1_ptr += 3 * v;
 | 
						|
                s->mant1_cnt = 2;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant1_ptr += v;
 | 
						|
                s->mant1_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            v = sym_quant(c, e, 5);
 | 
						|
            switch (s->mant2_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant2_ptr = &qmant[i];
 | 
						|
                v = 25 * v;
 | 
						|
                s->mant2_cnt = 1;
 | 
						|
                break;
 | 
						|
            case 1:
 | 
						|
                *s->qmant2_ptr += 5 * v;
 | 
						|
                s->mant2_cnt = 2;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant2_ptr += v;
 | 
						|
                s->mant2_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            v = sym_quant(c, e, 7);
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            v = sym_quant(c, e, 11);
 | 
						|
            switch (s->mant4_cnt) {
 | 
						|
            case 0:
 | 
						|
                s->qmant4_ptr = &qmant[i];
 | 
						|
                v = 11 * v;
 | 
						|
                s->mant4_cnt = 1;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                *s->qmant4_ptr += v;
 | 
						|
                s->mant4_cnt = 0;
 | 
						|
                v = 128;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 5:
 | 
						|
            v = sym_quant(c, e, 15);
 | 
						|
            break;
 | 
						|
        case 14:
 | 
						|
            v = asym_quant(c, e, 14);
 | 
						|
            break;
 | 
						|
        case 15:
 | 
						|
            v = asym_quant(c, e, 16);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            v = asym_quant(c, e, b - 1);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        qmant[i] = v;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
 | 
						|
 */
 | 
						|
static void quantize_mantissas(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch, ch0=0, got_cpl;
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        AC3Mant m = { 0 };
 | 
						|
 | 
						|
        got_cpl = !block->cpl_in_use;
 | 
						|
        for (ch = 1; ch <= s->channels; ch++) {
 | 
						|
            if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
 | 
						|
                ch0     = ch - 1;
 | 
						|
                ch      = CPL_CH;
 | 
						|
                got_cpl = 1;
 | 
						|
            }
 | 
						|
            quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
 | 
						|
                                      s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
 | 
						|
                                      s->ref_bap[ch][blk], block->qmant[ch],
 | 
						|
                                      s->start_freq[ch], block->end_freq[ch]);
 | 
						|
            if (ch == CPL_CH)
 | 
						|
                ch = ch0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write the AC-3 frame header to the output bitstream.
 | 
						|
 */
 | 
						|
static void ac3_output_frame_header(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    AC3EncOptions *opt = &s->options;
 | 
						|
 | 
						|
    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
 | 
						|
    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
 | 
						|
    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
 | 
						|
    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
 | 
						|
    put_bits(&s->pb, 5,  s->bitstream_id);
 | 
						|
    put_bits(&s->pb, 3,  s->bitstream_mode);
 | 
						|
    put_bits(&s->pb, 3,  s->channel_mode);
 | 
						|
    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
 | 
						|
        put_bits(&s->pb, 2, s->center_mix_level);
 | 
						|
    if (s->channel_mode & 0x04)
 | 
						|
        put_bits(&s->pb, 2, s->surround_mix_level);
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO)
 | 
						|
        put_bits(&s->pb, 2, opt->dolby_surround_mode);
 | 
						|
    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
 | 
						|
    put_bits(&s->pb, 5, -opt->dialogue_level);
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no compression control word */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no lang code */
 | 
						|
    put_bits(&s->pb, 1, opt->audio_production_info);
 | 
						|
    if (opt->audio_production_info) {
 | 
						|
        put_bits(&s->pb, 5, opt->mixing_level - 80);
 | 
						|
        put_bits(&s->pb, 2, opt->room_type);
 | 
						|
    }
 | 
						|
    put_bits(&s->pb, 1, opt->copyright);
 | 
						|
    put_bits(&s->pb, 1, opt->original);
 | 
						|
    if (s->bitstream_id == 6) {
 | 
						|
        /* alternate bit stream syntax */
 | 
						|
        put_bits(&s->pb, 1, opt->extended_bsi_1);
 | 
						|
        if (opt->extended_bsi_1) {
 | 
						|
            put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
 | 
						|
            put_bits(&s->pb, 3, s->ltrt_center_mix_level);
 | 
						|
            put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
 | 
						|
            put_bits(&s->pb, 3, s->loro_center_mix_level);
 | 
						|
            put_bits(&s->pb, 3, s->loro_surround_mix_level);
 | 
						|
        }
 | 
						|
        put_bits(&s->pb, 1, opt->extended_bsi_2);
 | 
						|
        if (opt->extended_bsi_2) {
 | 
						|
            put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
 | 
						|
            put_bits(&s->pb, 2, opt->dolby_headphone_mode);
 | 
						|
            put_bits(&s->pb, 1, opt->ad_converter_type);
 | 
						|
            put_bits(&s->pb, 9, 0);     /* xbsi2 and encinfo : reserved */
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no time code 1 */
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no time code 2 */
 | 
						|
    }
 | 
						|
    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write one audio block to the output bitstream.
