Patch by Daniel Verkamp daniel at drv dot nu. Originally committed as revision 17526 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			2302 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2302 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2003-2004 the ffmpeg project
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file libavcodec/vp3.c
 | 
						|
 * On2 VP3 Video Decoder
 | 
						|
 *
 | 
						|
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
 | 
						|
 * For more information about the VP3 coding process, visit:
 | 
						|
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
 | 
						|
 *
 | 
						|
 * Theora decoder by Alex Beregszaszi
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <unistd.h>
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "bitstream.h"
 | 
						|
 | 
						|
#include "vp3data.h"
 | 
						|
#include "xiph.h"
 | 
						|
 | 
						|
#define FRAGMENT_PIXELS 8
 | 
						|
 | 
						|
typedef struct Coeff {
 | 
						|
    struct Coeff *next;
 | 
						|
    DCTELEM coeff;
 | 
						|
    uint8_t index;
 | 
						|
} Coeff;
 | 
						|
 | 
						|
//FIXME split things out into their own arrays
 | 
						|
typedef struct Vp3Fragment {
 | 
						|
    Coeff *next_coeff;
 | 
						|
    /* address of first pixel taking into account which plane the fragment
 | 
						|
     * lives on as well as the plane stride */
 | 
						|
    int first_pixel;
 | 
						|
    /* this is the macroblock that the fragment belongs to */
 | 
						|
    uint16_t macroblock;
 | 
						|
    uint8_t coding_method;
 | 
						|
    int8_t motion_x;
 | 
						|
    int8_t motion_y;
 | 
						|
} Vp3Fragment;
 | 
						|
 | 
						|
#define SB_NOT_CODED        0
 | 
						|
#define SB_PARTIALLY_CODED  1
 | 
						|
#define SB_FULLY_CODED      2
 | 
						|
 | 
						|
#define MODE_INTER_NO_MV      0
 | 
						|
#define MODE_INTRA            1
 | 
						|
#define MODE_INTER_PLUS_MV    2
 | 
						|
#define MODE_INTER_LAST_MV    3
 | 
						|
#define MODE_INTER_PRIOR_LAST 4
 | 
						|
#define MODE_USING_GOLDEN     5
 | 
						|
#define MODE_GOLDEN_MV        6
 | 
						|
#define MODE_INTER_FOURMV     7
 | 
						|
#define CODING_MODE_COUNT     8
 | 
						|
 | 
						|
/* special internal mode */
 | 
						|
#define MODE_COPY             8
 | 
						|
 | 
						|
/* There are 6 preset schemes, plus a free-form scheme */
 | 
						|
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
 | 
						|
{
 | 
						|
    /* scheme 1: Last motion vector dominates */
 | 
						|
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
 | 
						|
         MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 2 */
 | 
						|
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
 | 
						|
         MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 3 */
 | 
						|
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | 
						|
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
 | 
						|
         MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 4 */
 | 
						|
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
 | 
						|
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
 | 
						|
         MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 5: No motion vector dominates */
 | 
						|
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
 | 
						|
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
 | 
						|
         MODE_INTRA,            MODE_USING_GOLDEN,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
    /* scheme 6 */
 | 
						|
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
 | 
						|
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
 | 
						|
         MODE_INTER_PLUS_MV,    MODE_INTRA,
 | 
						|
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
#define MIN_DEQUANT_VAL 2
 | 
						|
 | 
						|
typedef struct Vp3DecodeContext {
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    int theora, theora_tables;
 | 
						|
    int version;
 | 
						|
    int width, height;
 | 
						|
    AVFrame golden_frame;
 | 
						|
    AVFrame last_frame;
 | 
						|
    AVFrame current_frame;
 | 
						|
    int keyframe;
 | 
						|
    DSPContext dsp;
 | 
						|
    int flipped_image;
 | 
						|
 | 
						|
    int qis[3];
 | 
						|
    int nqis;
 | 
						|
    int quality_index;
 | 
						|
