771 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			771 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * High quality image resampling with polyphase filters 
 | |
|  * Copyright (c) 2001 Fabrice Bellard.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| #ifdef USE_FASTMEMCPY
 | |
| #include "fastmemcpy.h"
 | |
| #endif
 | |
| extern int mm_flags;
 | |
| 
 | |
| #define NB_COMPONENTS 3
 | |
| 
 | |
| #define PHASE_BITS 4
 | |
| #define NB_PHASES  (1 << PHASE_BITS)
 | |
| #define NB_TAPS    4
 | |
| #define FCENTER    1  /* index of the center of the filter */
 | |
| //#define TEST    1  /* Test it */
 | |
| 
 | |
| #define POS_FRAC_BITS 16
 | |
| #define POS_FRAC      (1 << POS_FRAC_BITS)
 | |
| /* 6 bits precision is needed for MMX */
 | |
| #define FILTER_BITS   8
 | |
| 
 | |
| #define LINE_BUF_HEIGHT (NB_TAPS * 4)
 | |
| 
 | |
| struct ImgReSampleContext {
 | |
|     int iwidth, iheight, owidth, oheight, topBand, bottomBand, leftBand, rightBand;
 | |
|     int h_incr, v_incr;
 | |
|     INT16 h_filters[NB_PHASES][NB_TAPS] __align8; /* horizontal filters */
 | |
|     INT16 v_filters[NB_PHASES][NB_TAPS] __align8; /* vertical filters */
 | |
|     UINT8 *line_buf;
 | |
| };
 | |
| 
 | |
| static inline int get_phase(int pos)
 | |
| {
 | |
|     return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1);
 | |
| }
 | |
| 
 | |
| /* This function must be optimized */
 | |
| static void h_resample_fast(UINT8 *dst, int dst_width, UINT8 *src, int src_width,
 | |
|                             int src_start, int src_incr, INT16 *filters)
 | |
| {
 | |
|     int src_pos, phase, sum, i;
 | |
|     UINT8 *s;
 | |
|     INT16 *filter;
 | |
| 
 | |
|     src_pos = src_start;
 | |
|     for(i=0;i<dst_width;i++) {
 | |
| #ifdef TEST
 | |
|         /* test */
 | |
|         if ((src_pos >> POS_FRAC_BITS) < 0 ||
 | |
|             (src_pos >> POS_FRAC_BITS) > (src_width - NB_TAPS))
 | |
|             av_abort();
 | |
| #endif
 | |
|         s = src + (src_pos >> POS_FRAC_BITS);
 | |
|         phase = get_phase(src_pos);
 | |
|         filter = filters + phase * NB_TAPS;
 | |
| #if NB_TAPS == 4
 | |
|         sum = s[0] * filter[0] +
 | |
|             s[1] * filter[1] +
 | |
|             s[2] * filter[2] +
 | |
|             s[3] * filter[3];
 | |
| #else
 | |
|         {
 | |
|             int j;
 | |
|             sum = 0;
 | |
|             for(j=0;j<NB_TAPS;j++)
 | |
|                 sum += s[j] * filter[j];
 | |
|         }
 | |
| #endif
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum < 0)
 | |
|             sum = 0;
 | |
|         else if (sum > 255)
 | |
|             sum = 255;
 | |
|         dst[0] = sum;
 | |
|         src_pos += src_incr;
 | |
|         dst++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* This function must be optimized */
 | |
| static void v_resample(UINT8 *dst, int dst_width, UINT8 *src, int wrap, 
 | |
|                        INT16 *filter)
 | |
| {
 | |
|     int sum, i;
 | |
|     UINT8 *s;
 | |
| 
 | |
|     s = src;
 | |
|     for(i=0;i<dst_width;i++) {
 | |
| #if NB_TAPS == 4
 | |
|         sum = s[0 * wrap] * filter[0] +
 | |
|             s[1 * wrap] * filter[1] +