 | 
						|
 */
 | 
						|
static void output_audio_block(AC3EncodeContext *s, int blk)
 | 
						|
{
 | 
						|
    int ch, i, baie, bnd, got_cpl;
 | 
						|
    int av_uninit(ch0);
 | 
						|
    AC3Block *block = &s->blocks[blk];
 | 
						|
 | 
						|
    /* block switching */
 | 
						|
    if (!s->eac3) {
 | 
						|
        for (ch = 0; ch < s->fbw_channels; ch++)
 | 
						|
            put_bits(&s->pb, 1, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* dither flags */
 | 
						|
    if (!s->eac3) {
 | 
						|
        for (ch = 0; ch < s->fbw_channels; ch++)
 | 
						|
            put_bits(&s->pb, 1, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* dynamic range codes */
 | 
						|
    put_bits(&s->pb, 1, 0);
 | 
						|
 | 
						|
    /* spectral extension */
 | 
						|
    if (s->eac3)
 | 
						|
        put_bits(&s->pb, 1, 0);
 | 
						|
 | 
						|
    /* channel coupling */
 | 
						|
    if (!s->eac3)
 | 
						|
        put_bits(&s->pb, 1, block->new_cpl_strategy);
 | 
						|
    if (block->new_cpl_strategy) {
 | 
						|
        if (!s->eac3)
 | 
						|
            put_bits(&s->pb, 1, block->cpl_in_use);
 | 
						|
        if (block->cpl_in_use) {
 | 
						|
            int start_sub, end_sub;
 | 
						|
            if (s->eac3)
 | 
						|
                put_bits(&s->pb, 1, 0); /* enhanced coupling */
 | 
						|
            if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
 | 
						|
                for (ch = 1; ch <= s->fbw_channels; ch++)
 | 
						|
                    put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
 | 
						|
            }
 | 
						|
            if (s->channel_mode == AC3_CHMODE_STEREO)
 | 
						|
                put_bits(&s->pb, 1, 0); /* phase flags in use */
 | 
						|
            start_sub = (s->start_freq[CPL_CH] - 37) / 12;
 | 
						|
            end_sub   = (s->cpl_end_freq       - 37) / 12;
 | 
						|
            put_bits(&s->pb, 4, start_sub);
 | 
						|
            put_bits(&s->pb, 4, end_sub - 3);
 | 
						|
            /* coupling band structure */
 | 
						|
            if (s->eac3) {
 | 
						|
                put_bits(&s->pb, 1, 0); /* use default */
 | 
						|
            } else {
 | 
						|
                for (bnd = start_sub+1; bnd < end_sub; bnd++)
 | 
						|
                    put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* coupling coordinates */
 | 
						|
    if (block->cpl_in_use) {
 | 
						|
        for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
            if (block->channel_in_cpl[ch]) {
 | 
						|
                if (!s->eac3 || block->new_cpl_coords != 2)
 | 
						|
                    put_bits(&s->pb, 1, block->new_cpl_coords);
 | 
						|
                if (block->new_cpl_coords) {
 | 
						|
                    put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
 | 
						|
                    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
 | 
						|
                        put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
 | 
						|
                        put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* stereo rematrixing */
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
        if (!s->eac3 || blk > 0)
 | 
						|
            put_bits(&s->pb, 1, block->new_rematrixing_strategy);
 | 
						|
        if (block->new_rematrixing_strategy) {
 | 
						|
            /* rematrixing flags */
 | 
						|
            for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
 | 
						|
                put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* exponent strategy */
 | 
						|
    if (!s->eac3) {
 | 
						|
        for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
 | 
						|
            put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
 | 
						|
        if (s->lfe_on)
 | 
						|
            put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* bandwidth */
 | 
						|
    for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
        if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
 | 
						|
            put_bits(&s->pb, 6, s->bandwidth_code);
 | 
						|
    }
 | 
						|
 | 
						|
    /* exponents */
 | 
						|
    for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
 | 
						|
        int nb_groups;
 | 
						|
        int cpl = (ch == CPL_CH);
 | 
						|
 | 
						|
        if (s->exp_strategy[ch][blk] == EXP_REUSE)
 | 
						|
            continue;
 | 
						|
 | 
						|
        /* DC exponent */
 | 
						|
        put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
 | 
						|
 | 
						|
        /* exponent groups */
 | 
						|
        nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
 | 
						|
        for (i = 1; i <= nb_groups; i++)
 | 
						|
            put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
 | 
						|
 | 
						|
        /* gain range info */
 | 
						|
        if (ch != s->lfe_channel && !cpl)
 | 
						|
            put_bits(&s->pb, 2, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* bit allocation info */
 | 
						|
    if (!s->eac3) {
 | 
						|
        baie = (blk == 0);
 | 
						|
        put_bits(&s->pb, 1, baie);
 | 
						|
        if (baie) {
 | 
						|
            put_bits(&s->pb, 2, s->slow_decay_code);
 | 
						|
            put_bits(&s->pb, 2, s->fast_decay_code);
 | 
						|
            put_bits(&s->pb, 2, s->slow_gain_code);
 | 
						|
            put_bits(&s->pb, 2, s->db_per_bit_code);
 | 
						|
            put_bits(&s->pb, 3, s->floor_code);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* snr offset */
 | 
						|
    if (!s->eac3) {
 | 
						|
        put_bits(&s->pb, 1, block->new_snr_offsets);
 | 
						|
        if (block->new_snr_offsets) {
 | 
						|
            put_bits(&s->pb, 6, s->coarse_snr_offset);
 | 
						|
            for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
 | 
						|
                put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
 | 
						|
                put_bits(&s->pb, 3, s->fast_gain_code[ch]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        put_bits(&s->pb, 1, 0); /* no converter snr offset */
 | 
						|
    }
 | 
						|
 | 
						|
    /* coupling leak */
 | 
						|
    if (block->cpl_in_use) {
 | 
						|
        if (!s->eac3 || block->new_cpl_leak != 2)
 | 
						|
            put_bits(&s->pb, 1, block->new_cpl_leak);
 | 
						|
        if (block->new_cpl_leak) {
 | 
						|