    int last_quality_index;
 | 
						|
 | 
						|
    int superblock_count;
 | 
						|
    int y_superblock_width;
 | 
						|
    int y_superblock_height;
 | 
						|
    int c_superblock_width;
 | 
						|
    int c_superblock_height;
 | 
						|
    int u_superblock_start;
 | 
						|
    int v_superblock_start;
 | 
						|
    unsigned char *superblock_coding;
 | 
						|
 | 
						|
    int macroblock_count;
 | 
						|
    int macroblock_width;
 | 
						|
    int macroblock_height;
 | 
						|
 | 
						|
    int fragment_count;
 | 
						|
    int fragment_width;
 | 
						|
    int fragment_height;
 | 
						|
 | 
						|
    Vp3Fragment *all_fragments;
 | 
						|
    uint8_t *coeff_counts;
 | 
						|
    Coeff *coeffs;
 | 
						|
    Coeff *next_coeff;
 | 
						|
    int fragment_start[3];
 | 
						|
 | 
						|
    ScanTable scantable;
 | 
						|
 | 
						|
    /* tables */
 | 
						|
    uint16_t coded_dc_scale_factor[64];
 | 
						|
    uint32_t coded_ac_scale_factor[64];
 | 
						|
    uint8_t base_matrix[384][64];
 | 
						|
    uint8_t qr_count[2][3];
 | 
						|
    uint8_t qr_size [2][3][64];
 | 
						|
    uint16_t qr_base[2][3][64];
 | 
						|
 | 
						|
    /* this is a list of indexes into the all_fragments array indicating
 | 
						|
     * which of the fragments are coded */
 | 
						|
    int *coded_fragment_list;
 | 
						|
    int coded_fragment_list_index;
 | 
						|
    int pixel_addresses_initialized;
 | 
						|
 | 
						|
    VLC dc_vlc[16];
 | 
						|
    VLC ac_vlc_1[16];
 | 
						|
    VLC ac_vlc_2[16];
 | 
						|
    VLC ac_vlc_3[16];
 | 
						|
    VLC ac_vlc_4[16];
 | 
						|
 | 
						|
    VLC superblock_run_length_vlc;
 | 
						|
    VLC fragment_run_length_vlc;
 | 
						|
    VLC mode_code_vlc;
 | 
						|
    VLC motion_vector_vlc;
 | 
						|
 | 
						|
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
 | 
						|
     * index into them */
 | 
						|
    DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]);        //<qmat[is_inter][plane]
 | 
						|
 | 
						|
    /* This table contains superblock_count * 16 entries. Each set of 16
 | 
						|
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
 | 
						|
     * An entry will be -1 to indicate that no entry corresponds to that
 | 
						|
     * index. */
 | 
						|
    int *superblock_fragments;
 | 
						|
 | 
						|
    /* This table contains superblock_count * 4 entries. Each set of 4
 | 
						|
     * numbers corresponds to the macroblock indexes 0..3 of the superblock.
 | 
						|
     * An entry will be -1 to indicate that no entry corresponds to that
 | 
						|
     * index. */
 | 
						|
    int *superblock_macroblocks;
 | 
						|
 | 
						|
    /* This table contains macroblock_count * 6 entries. Each set of 6
 | 
						|
     * numbers corresponds to the fragment indexes 0..5 which comprise
 | 
						|
     * the macroblock (4 Y fragments and 2 C fragments). */
 | 
						|
    int *macroblock_fragments;
 | 
						|
    /* This is an array that indicates how a particular macroblock
 | 
						|
     * is coded. */
 | 
						|
    unsigned char *macroblock_coding;
 | 
						|
 | 
						|
    int first_coded_y_fragment;
 | 
						|
    int first_coded_c_fragment;
 | 
						|
    int last_coded_y_fragment;
 | 
						|
    int last_coded_c_fragment;
 | 
						|
 | 
						|
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
 | 
						|
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
 | 
						|
 | 
						|
    /* Huffman decode */
 | 
						|
    int hti;
 | 
						|
    unsigned int hbits;
 | 
						|
    int entries;
 | 
						|
    int huff_code_size;
 | 
						|
    uint16_t huffman_table[80][32][2];
 | 
						|
 | 
						|
    uint8_t filter_limit_values[64];
 | 
						|
    DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
 | 
						|
} Vp3DecodeContext;
 | 
						|
 | 
						|
/************************************************************************
 | 
						|
 * VP3 specific functions
 | 
						|
 ************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * This function sets up all of the various blocks mappings:
 | 
						|
 * superblocks <-> fragments, macroblocks <-> fragments,
 | 
						|
 * superblocks <-> macroblocks
 | 
						|
 *
 | 
						|
 * Returns 0 is successful; returns 1 if *anything* went wrong.