 | |
|             s[2 * wrap] * filter[2] +
 | |
|             s[3 * wrap] * filter[3];
 | |
| #else
 | |
|         {
 | |
|             int j;
 | |
|             UINT8 *s1 = s;
 | |
| 
 | |
|             sum = 0;
 | |
|             for(j=0;j<NB_TAPS;j++) {
 | |
|                 sum += s1[0] * filter[j];
 | |
|                 s1 += wrap;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum < 0)
 | |
|             sum = 0;
 | |
|         else if (sum > 255)
 | |
|             sum = 255;
 | |
|         dst[0] = sum;
 | |
|         dst++;
 | |
|         s++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_MMX
 | |
| 
 | |
| #include "i386/mmx.h"
 | |
| 
 | |
| #define FILTER4(reg) \
 | |
| {\
 | |
|         s = src + (src_pos >> POS_FRAC_BITS);\
 | |
|         phase = get_phase(src_pos);\
 | |
|         filter = filters + phase * NB_TAPS;\
 | |
|         movq_m2r(*s, reg);\
 | |
|         punpcklbw_r2r(mm7, reg);\
 | |
|         movq_m2r(*filter, mm6);\
 | |
|         pmaddwd_r2r(reg, mm6);\
 | |
|         movq_r2r(mm6, reg);\
 | |
|         psrlq_i2r(32, reg);\
 | |
|         paddd_r2r(mm6, reg);\
 | |
|         psrad_i2r(FILTER_BITS, reg);\
 | |
|         src_pos += src_incr;\
 | |
| }
 | |
| 
 | |
| #define DUMP(reg) movq_r2m(reg, tmp); printf(#reg "=%016Lx\n", tmp.uq);
 | |
| 
 | |
| /* XXX: do four pixels at a time */
 | |
| static void h_resample_fast4_mmx(UINT8 *dst, int dst_width, UINT8 *src, int src_width,
 | |
|                                  int src_start, int src_incr, INT16 *filters)
 | |
| {
 | |
|     int src_pos, phase;
 | |
|     UINT8 *s;
 | |
|     INT16 *filter;
 | |
|     mmx_t tmp;
 | |
|     
 | |
|     src_pos = src_start;
 | |
|     pxor_r2r(mm7, mm7);
 | |
| 
 | |
|     while (dst_width >= 4) {
 | |
| 
 | |
|         FILTER4(mm0);
 | |
|         FILTER4(mm1);
 | |
|         FILTER4(mm2);
 | |
|         FILTER4(mm3);
 | |
| 
 | |
|         packuswb_r2r(mm7, mm0);
 | |
|         packuswb_r2r(mm7, mm1);
 | |
|         packuswb_r2r(mm7, mm3);
 | |
|         packuswb_r2r(mm7, mm2);
 | |
|         movq_r2m(mm0, tmp);
 | |
|         dst[0] = tmp.ub[0];
 | |
|         movq_r2m(mm1, tmp);
 | |
|         dst[1] = tmp.ub[0];
 | |
|         movq_r2m(mm2, tmp);
 | |
|         dst[2] = tmp.ub[0];
 | |
|         movq_r2m(mm3, tmp);
 | |
|         dst[3] = tmp.ub[0];
 | |
|         dst += 4;
 | |
|         dst_width -= 4;
 | |
|     }
 | |
|     while (dst_width > 0) {
 | |
|         FILTER4(mm0);
 | |
|         packuswb_r2r(mm7, mm0);
 | |
|         movq_r2m(mm0, tmp);
 | |
|         dst[0] = tmp.ub[0];
 | |
|         dst++;
 | |
|         dst_width--;
 | |
|     }
 | |
|     emms();
 | |
| }
 | |
| 
 | |
| static void v_resample4_mmx(UINT8 *dst, int dst_width, UINT8 *src, int wrap, 
 | |
|                             INT16 *filter)
 | |
| {
 | |
|     int sum, i, v;
 | |
|     UINT8 *s;
 | |
|     mmx_t tmp;
 | |
|     mmx_t coefs[4];
 | |
|     
 | |
|     for(i=0;i<4;i++) {
 | |
|         v = filter[i];
 | |
|         coefs[i].uw[0] = v;
 | |
|         coefs[i].uw[1] = v;
 | |
|         coefs[i].uw[2] = v;
 | |
|         coefs[i].uw[3] = v;
 | |
|     }
 | |
|     
 | |