            put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
 | 
						|
            put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->eac3) {
 | 
						|
        put_bits(&s->pb, 1, 0); /* no delta bit allocation */
 | 
						|
        put_bits(&s->pb, 1, 0); /* no data to skip */
 | 
						|
    }
 | 
						|
 | 
						|
    /* mantissas */
 | 
						|
    got_cpl = !block->cpl_in_use;
 | 
						|
    for (ch = 1; ch <= s->channels; ch++) {
 | 
						|
        int b, q;
 | 
						|
 | 
						|
        if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
 | 
						|
            ch0     = ch - 1;
 | 
						|
            ch      = CPL_CH;
 | 
						|
            got_cpl = 1;
 | 
						|
        }
 | 
						|
        for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
 | 
						|
            q = block->qmant[ch][i];
 | 
						|
            b = s->ref_bap[ch][blk][i];
 | 
						|
            switch (b) {
 | 
						|
            case 0:                                         break;
 | 
						|
            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
 | 
						|
            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
 | 
						|
            case 3:               put_bits(&s->pb,   3, q); break;
 | 
						|
            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
 | 
						|
            case 14:              put_bits(&s->pb,  14, q); break;
 | 
						|
            case 15:              put_bits(&s->pb,  16, q); break;
 | 
						|
            default:              put_bits(&s->pb, b-1, q); break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (ch == CPL_CH)
 | 
						|
            ch = ch0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** CRC-16 Polynomial */
 | 
						|
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
 | 
						|
 | 
						|
 | 
						|
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int c;
 | 
						|
 | 
						|
    c = 0;
 | 
						|
    while (a) {
 | 
						|
        if (a & 1)
 | 
						|
            c ^= b;
 | 
						|
        a = a >> 1;
 | 
						|
        b = b << 1;
 | 
						|
        if (b & (1 << 16))
 | 
						|
            b ^= poly;
 | 
						|
    }
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
 | 
						|
{
 | 
						|
    unsigned int r;
 | 
						|
    r = 1;
 | 
						|
    while (n) {
 | 
						|
        if (n & 1)
 | 
						|
            r = mul_poly(r, a, poly);
 | 
						|
        a = mul_poly(a, a, poly);
 | 
						|
        n >>= 1;
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Fill the end of the frame with 0's and compute the two CRCs.
 | 
						|
 */
 | 
						|
static void output_frame_end(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
 | 
						|
    int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
 | 
						|
    uint8_t *frame;
 | 
						|
 | 
						|
    frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
 | 
						|
 | 
						|
    /* pad the remainder of the frame with zeros */
 | 
						|
    av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    frame = s->pb.buf;
 | 
						|
    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
 | 
						|
    av_assert2(pad_bytes >= 0);
 | 
						|
    if (pad_bytes > 0)
 | 
						|
        memset(put_bits_ptr(&s->pb), 0, pad_bytes);
 | 
						|
 | 
						|
    if (s->eac3) {
 | 
						|
        /* compute crc2 */
 | 
						|
        crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
 | 
						|
    } else {
 | 
						|
    /* compute crc1 */
 | 
						|
    /* this is not so easy because it is at the beginning of the data... */
 | 
						|
    crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
 | 
						|
    crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
 | 
						|
    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
 | 
						|
    AV_WB16(frame + 2, crc1);
 | 
						|
 | 
						|
    /* compute crc2 */
 | 
						|
    crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
 | 
						|
                          s->frame_size - frame_size_58 - 3);
 | 
						|
    }
 | 
						|
    crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
 | 
						|
    /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
 | 
						|
    if (crc2 == 0x770B) {
 | 
						|
        frame[s->frame_size - 3] ^= 0x1;
 | 
						|
        crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
 | 
						|
    }
 | 
						|
    crc2 = av_bswap16(crc2);
 | 
						|
    AV_WB16(frame + s->frame_size - 2, crc2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write the frame to the output bitstream.
 | 
						|
 */
 | 
						|
static void output_frame(AC3EncodeContext *s, unsigned char *frame)
 | 
						|
{
 | 
						|
    int blk;
 | 
						|
 | 
						|
    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
 | 
						|
 | 
						|
    s->output_frame_header(s);
 | 
						|
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
        output_audio_block(s, blk);
 | 
						|
 | 
						|
    output_frame_end(s);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void dprint_options(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
#ifdef DEBUG
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    AC3EncOptions *opt = &s->options;
 | 
						|
    char strbuf[32];
 | 
						|
 | 
						|
    switch (s->bitstream_id) {
 | 
						|
    case  6:  av_strlcpy(strbuf, "AC-3 (alt syntax)",       32); break;
 | 
						|
    case  8:  av_strlcpy(strbuf, "AC-3 (standard)",         32); break;
 | 
						|
    case  9:  av_strlcpy(strbuf, "AC-3 (dnet half-rate)",   32); break;
 | 
						|
    case 10:  av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
 | 
						|
    case 16:  av_strlcpy(strbuf, "E-AC-3 (enhanced)",       32); break;
 | 
						|
    default: snprintf(strbuf, 32, "ERROR");
 | 
						|
    }
 | 
						|
    av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
 | 
						|
    av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
 | 
						|
    av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
 | 
						|
    av_dlog(avctx, "channel_layout: %s\n", strbuf);
 | 
						|
    av_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
 | 
						|
    av_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
 | 
						|
    if (s->cutoff)
 | 
						|
        av_dlog(avctx, "cutoff: %d\n", s->cutoff);
 | 
						|
 | 
						|
    av_dlog(avctx, "per_frame_metadata: %s\n",
 | 
						|
            opt->allow_per_frame_metadata?"on":"off");
 | 
						|
    if (s->has_center)
 | 
						|