 | 
						|
 */
 | 
						|
static int init_block_mapping(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    signed int hilbert_walk_mb[4];
 | 
						|
 | 
						|
    int current_fragment = 0;
 | 
						|
    int current_width = 0;
 | 
						|
    int current_height = 0;
 | 
						|
    int right_edge = 0;
 | 
						|
    int bottom_edge = 0;
 | 
						|
    int superblock_row_inc = 0;
 | 
						|
    int *hilbert = NULL;
 | 
						|
    int mapping_index = 0;
 | 
						|
 | 
						|
    int current_macroblock;
 | 
						|
    int c_fragment;
 | 
						|
 | 
						|
    signed char travel_width[16] = {
 | 
						|
         1,  1,  0, -1,
 | 
						|
         0,  0,  1,  0,
 | 
						|
         1,  0,  1,  0,
 | 
						|
         0, -1,  0,  1
 | 
						|
    };
 | 
						|
 | 
						|
    signed char travel_height[16] = {
 | 
						|
         0,  0,  1,  0,
 | 
						|
         1,  1,  0, -1,
 | 
						|
         0,  1,  0, -1,
 | 
						|
        -1,  0, -1,  0
 | 
						|
    };
 | 
						|
 | 
						|
    signed char travel_width_mb[4] = {
 | 
						|
         1,  0,  1,  0
 | 
						|
    };
 | 
						|
 | 
						|
    signed char travel_height_mb[4] = {
 | 
						|
         0,  1,  0, -1
 | 
						|
    };
 | 
						|
 | 
						|
    hilbert_walk_mb[0] = 1;
 | 
						|
    hilbert_walk_mb[1] = s->macroblock_width;
 | 
						|
    hilbert_walk_mb[2] = 1;
 | 
						|
    hilbert_walk_mb[3] = -s->macroblock_width;
 | 
						|
 | 
						|
    /* iterate through each superblock (all planes) and map the fragments */
 | 
						|
    for (i = 0; i < s->superblock_count; i++) {
 | 
						|
        /* time to re-assign the limits? */
 | 
						|
        if (i == 0) {
 | 
						|
 | 
						|
            /* start of Y superblocks */
 | 
						|
            right_edge = s->fragment_width;
 | 
						|
            bottom_edge = s->fragment_height;
 | 
						|
            current_width = -1;
 | 
						|
            current_height = 0;
 | 
						|
            superblock_row_inc = 3 * s->fragment_width -
 | 
						|
                (s->y_superblock_width * 4 - s->fragment_width);
 | 
						|
 | 
						|
            /* the first operation for this variable is to advance by 1 */
 | 
						|
            current_fragment = -1;
 | 
						|
 | 
						|
        } else if (i == s->u_superblock_start) {
 | 
						|
 | 
						|
            /* start of U superblocks */
 | 
						|
            right_edge = s->fragment_width / 2;
 | 
						|
            bottom_edge = s->fragment_height / 2;
 | 
						|
            current_width = -1;
 | 
						|
            current_height = 0;
 | 
						|
            superblock_row_inc = 3 * (s->fragment_width / 2) -
 | 
						|
                (s->c_superblock_width * 4 - s->fragment_width / 2);
 | 
						|
 | 
						|
            /* the first operation for this variable is to advance by 1 */
 | 
						|
            current_fragment = s->fragment_start[1] - 1;
 | 
						|
 | 
						|
        } else if (i == s->v_superblock_start) {
 | 
						|
 | 
						|
            /* start of V superblocks */
 | 
						|
            right_edge = s->fragment_width / 2;
 | 
						|
            bottom_edge = s->fragment_height / 2;
 | 
						|
            current_width = -1;
 | 
						|
            current_height = 0;
 | 
						|
            superblock_row_inc = 3 * (s->fragment_width / 2) -
 | 
						|
                (s->c_superblock_width * 4 - s->fragment_width / 2);
 | 
						|
 | 
						|
            /* the first operation for this variable is to advance by 1 */
 | 
						|
            current_fragment = s->fragment_start[2] - 1;
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        if (current_width >= right_edge - 1) {
 | 
						|
            /* reset width and move to next superblock row */
 | 
						|
            current_width = -1;
 | 
						|
            current_height += 4;
 | 
						|
 | 
						|
            /* fragment is now at the start of a new superblock row */
 | 
						|