|     pxor_r2r(mm7, mm7);
 | |
|     s = src;
 | |
|     while (dst_width >= 4) {
 | |
|         movq_m2r(s[0 * wrap], mm0);
 | |
|         punpcklbw_r2r(mm7, mm0);
 | |
|         movq_m2r(s[1 * wrap], mm1);
 | |
|         punpcklbw_r2r(mm7, mm1);
 | |
|         movq_m2r(s[2 * wrap], mm2);
 | |
|         punpcklbw_r2r(mm7, mm2);
 | |
|         movq_m2r(s[3 * wrap], mm3);
 | |
|         punpcklbw_r2r(mm7, mm3);
 | |
| 
 | |
|         pmullw_m2r(coefs[0], mm0);
 | |
|         pmullw_m2r(coefs[1], mm1);
 | |
|         pmullw_m2r(coefs[2], mm2);
 | |
|         pmullw_m2r(coefs[3], mm3);
 | |
| 
 | |
|         paddw_r2r(mm1, mm0);
 | |
|         paddw_r2r(mm3, mm2);
 | |
|         paddw_r2r(mm2, mm0);
 | |
|         psraw_i2r(FILTER_BITS, mm0);
 | |
|         
 | |
|         packuswb_r2r(mm7, mm0);
 | |
|         movq_r2m(mm0, tmp);
 | |
| 
 | |
|         *(UINT32 *)dst = tmp.ud[0];
 | |
|         dst += 4;
 | |
|         s += 4;
 | |
|         dst_width -= 4;
 | |
|     }
 | |
|     while (dst_width > 0) {
 | |
|         sum = s[0 * wrap] * filter[0] +
 | |
|             s[1 * wrap] * filter[1] +
 | |
|             s[2 * wrap] * filter[2] +
 | |
|             s[3 * wrap] * filter[3];
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum < 0)
 | |
|             sum = 0;
 | |
|         else if (sum > 255)
 | |
|             sum = 255;
 | |
|         dst[0] = sum;
 | |
|         dst++;
 | |
|         s++;
 | |
|         dst_width--;
 | |
|     }
 | |
|     emms();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_ALTIVEC
 | |
| typedef	union {
 | |
|     vector unsigned char v;
 | |
|     unsigned char c[16];
 | |
| } vec_uc_t;
 | |
| 
 | |
| typedef	union {
 | |
|     vector signed short v;
 | |
|     signed short s[8];
 | |
| } vec_ss_t;
 | |
| 
 | |
| void v_resample16_altivec(UINT8 *dst, int dst_width, UINT8 *src, int wrap,
 | |
|                             INT16 *filter)
 | |
| {
 | |
|     int sum, i;
 | |
|     uint8_t *s;
 | |
|     vector unsigned char *tv, tmp, dstv, zero;
 | |
|     vec_ss_t srchv[4], srclv[4], fv[4];
 | |
|     vector signed short zeros, sumhv, sumlv;    
 | |
|     s = src;
 | |
| 
 | |
|     for(i=0;i<4;i++)
 | |
|     {
 | |
|         /*
 | |
|            The vec_madds later on does an implicit >>15 on the result.
 | |
|            Since FILTER_BITS is 8, and we have 15 bits of magnitude in
 | |
|            a signed short, we have just enough bits to pre-shift our
 | |
|            filter constants <<7 to compensate for vec_madds.
 | |
|         */
 | |
|         fv[i].s[0] = filter[i] << (15-FILTER_BITS);
 | |
|         fv[i].v = vec_splat(fv[i].v, 0);
 | |
|     }
 | |
|     
 | |
|     zero = vec_splat_u8(0);
 | |
|     zeros = vec_splat_s16(0);
 | |
| 
 | |
| 
 | |
|     /*
 | |
|        When we're resampling, we'd ideally like both our input buffers,
 | |
|        and output buffers to be 16-byte aligned, so we can do both aligned
 | |
|        reads and writes. Sadly we can't always have this at the moment, so
 | |
|        we opt for aligned writes, as unaligned writes have a huge overhead.
 | |
|        To do this, do enough scalar resamples to get dst 16-byte aligned.