        av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
 | 
						|
                s->center_mix_level);
 | 
						|
    else
 | 
						|
        av_dlog(avctx, "center_mixlev: {not written}\n");
 | 
						|
    if (s->has_surround)
 | 
						|
        av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
 | 
						|
                s->surround_mix_level);
 | 
						|
    else
 | 
						|
        av_dlog(avctx, "surround_mixlev: {not written}\n");
 | 
						|
    if (opt->audio_production_info) {
 | 
						|
        av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
 | 
						|
        switch (opt->room_type) {
 | 
						|
        case 0:  av_strlcpy(strbuf, "notindicated", 32); break;
 | 
						|
        case 1:  av_strlcpy(strbuf, "large", 32);        break;
 | 
						|
        case 2:  av_strlcpy(strbuf, "small", 32);        break;
 | 
						|
        default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
 | 
						|
        }
 | 
						|
        av_dlog(avctx, "room_type: %s\n", strbuf);
 | 
						|
    } else {
 | 
						|
        av_dlog(avctx, "mixing_level: {not written}\n");
 | 
						|
        av_dlog(avctx, "room_type: {not written}\n");
 | 
						|
    }
 | 
						|
    av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
 | 
						|
    av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
 | 
						|
    if (s->channel_mode == AC3_CHMODE_STEREO) {
 | 
						|
        switch (opt->dolby_surround_mode) {
 | 
						|
        case 0:  av_strlcpy(strbuf, "notindicated", 32); break;
 | 
						|
        case 1:  av_strlcpy(strbuf, "on", 32);           break;
 | 
						|
        case 2:  av_strlcpy(strbuf, "off", 32);          break;
 | 
						|
        default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
 | 
						|
        }
 | 
						|
        av_dlog(avctx, "dsur_mode: %s\n", strbuf);
 | 
						|
    } else {
 | 
						|
        av_dlog(avctx, "dsur_mode: {not written}\n");
 | 
						|
    }
 | 
						|
    av_dlog(avctx, "original: %s\n", opt->original?"on":"off");
 | 
						|
 | 
						|
    if (s->bitstream_id == 6) {
 | 
						|
        if (opt->extended_bsi_1) {
 | 
						|
            switch (opt->preferred_stereo_downmix) {
 | 
						|
            case 0:  av_strlcpy(strbuf, "notindicated", 32); break;
 | 
						|
            case 1:  av_strlcpy(strbuf, "ltrt", 32);         break;
 | 
						|
            case 2:  av_strlcpy(strbuf, "loro", 32);         break;
 | 
						|
            default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
 | 
						|
            }
 | 
						|
            av_dlog(avctx, "dmix_mode: %s\n", strbuf);
 | 
						|
            av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
 | 
						|
                    opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
 | 
						|
            av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
 | 
						|
                    opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
 | 
						|
            av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
 | 
						|
                    opt->loro_center_mix_level, s->loro_center_mix_level);
 | 
						|
            av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
 | 
						|
                    opt->loro_surround_mix_level, s->loro_surround_mix_level);
 | 
						|
        } else {
 | 
						|
            av_dlog(avctx, "extended bitstream info 1: {not written}\n");
 | 
						|
        }
 | 
						|
        if (opt->extended_bsi_2) {
 | 
						|
            switch (opt->dolby_surround_ex_mode) {
 | 
						|
            case 0:  av_strlcpy(strbuf, "notindicated", 32); break;
 | 
						|
            case 1:  av_strlcpy(strbuf, "on", 32);           break;
 | 
						|
            case 2:  av_strlcpy(strbuf, "off", 32);          break;
 | 
						|
            default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
 | 
						|
            }
 | 
						|
            av_dlog(avctx, "dsurex_mode: %s\n", strbuf);
 | 
						|
            switch (opt->dolby_headphone_mode) {
 | 
						|
            case 0:  av_strlcpy(strbuf, "notindicated", 32); break;
 | 
						|
            case 1:  av_strlcpy(strbuf, "on", 32);           break;
 | 
						|
            case 2:  av_strlcpy(strbuf, "off", 32);          break;
 | 
						|
            default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
 | 
						|
            }
 | 
						|
            av_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
 | 
						|
 | 
						|
            switch (opt->ad_converter_type) {
 | 
						|
            case 0:  av_strlcpy(strbuf, "standard", 32); break;
 | 
						|
            case 1:  av_strlcpy(strbuf, "hdcd", 32);     break;
 | 
						|
            default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
 | 
						|
            }
 | 
						|
            av_dlog(avctx, "ad_conv_type: %s\n", strbuf);
 | 
						|
        } else {
 | 
						|
            av_dlog(avctx, "extended bitstream info 2: {not written}\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define FLT_OPTION_THRESHOLD 0.01
 | 
						|
 | 
						|
static int validate_float_option(float v, const float *v_list, int v_list_size)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < v_list_size; i++) {
 | 
						|
        if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
 | 
						|
            v > (v_list[i] - FLT_OPTION_THRESHOLD))
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (i == v_list_size)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    return i;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void validate_mix_level(void *log_ctx, const char *opt_name,
 | 
						|
                               float *opt_param, const float *list,
 | 
						|
                               int list_size, int default_value, int min_value,
 | 
						|
                               int *ctx_param)
 | 
						|
{
 | 
						|
    int mixlev = validate_float_option(*opt_param, list, list_size);
 | 
						|
    if (mixlev < min_value) {
 | 
						|
        mixlev = default_value;
 | 
						|
        if (*opt_param >= 0.0) {
 | 
						|
            av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
 | 
						|
                   "default value: %0.3f\n", opt_name, list[mixlev]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *opt_param = list[mixlev];
 | 
						|
    *ctx_param = mixlev;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Validate metadata options as set by AVOption system.
 | 
						|
 * These values can optionally be changed per-frame.