            current_fragment += superblock_row_inc;
 | 
						|
        }
 | 
						|
 | 
						|
        /* iterate through all 16 fragments in a superblock */
 | 
						|
        for (j = 0; j < 16; j++) {
 | 
						|
            current_fragment += travel_width[j] + right_edge * travel_height[j];
 | 
						|
            current_width += travel_width[j];
 | 
						|
            current_height += travel_height[j];
 | 
						|
 | 
						|
            /* check if the fragment is in bounds */
 | 
						|
            if ((current_width < right_edge) &&
 | 
						|
                (current_height < bottom_edge)) {
 | 
						|
                s->superblock_fragments[mapping_index] = current_fragment;
 | 
						|
            } else {
 | 
						|
                s->superblock_fragments[mapping_index] = -1;
 | 
						|
            }
 | 
						|
 | 
						|
            mapping_index++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* initialize the superblock <-> macroblock mapping; iterate through
 | 
						|
     * all of the Y plane superblocks to build this mapping */
 | 
						|
    right_edge = s->macroblock_width;
 | 
						|
    bottom_edge = s->macroblock_height;
 | 
						|
    current_width = -1;
 | 
						|
    current_height = 0;
 | 
						|
    superblock_row_inc = s->macroblock_width -
 | 
						|
        (s->y_superblock_width * 2 - s->macroblock_width);
 | 
						|
    hilbert = hilbert_walk_mb;
 | 
						|
    mapping_index = 0;
 | 
						|
    current_macroblock = -1;
 | 
						|
    for (i = 0; i < s->u_superblock_start; i++) {
 | 
						|
 | 
						|
        if (current_width >= right_edge - 1) {
 | 
						|
            /* reset width and move to next superblock row */
 | 
						|
            current_width = -1;
 | 
						|
            current_height += 2;
 | 
						|
 | 
						|
            /* macroblock is now at the start of a new superblock row */
 | 
						|
            current_macroblock += superblock_row_inc;
 | 
						|
        }
 | 
						|
 | 
						|
        /* iterate through each potential macroblock in the superblock */
 | 
						|
        for (j = 0; j < 4; j++) {
 | 
						|
            current_macroblock += hilbert_walk_mb[j];
 | 
						|
            current_width += travel_width_mb[j];
 | 
						|
            current_height += travel_height_mb[j];
 | 
						|
 | 
						|
            /* check if the macroblock is in bounds */
 | 
						|
            if ((current_width < right_edge) &&
 | 
						|
                (current_height < bottom_edge)) {
 | 
						|
                s->superblock_macroblocks[mapping_index] = current_macroblock;
 | 
						|
            } else {
 | 
						|
                s->superblock_macroblocks[mapping_index] = -1;
 | 
						|
            }
 | 
						|
 | 
						|
            mapping_index++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* initialize the macroblock <-> fragment mapping */
 | 
						|
    current_fragment = 0;
 | 
						|
    current_macroblock = 0;
 | 
						|
    mapping_index = 0;
 | 
						|
    for (i = 0; i < s->fragment_height; i += 2) {
 | 
						|
 | 
						|
        for (j = 0; j < s->fragment_width; j += 2) {
 | 
						|
 | 
						|
            s->all_fragments[current_fragment].macroblock = current_macroblock;
 | 
						|
            s->macroblock_fragments[mapping_index++] = current_fragment;
 | 
						|
 | 
						|
            if (j + 1 < s->fragment_width) {
 | 
						|
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
 | 
						|
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
 | 
						|
            } else
 | 
						|
                s->macroblock_fragments[mapping_index++] = -1;
 | 
						|
 | 
						|
            if (i + 1 < s->fragment_height) {
 | 
						|
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
 | 
						|
                    current_macroblock;
 | 
						|
                s->macroblock_fragments[mapping_index++] =
 | 
						|
                    current_fragment + s->fragment_width;