 | |
|     */
 | |
|     i = (-(int)dst) & 0xf;
 | |
|     while(i>0) {
 | |
|         sum = s[0 * wrap] * filter[0] +
 | |
|         s[1 * wrap] * filter[1] +
 | |
|         s[2 * wrap] * filter[2] +
 | |
|         s[3 * wrap] * filter[3];
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum<0) sum = 0; else if (sum>255) sum=255;
 | |
|         dst[0] = sum;
 | |
|         dst++;
 | |
|         s++;
 | |
|         dst_width--;
 | |
|         i--;
 | |
|     }
 | |
|     
 | |
|     /* Do our altivec resampling on 16 pixels at once. */
 | |
|     while(dst_width>=16) {
 | |
|         /*
 | |
|            Read 16 (potentially unaligned) bytes from each of
 | |
|            4 lines into 4 vectors, and split them into shorts.
 | |
|            Interleave the multipy/accumulate for the resample
 | |
|            filter with the loads to hide the 3 cycle latency
 | |
|            the vec_madds have.
 | |
|         */
 | |
|         tv = (vector unsigned char *) &s[0 * wrap];
 | |
|         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[i * wrap]));
 | |
|         srchv[0].v = (vector signed short) vec_mergeh(zero, tmp);
 | |
|         srclv[0].v = (vector signed short) vec_mergel(zero, tmp);
 | |
|         sumhv = vec_madds(srchv[0].v, fv[0].v, zeros);
 | |
|         sumlv = vec_madds(srclv[0].v, fv[0].v, zeros);
 | |
| 
 | |
|         tv = (vector unsigned char *) &s[1 * wrap];
 | |
|         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[1 * wrap]));
 | |
|         srchv[1].v = (vector signed short) vec_mergeh(zero, tmp);
 | |
|         srclv[1].v = (vector signed short) vec_mergel(zero, tmp);
 | |
|         sumhv = vec_madds(srchv[1].v, fv[1].v, sumhv);
 | |
|         sumlv = vec_madds(srclv[1].v, fv[1].v, sumlv);
 | |
| 
 | |
|         tv = (vector unsigned char *) &s[2 * wrap];
 | |
|         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[2 * wrap]));
 | |
|         srchv[2].v = (vector signed short) vec_mergeh(zero, tmp);
 | |
|         srclv[2].v = (vector signed short) vec_mergel(zero, tmp);
 | |
|         sumhv = vec_madds(srchv[2].v, fv[2].v, sumhv);
 | |
|         sumlv = vec_madds(srclv[2].v, fv[2].v, sumlv);
 | |
| 
 | |
|         tv = (vector unsigned char *) &s[3 * wrap];
 | |
|         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[3 * wrap]));
 | |
|         srchv[3].v = (vector signed short) vec_mergeh(zero, tmp);
 | |
|         srclv[3].v = (vector signed short) vec_mergel(zero, tmp);
 | |
|         sumhv = vec_madds(srchv[3].v, fv[3].v, sumhv);
 | |
|         sumlv = vec_madds(srclv[3].v, fv[3].v, sumlv);
 | |
|     
 | |
|         /*
 | |
|            Pack the results into our destination vector,
 | |
|            and do an aligned write of that back to memory.
 | |
|         */
 | |
|         dstv = vec_packsu(sumhv, sumlv) ;
 | |
|         vec_st(dstv, 0, (vector unsigned char *) dst);
 | |
|         
 | |
|         dst+=16;
 | |
|         s+=16;
 | |
|         dst_width-=16;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|        If there are any leftover pixels, resample them
 | |
|        with the slow scalar method.