 | 
						|
 */
 | 
						|
static int validate_metadata(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    AC3EncOptions *opt = &s->options;
 | 
						|
 | 
						|
    /* validate mixing levels */
 | 
						|
    if (s->has_center) {
 | 
						|
        validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
 | 
						|
                           cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
 | 
						|
                           &s->center_mix_level);
 | 
						|
    }
 | 
						|
    if (s->has_surround) {
 | 
						|
        validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
 | 
						|
                           surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
 | 
						|
                           &s->surround_mix_level);
 | 
						|
    }
 | 
						|
 | 
						|
    /* set audio production info flag */
 | 
						|
    if (opt->mixing_level >= 0 || opt->room_type >= 0) {
 | 
						|
        if (opt->mixing_level < 0) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
 | 
						|
                   "room_type is set\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
        if (opt->mixing_level < 80) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
 | 
						|
                   "80dB and 111dB\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
        /* default room type */
 | 
						|
        if (opt->room_type < 0)
 | 
						|
            opt->room_type = 0;
 | 
						|
        opt->audio_production_info = 1;
 | 
						|
    } else {
 | 
						|
        opt->audio_production_info = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set extended bsi 1 flag */
 | 
						|
    if ((s->has_center || s->has_surround) &&
 | 
						|
        (opt->preferred_stereo_downmix >= 0 ||
 | 
						|
         opt->ltrt_center_mix_level   >= 0 ||
 | 
						|
         opt->ltrt_surround_mix_level >= 0 ||
 | 
						|
         opt->loro_center_mix_level   >= 0 ||
 | 
						|
         opt->loro_surround_mix_level >= 0)) {
 | 
						|
        /* default preferred stereo downmix */
 | 
						|
        if (opt->preferred_stereo_downmix < 0)
 | 
						|
            opt->preferred_stereo_downmix = 0;
 | 
						|
        /* validate Lt/Rt center mix level */
 | 
						|
        validate_mix_level(avctx, "ltrt_center_mix_level",
 | 
						|
                           &opt->ltrt_center_mix_level, extmixlev_options,
 | 
						|
                           EXTMIXLEV_NUM_OPTIONS, 5, 0,
 | 
						|
                           &s->ltrt_center_mix_level);
 | 
						|
        /* validate Lt/Rt surround mix level */
 | 
						|
        validate_mix_level(avctx, "ltrt_surround_mix_level",
 | 
						|
                           &opt->ltrt_surround_mix_level, extmixlev_options,
 | 
						|
                           EXTMIXLEV_NUM_OPTIONS, 6, 3,
 | 
						|
                           &s->ltrt_surround_mix_level);
 | 
						|
        /* validate Lo/Ro center mix level */
 | 
						|
        validate_mix_level(avctx, "loro_center_mix_level",
 | 
						|
                           &opt->loro_center_mix_level, extmixlev_options,
 | 
						|
                           EXTMIXLEV_NUM_OPTIONS, 5, 0,
 | 
						|
                           &s->loro_center_mix_level);
 | 
						|
        /* validate Lo/Ro surround mix level */
 | 
						|
        validate_mix_level(avctx, "loro_surround_mix_level",
 | 
						|
                           &opt->loro_surround_mix_level, extmixlev_options,
 | 
						|
                           EXTMIXLEV_NUM_OPTIONS, 6, 3,
 | 
						|
                           &s->loro_surround_mix_level);
 | 
						|
        opt->extended_bsi_1 = 1;
 | 
						|
    } else {
 | 
						|
        opt->extended_bsi_1 = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set extended bsi 2 flag */
 | 
						|
    if (opt->dolby_surround_ex_mode >= 0 ||
 | 
						|
        opt->dolby_headphone_mode   >= 0 ||
 | 
						|
        opt->ad_converter_type      >= 0) {
 | 
						|
        /* default dolby surround ex mode */
 | 
						|
        if (opt->dolby_surround_ex_mode < 0)
 | 
						|
            opt->dolby_surround_ex_mode = 0;
 | 
						|
        /* default dolby headphone mode */
 | 
						|
        if (opt->dolby_headphone_mode < 0)
 | 
						|
            opt->dolby_headphone_mode = 0;
 | 
						|
        /* default A/D converter type */
 | 
						|
        if (opt->ad_converter_type < 0)
 | 
						|
            opt->ad_converter_type = 0;
 | 
						|
        opt->extended_bsi_2 = 1;
 | 
						|
    } else {
 | 
						|
        opt->extended_bsi_2 = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set bitstream id for alternate bitstream syntax */
 | 
						|
    if (opt->extended_bsi_1 || opt->extended_bsi_2) {
 | 
						|
        if (s->bitstream_id > 8 && s->bitstream_id < 11) {
 | 
						|
            static int warn_once = 1;
 | 
						|
            if (warn_once) {
 | 
						|
                av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
 | 
						|
                       "not compatible with reduced samplerates. writing of "
 | 
						|
                       "extended bitstream information will be disabled.\n");
 | 
						|
                warn_once = 0;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            s->bitstream_id = 6;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode a single AC-3 frame.
 | 
						|
 */
 | 
						|
int ff_ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
 | 
						|
                        int buf_size, void *data)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    const SampleType *samples = data;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (!s->eac3 && s->options.allow_per_frame_metadata) {
 | 
						|
        ret = validate_metadata(avctx);
 | 
						|
        if (ret)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->bit_alloc.sr_code == 1 || s->eac3)
 | 
						|
        adjust_frame_size(s);
 | 
						|
 | 
						|
    s->deinterleave_input_samples(s, samples);
 | 
						|
 | 
						|
    s->apply_mdct(s);
 | 
						|
 | 
						|
    s->scale_coefficients(s);
 | 
						|
 | 
						|
    s->cpl_on = s->cpl_enabled;
 | 
						|
    compute_coupling_strategy(s);
 | 
						|
 | 
						|
    if (s->cpl_on)
 | 
						|
        s->apply_channel_coupling(s);
 | 
						|
 | 
						|
    s->compute_rematrixing_strategy(s);
 | 
						|
 | 
						|
    apply_rematrixing(s);
 | 
						|
 | 
						|
    process_exponents(s);
 | 
						|
 | 
						|
    ret = compute_bit_allocation(s);
 | 
						|
    if (ret) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    quantize_mantissas(s);
 | 
						|
 | 
						|
    output_frame(s, frame);
 | 
						|
 | 
						|
    return s->frame_size;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Finalize encoding and free any memory allocated by the encoder.