 | 
						|
            } else
 | 
						|
                s->macroblock_fragments[mapping_index++] = -1;
 | 
						|
 | 
						|
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
 | 
						|
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
 | 
						|
                    current_macroblock;
 | 
						|
                s->macroblock_fragments[mapping_index++] =
 | 
						|
                    current_fragment + s->fragment_width + 1;
 | 
						|
            } else
 | 
						|
                s->macroblock_fragments[mapping_index++] = -1;
 | 
						|
 | 
						|
            /* C planes */
 | 
						|
            c_fragment = s->fragment_start[1] +
 | 
						|
                (i * s->fragment_width / 4) + (j / 2);
 | 
						|
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
 | 
						|
            s->macroblock_fragments[mapping_index++] = c_fragment;
 | 
						|
 | 
						|
            c_fragment = s->fragment_start[2] +
 | 
						|
                (i * s->fragment_width / 4) + (j / 2);
 | 
						|
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
 | 
						|
            s->macroblock_fragments[mapping_index++] = c_fragment;
 | 
						|
 | 
						|
            if (j + 2 <= s->fragment_width)
 | 
						|
                current_fragment += 2;
 | 
						|
            else
 | 
						|
                current_fragment++;
 | 
						|
            current_macroblock++;
 | 
						|
        }
 | 
						|
 | 
						|
        current_fragment += s->fragment_width;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;  /* successful path out */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function wipes out all of the fragment data.
 | 
						|
 */
 | 
						|
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    /* zero out all of the fragment information */
 | 
						|
    s->coded_fragment_list_index = 0;
 | 
						|
    for (i = 0; i < s->fragment_count; i++) {
 | 
						|
        s->coeff_counts[i] = 0;
 | 
						|
        s->all_fragments[i].motion_x = 127;
 | 
						|
        s->all_fragments[i].motion_y = 127;
 | 
						|
        s->all_fragments[i].next_coeff= NULL;
 | 
						|
        s->coeffs[i].index=
 | 
						|
        s->coeffs[i].coeff=0;
 | 
						|
        s->coeffs[i].next= NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function sets up the dequantization tables used for a particular
 | 
						|
 * frame.
 | 
						|
 */
 | 
						|
static void init_dequantizer(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
 | 
						|
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
 | 
						|
    int i, plane, inter, qri, bmi, bmj, qistart;
 | 
						|
 | 
						|
    for(inter=0; inter<2; inter++){
 | 
						|
        for(plane=0; plane<3; plane++){
 | 
						|
            int sum=0;
 | 
						|
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
 | 
						|
                sum+= s->qr_size[inter][plane][qri];
 | 
						|
                if(s->quality_index <= sum)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            qistart= sum - s->qr_size[inter][plane][qri];
 | 
						|
            bmi= s->qr_base[inter][plane][qri  ];
 | 
						|
            bmj= s->qr_base[inter][plane][qri+1];
 | 
						|
            for(i=0; i<64; i++){
 | 
						|
                int coeff= (  2*(sum    -s->quality_index)*s->base_matrix[bmi][i]
 | 
						|
                            - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
 | 
						|
                            + s->qr_size[inter][plane][qri])
 | 
						|
                           / (2*s->qr_size[inter][plane][qri]);
 | 
						|
 | 
						|
                int qmin= 8<<(inter + !i);
 | 
						|
                int qscale= i ? ac_scale_factor : dc_scale_factor;
 | 
						|
 | 
						|
                s->qmat[inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function initializes the loop filter boundary limits if the frame's
 | 
						|
 * quality index is different from the previous frame's.