 | |
|     */
 | |
|     while(dst_width>0) {
 | |
|         sum = s[0 * wrap] * filter[0] +
 | |
|         s[1 * wrap] * filter[1] +
 | |
|         s[2 * wrap] * filter[2] +
 | |
|         s[3 * wrap] * filter[3];
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum<0) sum = 0; else if (sum>255) sum=255;
 | |
|         dst[0] = sum;
 | |
|         dst++;
 | |
|         s++;
 | |
|         dst_width--;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* slow version to handle limit cases. Does not need optimisation */
 | |
| static void h_resample_slow(UINT8 *dst, int dst_width, UINT8 *src, int src_width,
 | |
|                             int src_start, int src_incr, INT16 *filters)
 | |
| {
 | |
|     int src_pos, phase, sum, j, v, i;
 | |
|     UINT8 *s, *src_end;
 | |
|     INT16 *filter;
 | |
| 
 | |
|     src_end = src + src_width;
 | |
|     src_pos = src_start;
 | |
|     for(i=0;i<dst_width;i++) {
 | |
|         s = src + (src_pos >> POS_FRAC_BITS);
 | |
|         phase = get_phase(src_pos);
 | |
|         filter = filters + phase * NB_TAPS;
 | |
|         sum = 0;
 | |
|         for(j=0;j<NB_TAPS;j++) {
 | |
|             if (s < src)
 | |
|                 v = src[0];
 | |
|             else if (s >= src_end)
 | |
|                 v = src_end[-1];
 | |
|             else
 | |
|                 v = s[0];
 | |
|             sum += v * filter[j];
 | |
|             s++;
 | |
|         }
 | |
|         sum = sum >> FILTER_BITS;
 | |
|         if (sum < 0)
 | |
|             sum = 0;
 | |
|         else if (sum > 255)
 | |
|             sum = 255;
 | |
|         dst[0] = sum;
 | |
|         src_pos += src_incr;
 | |
|         dst++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void h_resample(UINT8 *dst, int dst_width, UINT8 *src, int src_width,
 | |
|                        int src_start, int src_incr, INT16 *filters)
 | |
| {
 | |
|     int n, src_end;
 | |
| 
 | |
|     if (src_start < 0) {
 | |
|         n = (0 - src_start + src_incr - 1) / src_incr;
 | |
|         h_resample_slow(dst, n, src, src_width, src_start, src_incr, filters);
 | |
|         dst += n;
 | |
|         dst_width -= n;
 | |
|         src_start += n * src_incr;
 | |
|     }
 | |
|     src_end = src_start + dst_width * src_incr;
 | |
|     if (src_end > ((src_width - NB_TAPS) << POS_FRAC_BITS)) {
 | |
|         n = (((src_width - NB_TAPS + 1) << POS_FRAC_BITS) - 1 - src_start) / 
 | |
|             src_incr;
 | |
|     } else {
 | |
|         n = dst_width;
 | |
|     }
 | |
| #ifdef HAVE_MMX
 | |
|     if ((mm_flags & MM_MMX) && NB_TAPS == 4)
 | |
|         h_resample_fast4_mmx(dst, n, 
 | |
|                              src, src_width, src_start, src_incr, filters);
 | |
|     else
 | |
| #endif
 | |
|         h_resample_fast(dst, n, 
 | |
|                         src, src_width, src_start, src_incr, filters);
 | |
|     if (n < dst_width) {
 | |
|         dst += n;
 | |
|         dst_width -= n;
 | |
|         src_start += n * src_incr;
 | |
|         h_resample_slow(dst, dst_width, 
 | |
|                         src, src_width, src_start, src_incr, filters);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void component_resample(ImgReSampleContext *s, 
 | |
|                                UINT8 *output, int owrap, int owidth, int oheight,
 | |
|                                UINT8 *input, int iwrap, int iwidth, int iheight)
 | |
| {
 | |
|     int src_y, src_y1, last_src_y, ring_y, phase_y, y1, y;
 | |
|     UINT8 *new_line, *src_line;
 | |
| 
 | |
|     last_src_y = - FCENTER - 1;
 | |
|     /* position of the bottom of the filter in the source image */
 | |
|     src_y = (last_src_y + NB_TAPS) * POS_FRAC; 
 | |