 | 
						|
 */
 | 
						|
av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    av_freep(&s->windowed_samples);
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        av_freep(&s->planar_samples[ch]);
 | 
						|
    av_freep(&s->planar_samples);
 | 
						|
    av_freep(&s->bap_buffer);
 | 
						|
    av_freep(&s->bap1_buffer);
 | 
						|
    av_freep(&s->mdct_coef_buffer);
 | 
						|
    av_freep(&s->fixed_coef_buffer);
 | 
						|
    av_freep(&s->exp_buffer);
 | 
						|
    av_freep(&s->grouped_exp_buffer);
 | 
						|
    av_freep(&s->psd_buffer);
 | 
						|
    av_freep(&s->band_psd_buffer);
 | 
						|
    av_freep(&s->mask_buffer);
 | 
						|
    av_freep(&s->qmant_buffer);
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        av_freep(&block->mdct_coef);
 | 
						|
        av_freep(&block->fixed_coef);
 | 
						|
        av_freep(&block->exp);
 | 
						|
        av_freep(&block->grouped_exp);
 | 
						|
        av_freep(&block->psd);
 | 
						|
        av_freep(&block->band_psd);
 | 
						|
        av_freep(&block->mask);
 | 
						|
        av_freep(&block->qmant);
 | 
						|
    }
 | 
						|
 | 
						|
    s->mdct_end(s->mdct);
 | 
						|
    av_freep(&s->mdct);
 | 
						|
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set channel information during initialization.
 | 
						|
 */
 | 
						|
static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
 | 
						|
                                    int64_t *channel_layout)
 | 
						|
{
 | 
						|
    int ch_layout;
 | 
						|
 | 
						|
    if (channels < 1 || channels > AC3_MAX_CHANNELS)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    if ((uint64_t)*channel_layout > 0x7FF)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    ch_layout = *channel_layout;
 | 
						|
    if (!ch_layout)
 | 
						|
        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
 | 
						|
 | 
						|
    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
 | 
						|
    s->channels     = channels;
 | 
						|
    s->fbw_channels = channels - s->lfe_on;
 | 
						|
    s->lfe_channel  = s->lfe_on ? s->fbw_channels + 1 : -1;
 | 
						|
    if (s->lfe_on)
 | 
						|
        ch_layout -= AV_CH_LOW_FREQUENCY;
 | 
						|
 | 
						|
    switch (ch_layout) {
 | 
						|
    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
 | 
						|
    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
 | 
						|
    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
 | 
						|
    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
 | 
						|
    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
 | 
						|
    case AV_CH_LAYOUT_QUAD:
 | 
						|
    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
 | 
						|
    case AV_CH_LAYOUT_5POINT0:
 | 
						|
    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
 | 
						|
    default:
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->has_center   = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
 | 
						|
    s->has_surround =  s->channel_mode & 0x04;
 | 
						|
 | 
						|
    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
 | 
						|
    *channel_layout = ch_layout;
 | 
						|
    if (s->lfe_on)
 | 
						|
        *channel_layout |= AV_CH_LOW_FREQUENCY;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int i, ret, max_sr;
 | 
						|
 | 
						|
    /* validate channel layout */
 | 
						|
    if (!avctx->channel_layout) {
 | 
						|
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
 | 
						|
                                      "encoder will guess the layout, but it "
 | 
						|
                                      "might be incorrect.\n");
 | 
						|
    }
 | 
						|
    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
 | 
						|
    if (ret) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* validate sample rate */
 | 
						|
    /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
 | 
						|
             decoder that supports half sample rate so we can validate that
 | 
						|
             the generated files are correct. */
 | 
						|
    max_sr = s->eac3 ? 2 : 8;
 | 
						|
    for (i = 0; i <= max_sr; i++) {
 | 
						|
        if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (i > max_sr) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->sample_rate        = avctx->sample_rate;
 | 
						|
    s->bit_alloc.sr_shift = i / 3;
 | 
						|
    s->bit_alloc.sr_code  = i % 3;
 | 
						|
    s->bitstream_id       = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
 | 
						|
 | 
						|
    /* validate bit rate */
 | 
						|
    if (s->eac3) {
 | 
						|
        int max_br, min_br, wpf, min_br_dist, min_br_code;
 | 
						|
 | 
						|
        /* calculate min/max bitrate */
 | 
						|
        max_br = 2048 * s->sample_rate / AC3_FRAME_SIZE * 16;
 | 
						|
        min_br = ((s->sample_rate + (AC3_FRAME_SIZE-1)) / AC3_FRAME_SIZE) * 16;
 | 
						|
        if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
 | 
						|
                   "for this sample rate\n", min_br, max_br);
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
 | 
						|
        /* calculate words-per-frame for the selected bitrate */
 | 
						|
        wpf = (avctx->bit_rate / 16) * AC3_FRAME_SIZE / s->sample_rate;
 | 
						|
        av_assert1(wpf > 0 && wpf <= 2048);
 | 
						|
 | 
						|
        /* find the closest AC-3 bitrate code to the selected bitrate.