 | 
						|
 */
 | 
						|
static void init_loop_filter(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int *bounding_values= s->bounding_values_array+127;
 | 
						|
    int filter_limit;
 | 
						|
    int x;
 | 
						|
 | 
						|
    filter_limit = s->filter_limit_values[s->quality_index];
 | 
						|
 | 
						|
    /* set up the bounding values */
 | 
						|
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
 | 
						|
    for (x = 0; x < filter_limit; x++) {
 | 
						|
        bounding_values[-x - filter_limit] = -filter_limit + x;
 | 
						|
        bounding_values[-x] = -x;
 | 
						|
        bounding_values[x] = x;
 | 
						|
        bounding_values[x + filter_limit] = filter_limit - x;
 | 
						|
    }
 | 
						|
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all of the superblock/macroblock/fragment coding
 | 
						|
 * information from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int bit = 0;
 | 
						|
    int current_superblock = 0;
 | 
						|
    int current_run = 0;
 | 
						|
    int decode_fully_flags = 0;
 | 
						|
    int decode_partial_blocks = 0;
 | 
						|
    int first_c_fragment_seen;
 | 
						|
 | 
						|
    int i, j;
 | 
						|
    int current_fragment;
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
        /* unpack the list of partially-coded superblocks */
 | 
						|
        bit = get_bits1(gb);
 | 
						|
        /* toggle the bit because as soon as the first run length is
 | 
						|
         * fetched the bit will be toggled again */
 | 
						|
        bit ^= 1;
 | 
						|
        while (current_superblock < s->superblock_count) {
 | 
						|
            if (current_run-- == 0) {
 | 
						|
                bit ^= 1;
 | 
						|
                current_run = get_vlc2(gb,
 | 
						|
                    s->superblock_run_length_vlc.table, 6, 2);
 | 
						|
                if (current_run == 33)
 | 
						|
                    current_run += get_bits(gb, 12);
 | 
						|
 | 
						|
                /* if any of the superblocks are not partially coded, flag
 | 
						|
                 * a boolean to decode the list of fully-coded superblocks */
 | 
						|
                if (bit == 0) {
 | 
						|
                    decode_fully_flags = 1;
 | 
						|
                } else {
 | 
						|
 | 
						|
                    /* make a note of the fact that there are partially coded
 | 
						|
                     * superblocks */
 | 
						|
                    decode_partial_blocks = 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            s->superblock_coding[current_superblock++] = bit;
 | 
						|
        }
 | 
						|
 | 
						|
        /* unpack the list of fully coded superblocks if any of the blocks were
 | 
						|
         * not marked as partially coded in the previous step */
 | 
						|
        if (decode_fully_flags) {
 | 
						|
 | 
						|
            current_superblock = 0;
 | 
						|
            current_run = 0;
 | 
						|
            bit = get_bits1(gb);
 | 
						|
            /* toggle the bit because as soon as the first run length is
 | 
						|
             * fetched the bit will be toggled again */
 | 
						|
            bit ^= 1;
 | 
						|
            while (current_superblock < s->superblock_count) {
 | 
						|
 | 
						|
                /* skip any superblocks already marked as partially coded */
 | 
						|
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
 | 
						|
 | 
						|
                    if (current_run-- == 0) {
 | 
						|
                        bit ^= 1;
 | 
						|
                        current_run = get_vlc2(gb,
 | 
						|
                            s->superblock_run_length_vlc.table, 6, 2);
 | 
						|
                        if (current_run == 33)
 | 
						|
                            current_run += get_bits(gb, 12);
 | 
						|
                    }
 | 
						|
                    s->superblock_coding[current_superblock] = 2*bit;
 | 
						|
                }
 | 
						|
                current_superblock++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* if there were partial blocks, initialize bitstream for
 | 
						|
         * unpacking fragment codings */
 | 
						|
        if (decode_partial_blocks) {
 | 
						|
 | 
						|
            current_run = 0;
 | 
						|
            bit = get_bits1(gb);
 | 
						|