|     ring_y = NB_TAPS; /* position in ring buffer */
 | |
|     for(y=0;y<oheight;y++) {
 | |
|         /* apply horizontal filter on new lines from input if needed */
 | |
|         src_y1 = src_y >> POS_FRAC_BITS;
 | |
|         while (last_src_y < src_y1) {
 | |
|             if (++ring_y >= LINE_BUF_HEIGHT + NB_TAPS)
 | |
|                 ring_y = NB_TAPS;
 | |
|             last_src_y++;
 | |
|             /* handle limit conditions : replicate line (slightly
 | |
|                inefficient because we filter multiple times) */
 | |
|             y1 = last_src_y;
 | |
|             if (y1 < 0) {
 | |
|                 y1 = 0;
 | |
|             } else if (y1 >= iheight) {
 | |
|                 y1 = iheight - 1;
 | |
|             }
 | |
|             src_line = input + y1 * iwrap;
 | |
|             new_line = s->line_buf + ring_y * owidth;
 | |
|             /* apply filter and handle limit cases correctly */
 | |
|             h_resample(new_line, owidth, 
 | |
|                        src_line, iwidth, - FCENTER * POS_FRAC, s->h_incr, 
 | |
|                        &s->h_filters[0][0]);
 | |
|             /* handle ring buffer wraping */
 | |
|             if (ring_y >= LINE_BUF_HEIGHT) {
 | |
|                 memcpy(s->line_buf + (ring_y - LINE_BUF_HEIGHT) * owidth,
 | |
|                        new_line, owidth);
 | |
|             }
 | |
|         }
 | |
|         /* apply vertical filter */
 | |
|         phase_y = get_phase(src_y);
 | |
| #ifdef HAVE_MMX
 | |
|         /* desactivated MMX because loss of precision */
 | |
|         if ((mm_flags & MM_MMX) && NB_TAPS == 4 && 0)
 | |
|             v_resample4_mmx(output, owidth, 
 | |
|                             s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth, 
 | |
|                             &s->v_filters[phase_y][0]);
 | |
|         else
 | |
| #endif
 | |
| #ifdef HAVE_ALTIVEC
 | |
|             if ((mm_flags & MM_ALTIVEC) && NB_TAPS == 4 && FILTER_BITS <= 6)
 | |
|                 v_resample16_altivec(output, owidth,
 | |
|                                 s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth,
 | |
|                                 &s->v_filters[phase_y][0]);
 | |
|         else
 | |
| #endif
 | |
|             v_resample(output, owidth, 
 | |
|                        s->line_buf + (ring_y - NB_TAPS + 1) * owidth, owidth, 
 | |
|                        &s->v_filters[phase_y][0]);
 | |
|             
 | |
|         src_y += s->v_incr;
 | |
|         output += owrap;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: the following filter is quite naive, but it seems to suffice
 | |
|    for 4 taps */
 | |
| static void build_filter(INT16 *filter, float factor)
 | |
| {
 | |
|     int ph, i, v;
 | |
|     float x, y, tab[NB_TAPS], norm, mult;
 | |
| 
 | |
|     /* if upsampling, only need to interpolate, no filter */
 | |
|     if (factor > 1.0)
 | |
|         factor = 1.0;
 | |
| 
 | |
|     for(ph=0;ph<NB_PHASES;ph++) {
 | |
|         norm = 0;
 | |
|         for(i=0;i<NB_TAPS;i++) {
 | |
|             
 | |
|             x = M_PI * ((float)(i - FCENTER) - (float)ph / NB_PHASES) * factor;
 | |
|             if (x == 0)
 | |
|                 y = 1.0;
 | |
|             else
 | |
|                 y = sin(x) / x;
 | |
|             tab[i] = y;
 | |
|             norm += y;
 | |
|         }
 | |
| 
 | |
|         /* normalize so that an uniform color remains the same */
 | |
|         mult = (float)(1 << FILTER_BITS) / norm;
 | |
|         for(i=0;i<NB_TAPS;i++) {
 | |
|             v = (int)(tab[i] * mult);
 | |
|             filter[ph * NB_TAPS + i] = v;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ImgReSampleContext *img_resample_init(int owidth, int oheight,