 | 
						|
           this is needed for lookup tables for bandwidth and coupling
 | 
						|
           parameter selection */
 | 
						|
        min_br_code = -1;
 | 
						|
        min_br_dist = INT_MAX;
 | 
						|
        for (i = 0; i < 19; i++) {
 | 
						|
            int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
 | 
						|
            if (br_dist < min_br_dist) {
 | 
						|
                min_br_dist = br_dist;
 | 
						|
                min_br_code = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* make sure the minimum frame size is below the average frame size */
 | 
						|
        s->frame_size_code = min_br_code << 1;
 | 
						|
        while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
 | 
						|
            wpf--;
 | 
						|
        s->frame_size_min = 2 * wpf;
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < 19; i++) {
 | 
						|
            if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        if (i == 19) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
 | 
						|
            return AVERROR(EINVAL);
 | 
						|
        }
 | 
						|
        s->frame_size_code = i << 1;
 | 
						|
        s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
 | 
						|
    }
 | 
						|
    s->bit_rate   = avctx->bit_rate;
 | 
						|
    s->frame_size = s->frame_size_min;
 | 
						|
 | 
						|
    /* validate cutoff */
 | 
						|
    if (avctx->cutoff < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->cutoff = avctx->cutoff;
 | 
						|
    if (s->cutoff > (s->sample_rate >> 1))
 | 
						|
        s->cutoff = s->sample_rate >> 1;
 | 
						|
 | 
						|
    /* validate audio service type / channels combination */
 | 
						|
    if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
 | 
						|
         avctx->channels == 1) ||
 | 
						|
        ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
 | 
						|
          avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY  ||
 | 
						|
          avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
 | 
						|
         && avctx->channels > 1)) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
 | 
						|
                                    "specified number of channels\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->eac3) {
 | 
						|
        ret = validate_metadata(avctx);
 | 
						|
        if (ret)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    s->rematrixing_enabled = s->options.stereo_rematrixing &&
 | 
						|
                             (s->channel_mode == AC3_CHMODE_STEREO);
 | 
						|
 | 
						|
    s->cpl_enabled = s->options.channel_coupling &&
 | 
						|
                     s->channel_mode >= AC3_CHMODE_STEREO && !s->fixed_point;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set bandwidth for all channels.
 | 
						|
 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
 | 
						|
 * default value will be used.
 | 
						|
 */
 | 
						|
static av_cold void set_bandwidth(AC3EncodeContext *s)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    int av_uninit(cpl_start);
 | 
						|
 | 
						|
    if (s->cutoff) {
 | 
						|
        /* calculate bandwidth based on user-specified cutoff frequency */
 | 
						|
        int fbw_coeffs;
 | 
						|
        fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
 | 
						|
        s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
 | 
						|
    } else {
 | 
						|
        /* use default bandwidth setting */
 | 
						|
        s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
 | 
						|
    }
 | 
						|
 | 
						|
    /* set number of coefficients for each channel */
 | 
						|
    for (ch = 1; ch <= s->fbw_channels; ch++) {
 | 
						|
        s->start_freq[ch] = 0;
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
 | 
						|
    }
 | 
						|
    /* LFE channel always has 7 coefs */
 | 
						|
    if (s->lfe_on) {
 | 
						|
        s->start_freq[s->lfe_channel] = 0;
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->blocks[blk].end_freq[ch] = 7;
 | 
						|
    }
 | 
						|
 | 
						|
    /* initialize coupling strategy */
 | 
						|
    if (s->cpl_enabled) {
 | 
						|
        if (s->options.cpl_start >= 0) {
 | 
						|
            cpl_start = s->options.cpl_start;
 | 
						|
        } else {
 | 
						|
            cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
 | 
						|
            if (cpl_start < 0)
 | 
						|
                s->cpl_enabled = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (s->cpl_enabled) {
 | 
						|
        int i, cpl_start_band, cpl_end_band;
 | 
						|
        uint8_t *cpl_band_sizes = s->cpl_band_sizes;
 | 
						|
 | 
						|
        cpl_end_band   = s->bandwidth_code / 4 + 3;
 | 
						|
        cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
 | 
						|
 | 
						|
        s->num_cpl_subbands = cpl_end_band - cpl_start_band;
 | 
						|
 | 
						|
        s->num_cpl_bands = 1;
 | 
						|
        *cpl_band_sizes  = 12;
 | 
						|
        for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
 | 
						|
            if (ff_eac3_default_cpl_band_struct[i]) {
 | 
						|
                *cpl_band_sizes += 12;
 | 
						|
            } else {
 | 
						|
                s->num_cpl_bands++;
 | 
						|
                cpl_band_sizes++;
 | 
						|
                *cpl_band_sizes = 12;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
 | 
						|
        s->cpl_end_freq       = cpl_end_band   * 12 + 37;
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
 | 
						|
            s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int allocate_buffers(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int blk, ch;
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    int channels = s->channels + 1; /* includes coupling channel */
 | 
						|
 | 
						|
    if (s->allocate_sample_buffers(s))
 | 
						|
        goto alloc_fail;
 | 
						|
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->bap_buffer,  AC3_MAX_BLOCKS * channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->bap_buffer),  alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
 | 
						|
    FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                      AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     64 * sizeof(*s->band_psd_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     64 * sizeof(*s->mask_buffer), alloc_fail);
 | 
						|
    FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                     AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
 | 
						|
    if (s->cpl_enabled) {
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                         16 * sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                         16 * sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
 | 
						|
    }
 | 
						|
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
        AC3Block *block = &s->blocks[blk];
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
 | 
						|
                          alloc_fail);
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
 | 
						|
                          alloc_fail);
 | 
						|
        if (s->cpl_enabled) {
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
 | 
						|
                              alloc_fail);
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
 | 
						|
                              alloc_fail);
 | 
						|
        }
 | 
						|
 | 
						|
        for (ch = 0; ch < channels; ch++) {
 | 
						|
            /* arrangement: block, channel, coeff */
 | 
						|
            block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * channels + ch)];
 | 
						|
            block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * channels + ch)];
 | 
						|
            block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * channels + ch)];
 | 
						|
            block->mask[ch]        = &s->mask_buffer       [64            * (blk * channels + ch)];
 | 
						|
            block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * channels + ch)];
 | 
						|
            if (s->cpl_enabled) {
 | 
						|
                block->cpl_coord_exp[ch]  = &s->cpl_coord_exp_buffer [16  * (blk * channels + ch)];
 | 
						|
                block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16  * (blk * channels + ch)];
 | 
						|
            }
 | 
						|
 | 
						|
            /* arrangement: channel, block, coeff */
 | 
						|
            block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)];
 | 
						|
            block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->fixed_point) {
 | 
						|
        FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, AC3_MAX_BLOCKS * channels *
 | 
						|
                          AC3_MAX_COEFS * sizeof(*s->fixed_coef_buffer), alloc_fail);
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
 | 
						|
                              sizeof(*block->fixed_coef), alloc_fail);
 | 
						|
            for (ch = 0; ch < channels; ch++)
 | 
						|
                block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (AC3_MAX_BLOCKS * ch + blk)];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
 | 
						|
            AC3Block *block = &s->blocks[blk];
 | 
						|
            FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
 | 
						|
                              sizeof(*block->fixed_coef), alloc_fail);
 | 
						|
            for (ch = 0; ch < channels; ch++)
 | 
						|
                block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
alloc_fail:
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Initialize the encoder.