            /* toggle the bit because as soon as the first run length is
 | 
						|
             * fetched the bit will be toggled again */
 | 
						|
            bit ^= 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* figure out which fragments are coded; iterate through each
 | 
						|
     * superblock (all planes) */
 | 
						|
    s->coded_fragment_list_index = 0;
 | 
						|
    s->next_coeff= s->coeffs + s->fragment_count;
 | 
						|
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
 | 
						|
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
 | 
						|
    first_c_fragment_seen = 0;
 | 
						|
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
 | 
						|
    for (i = 0; i < s->superblock_count; i++) {
 | 
						|
 | 
						|
        /* iterate through all 16 fragments in a superblock */
 | 
						|
        for (j = 0; j < 16; j++) {
 | 
						|
 | 
						|
            /* if the fragment is in bounds, check its coding status */
 | 
						|
            current_fragment = s->superblock_fragments[i * 16 + j];
 | 
						|
            if (current_fragment >= s->fragment_count) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
 | 
						|
                    current_fragment, s->fragment_count);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
            if (current_fragment != -1) {
 | 
						|
                if (s->superblock_coding[i] == SB_NOT_CODED) {
 | 
						|
 | 
						|
                    /* copy all the fragments from the prior frame */
 | 
						|
                    s->all_fragments[current_fragment].coding_method =
 | 
						|
                        MODE_COPY;
 | 
						|
 | 
						|
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
 | 
						|
 | 
						|
                    /* fragment may or may not be coded; this is the case
 | 
						|
                     * that cares about the fragment coding runs */
 | 
						|
                    if (current_run-- == 0) {
 | 
						|
                        bit ^= 1;
 | 
						|
                        current_run = get_vlc2(gb,
 | 
						|
                            s->fragment_run_length_vlc.table, 5, 2);
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (bit) {
 | 
						|
                        /* default mode; actual mode will be decoded in
 | 
						|
                         * the next phase */
 | 
						|
                        s->all_fragments[current_fragment].coding_method =
 | 
						|
                            MODE_INTER_NO_MV;
 | 
						|
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
 | 
						|
                        s->coded_fragment_list[s->coded_fragment_list_index] =
 | 
						|
                            current_fragment;
 | 
						|
                        if ((current_fragment >= s->fragment_start[1]) &&
 | 
						|
                            (s->last_coded_y_fragment == -1) &&
 | 
						|
                            (!first_c_fragment_seen)) {
 | 
						|
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
 | 
						|
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
 | 
						|
                            first_c_fragment_seen = 1;
 | 
						|
                        }
 | 
						|
                        s->coded_fragment_list_index++;
 | 
						|
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
 | 
						|
                    } else {
 | 
						|
                        /* not coded; copy this fragment from the prior frame */
 | 
						|
                        s->all_fragments[current_fragment].coding_method =
 | 
						|
                            MODE_COPY;
 | 
						|
                    }
 | 
						|
 | 
						|
                } else {
 | 
						|
 | 
						|
                    /* fragments are fully coded in this superblock; actual
 | 
						|
                     * coding will be determined in next step */
 | 
						|
                    s->all_fragments[current_fragment].coding_method =
 | 
						|
                        MODE_INTER_NO_MV;
 | 
						|
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
 | 
						|
                    s->coded_fragment_list[s->coded_fragment_list_index] =
 | 
						|
                        current_fragment;
 | 
						|
                    if ((current_fragment >= s->fragment_start[1]) &&
 | 
						|
                        (s->last_coded_y_fragment == -1) &&
 | 
						|
                        (!first_c_fragment_seen)) {
 | 
						|