 | |
|                                       int iwidth, int iheight)
 | |
| {
 | |
| 	return img_resample_full_init(owidth, oheight, iwidth, iheight, 0, 0, 0, 0);
 | |
| }
 | |
| 
 | |
| ImgReSampleContext *img_resample_full_init(int owidth, int oheight,
 | |
|                                       int iwidth, int iheight,
 | |
|                                       int topBand, int bottomBand,
 | |
|                                       int leftBand, int rightBand)
 | |
| {
 | |
|     ImgReSampleContext *s;
 | |
| 
 | |
|     s = av_mallocz(sizeof(ImgReSampleContext));
 | |
|     if (!s)
 | |
|         return NULL;
 | |
|     s->line_buf = av_mallocz(owidth * (LINE_BUF_HEIGHT + NB_TAPS));
 | |
|     if (!s->line_buf) 
 | |
|         goto fail;
 | |
|     
 | |
|     s->owidth = owidth;
 | |
|     s->oheight = oheight;
 | |
|     s->iwidth = iwidth;
 | |
|     s->iheight = iheight;
 | |
|     s->topBand = topBand;
 | |
|     s->bottomBand = bottomBand;
 | |
|     s->leftBand = leftBand;
 | |
|     s->rightBand = rightBand;
 | |
|     
 | |
|     s->h_incr = ((iwidth - leftBand - rightBand) * POS_FRAC) / owidth;
 | |
|     s->v_incr = ((iheight - topBand - bottomBand) * POS_FRAC) / oheight;
 | |
|     
 | |
|     build_filter(&s->h_filters[0][0], (float) owidth  / (float) (iwidth - leftBand - rightBand));
 | |
|     build_filter(&s->v_filters[0][0], (float) oheight / (float) (iheight - topBand - bottomBand));
 | |
| 
 | |
|     return s;
 | |
|  fail:
 | |
|     av_free(s);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void img_resample(ImgReSampleContext *s, 
 | |
|                   AVPicture *output, AVPicture *input)
 | |
| {
 | |
|     int i, shift;
 | |
| 
 | |
|     for(i=0;i<3;i++) {
 | |
|         shift = (i == 0) ? 0 : 1;
 | |
|         component_resample(s, output->data[i], output->linesize[i], 
 | |
|                            s->owidth >> shift, s->oheight >> shift,
 | |
|                            input->data[i] + (input->linesize[i] * (s->topBand >> shift)) + (s->leftBand >> shift),
 | |
|                            input->linesize[i], ((s->iwidth - s->leftBand - s->rightBand) >> shift),
 | |
|                            (s->iheight - s->topBand - s->bottomBand) >> shift);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void img_resample_close(ImgReSampleContext *s)
 | |
| {
 | |
|     av_free(s->line_buf);
 | |
|     av_free(s);
 | |
| }
 | |
| 
 | |
| #ifdef TEST
 | |
| 
 | |
| void *av_mallocz(int size)
 | |
| {
 | |
|     void *ptr;
 | |
|     ptr = malloc(size);
 | |
|     memset(ptr, 0, size);
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| void av_free(void *ptr)
 | |
| {
 | |
|     /* XXX: this test should not be needed on most libcs */
 | |
|     if (ptr)
 | |
|         free(ptr);
 | |
| }
 | |
| 
 | |
| /* input */
 | |
| #define XSIZE 256
 | |
| #define YSIZE 256
 | |
| UINT8 img[XSIZE * YSIZE];
 | |
| 
 | |
| /* output */
 | |
| #define XSIZE1 512
 | |
| #define YSIZE1 512
 | |
| UINT8 img1[XSIZE1 * YSIZE1];
 | |
| UINT8 img2[XSIZE1 * YSIZE1];
 | |
| 
 | |
| void save_pgm(const char *filename, UINT8 *img, int xsize, int ysize)
 | |
| {
 | |
|     FILE *f;
 | |
|     f=fopen(filename,"w");
 | |
|     fprintf(f,"P5\n%d %d\n%d\n", xsize, ysize, 255);
 | |
|     fwrite(img,1, xsize * ysize,f);
 | |
|     fclose(f);
 | |
| }
 | |
| 
 | |
| static void dump_filter(INT16 *filter)
 | |
| {
 | |
|     int i, ph;
 | |
| 
 | |
|     for(ph=0;ph<NB_PHASES;ph++) {
 | |
|         printf("%2d: ", ph);
 | |
|         for(i=0;i<NB_TAPS;i++) {
 | |
|             printf(" %5.2f", filter[ph * NB_TAPS + i] / 256.0);
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_MMX