 | 
						|
 */
 | 
						|
av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AC3EncodeContext *s = avctx->priv_data;
 | 
						|
    int ret, frame_size_58;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    s->eac3 = avctx->codec_id == CODEC_ID_EAC3;
 | 
						|
 | 
						|
    avctx->frame_size = AC3_FRAME_SIZE;
 | 
						|
 | 
						|
    ff_ac3_common_init();
 | 
						|
 | 
						|
    ret = validate_options(avctx, s);
 | 
						|
    if (ret)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->bitstream_mode = avctx->audio_service_type;
 | 
						|
    if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
 | 
						|
        s->bitstream_mode = 0x7;
 | 
						|
 | 
						|
    s->bits_written    = 0;
 | 
						|
    s->samples_written = 0;
 | 
						|
 | 
						|
    /* calculate crc_inv for both possible frame sizes */
 | 
						|
    frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
 | 
						|
    s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
 | 
						|
    if (s->bit_alloc.sr_code == 1) {
 | 
						|
        frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
 | 
						|
        s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
 | 
						|
    }
 | 
						|
 | 
						|
    /* set function pointers */
 | 
						|
    if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
 | 
						|
        s->mdct_end                     = ff_ac3_fixed_mdct_end;
 | 
						|
        s->mdct_init                    = ff_ac3_fixed_mdct_init;
 | 
						|
        s->apply_window                 = ff_ac3_fixed_apply_window;
 | 
						|
        s->normalize_samples            = ff_ac3_fixed_normalize_samples;
 | 
						|
        s->scale_coefficients           = ff_ac3_fixed_scale_coefficients;
 | 
						|
        s->allocate_sample_buffers      = ff_ac3_fixed_allocate_sample_buffers;
 | 
						|
        s->deinterleave_input_samples   = ff_ac3_fixed_deinterleave_input_samples;
 | 
						|
        s->apply_mdct                   = ff_ac3_fixed_apply_mdct;
 | 
						|
        s->apply_channel_coupling       = ff_ac3_fixed_apply_channel_coupling;
 | 
						|
        s->compute_rematrixing_strategy = ff_ac3_fixed_compute_rematrixing_strategy;
 | 
						|
    } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
 | 
						|
        s->mdct_end                     = ff_ac3_float_mdct_end;
 | 
						|
        s->mdct_init                    = ff_ac3_float_mdct_init;
 | 
						|
        s->apply_window                 = ff_ac3_float_apply_window;
 | 
						|
        s->scale_coefficients           = ff_ac3_float_scale_coefficients;
 | 
						|
        s->allocate_sample_buffers      = ff_ac3_float_allocate_sample_buffers;
 | 
						|
        s->deinterleave_input_samples   = ff_ac3_float_deinterleave_input_samples;
 | 
						|
        s->apply_mdct                   = ff_ac3_float_apply_mdct;
 | 
						|
        s->apply_channel_coupling       = ff_ac3_float_apply_channel_coupling;
 | 
						|
        s->compute_rematrixing_strategy = ff_ac3_float_compute_rematrixing_strategy;
 | 
						|
    }
 | 
						|
    if (CONFIG_EAC3_ENCODER && s->eac3)
 | 
						|
        s->output_frame_header = ff_eac3_output_frame_header;
 | 
						|
    else
 | 
						|
        s->output_frame_header = ac3_output_frame_header;
 | 
						|
 | 
						|
    set_bandwidth(s);
 | 
						|
 | 
						|
    exponent_init(s);
 | 
						|
 | 
						|
    bit_alloc_init(s);
 | 
						|
 | 
						|
    FF_ALLOCZ_OR_GOTO(avctx, s->mdct, sizeof(AC3MDCTContext), init_fail);
 | 
						|
    ret = s->mdct_init(avctx, s->mdct, 9);
 | 
						|
    if (ret)
 | 
						|
        goto init_fail;
 | 
						|
 | 
						|
    ret = allocate_buffers(avctx);
 | 
						|
    if (ret)
 | 
						|
        goto init_fail;
 | 
						|
 | 
						|
    avctx->coded_frame= avcodec_alloc_frame();
 | 
						|
 | 
						|
    dsputil_init(&s->dsp, avctx);
 | 
						|
    ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | 
						|
 | 
						|
    dprint_options(avctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
init_fail:
 | 
						|
    ff_ac3_encode_close(avctx);
 | 
						|
    return ret;
 | 
						|
}
 |