 | |
| int mm_flags;
 | |
| #endif
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     int x, y, v, i, xsize, ysize;
 | |
|     ImgReSampleContext *s;
 | |
|     float fact, factors[] = { 1/2.0, 3.0/4.0, 1.0, 4.0/3.0, 16.0/9.0, 2.0 };
 | |
|     char buf[256];
 | |
| 
 | |
|     /* build test image */
 | |
|     for(y=0;y<YSIZE;y++) {
 | |
|         for(x=0;x<XSIZE;x++) {
 | |
|             if (x < XSIZE/2 && y < YSIZE/2) {
 | |
|                 if (x < XSIZE/4 && y < YSIZE/4) {
 | |
|                     if ((x % 10) <= 6 &&
 | |
|                         (y % 10) <= 6)
 | |
|                         v = 0xff;
 | |
|                     else
 | |
|                         v = 0x00;
 | |
|                 } else if (x < XSIZE/4) {
 | |
|                     if (x & 1) 
 | |
|                         v = 0xff;
 | |
|                     else 
 | |
|                         v = 0;
 | |
|                 } else if (y < XSIZE/4) {
 | |
|                     if (y & 1) 
 | |
|                         v = 0xff;
 | |
|                     else 
 | |
|                         v = 0;
 | |
|                 } else {
 | |
|                     if (y < YSIZE*3/8) {
 | |
|                         if ((y+x) & 1) 
 | |
|                             v = 0xff;
 | |
|                         else 
 | |
|                             v = 0;
 | |
|                     } else {
 | |
|                         if (((x+3) % 4) <= 1 &&
 | |
|                             ((y+3) % 4) <= 1)
 | |
|                             v = 0xff;
 | |
|                         else
 | |
|                             v = 0x00;
 | |
|                     }
 | |
|                 }
 | |
|             } else if (x < XSIZE/2) {
 | |
|                 v = ((x - (XSIZE/2)) * 255) / (XSIZE/2);
 | |
|             } else if (y < XSIZE/2) {
 | |
|                 v = ((y - (XSIZE/2)) * 255) / (XSIZE/2);
 | |
|             } else {
 | |
|                 v = ((x + y - XSIZE) * 255) / XSIZE;
 | |
|             }
 | |
|             img[(YSIZE - y) * XSIZE + (XSIZE - x)] = v;
 | |
|         }
 | |
|     }
 | |
|     save_pgm("/tmp/in.pgm", img, XSIZE, YSIZE);
 | |
|     for(i=0;i<sizeof(factors)/sizeof(float);i++) {
 | |
|         fact = factors[i];
 | |
|         xsize = (int)(XSIZE * fact);
 | |
|         ysize = (int)((YSIZE - 100) * fact);
 | |
|         s = img_resample_full_init(xsize, ysize, XSIZE, YSIZE, 50 ,50, 0, 0);
 | |
|         printf("Factor=%0.2f\n", fact);
 | |
|         dump_filter(&s->h_filters[0][0]);
 | |
|         component_resample(s, img1, xsize, xsize, ysize,
 | |
|                            img + 50 * XSIZE, XSIZE, XSIZE, YSIZE - 100);
 | |
|         img_resample_close(s);
 | |
| 
 | |
|         sprintf(buf, "/tmp/out%d.pgm", i);
 | |
|         save_pgm(buf, img1, xsize, ysize);
 | |
|     }
 | |
| 
 | |
|     /* mmx test */
 | |
| #ifdef HAVE_MMX
 | |
|     printf("MMX test\n");
 | |
|     fact = 0.72;
 | |
|     xsize = (int)(XSIZE * fact);
 | |
|     ysize = (int)(YSIZE * fact);
 | |
|     mm_flags = MM_MMX;
 | |
|     s = img_resample_init(xsize, ysize, XSIZE, YSIZE);
 | |
|     component_resample(s, img1, xsize, xsize, ysize,
 | |
|                        img, XSIZE, XSIZE, YSIZE);
 | |
| 
 | |
|     mm_flags = 0;
 | |
|     s = img_resample_init(xsize, ysize, XSIZE, YSIZE);
 | |
|     component_resample(s, img2, xsize, xsize, ysize,
 | |
|                        img, XSIZE, XSIZE, YSIZE);
 | |
|     if (memcmp(img1, img2, xsize * ysize) != 0) {
 | |
|         fprintf(stderr, "mmx error\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     printf("MMX OK\n");
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif
 |