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
 | 
						|
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
 | 
						|
                        first_c_fragment_seen = 1;
 | 
						|
                    }
 | 
						|
                    s->coded_fragment_list_index++;
 | 
						|
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!first_c_fragment_seen)
 | 
						|
        /* only Y fragments coded in this frame */
 | 
						|
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
 | 
						|
    else
 | 
						|
        /* end the list of coded C fragments */
 | 
						|
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all the coding mode data for individual macroblocks
 | 
						|
 * from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i, j, k;
 | 
						|
    int scheme;
 | 
						|
    int current_macroblock;
 | 
						|
    int current_fragment;
 | 
						|
    int coding_mode;
 | 
						|
    int custom_mode_alphabet[CODING_MODE_COUNT];
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        for (i = 0; i < s->fragment_count; i++)
 | 
						|
            s->all_fragments[i].coding_method = MODE_INTRA;
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
        /* fetch the mode coding scheme for this frame */
 | 
						|
        scheme = get_bits(gb, 3);
 | 
						|
 | 
						|
        /* is it a custom coding scheme? */
 | 
						|
        if (scheme == 0) {
 | 
						|
            for (i = 0; i < 8; i++)
 | 
						|
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
 | 
						|
            for (i = 0; i < 8; i++)
 | 
						|
                custom_mode_alphabet[get_bits(gb, 3)] = i;
 | 
						|
        }
 | 
						|
 | 
						|
        /* iterate through all of the macroblocks that contain 1 or more
 | 
						|
         * coded fragments */
 | 
						|
        for (i = 0; i < s->u_superblock_start; i++) {
 | 
						|
 | 
						|
            for (j = 0; j < 4; j++) {
 | 
						|
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
 | 
						|
                if ((current_macroblock == -1) ||
 | 
						|
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
 | 
						|
                    continue;
 | 
						|
                if (current_macroblock >= s->macroblock_count) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
 | 
						|
                        current_macroblock, s->macroblock_count);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
 | 
						|
                /* mode 7 means get 3 bits for each coding mode */
 | 
						|
                if (scheme == 7)
 | 
						|
                    coding_mode = get_bits(gb, 3);
 | 
						|
                else if(scheme == 0)
 | 
						|
                    coding_mode = custom_mode_alphabet
 | 
						|
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
 | 
						|
                else
 | 
						|
                    coding_mode = ModeAlphabet[scheme-1]
 | 
						|
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
 | 
						|
 | 
						|
                s->macroblock_coding[current_macroblock] = coding_mode;
 | 
						|
                for (k = 0; k < 6; k++) {
 | 
						|
                    current_fragment =
 | 
						|
                        s->macroblock_fragments[current_macroblock * 6 + k];
 | 
						|
                    if (current_fragment == -1)
 | 
						|
                        continue;
 | 
						|
                    if (current_fragment >= s->fragment_count) {
 | 
						|
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
 | 
						|
                            current_fragment, s->fragment_count);
 | 
						|
                        return 1;
 | 
						|
                    }
 | 
						|
                    if (s->all_fragments[current_fragment].coding_method !=
 | 
						|
                        MODE_COPY)
 | 
						|
                        s->all_fragments[current_fragment].coding_method =
 | 
						|
                            coding_mode;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all the motion vectors for the individual
 | 
						|
 * macroblocks from the bitstream.
 | 
						|
 */
 | 
						|
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i, j, k, l;
 | 
						|
    int coding_mode;
 | 
						|
    int motion_x[6];
 | 
						|
    int motion_y[6];
 | 
						|
    int last_motion_x = 0;
 | 
						|
    int last_motion_y = 0;
 | 
						|
    int prior_last_motion_x = 0;
 | 
						|
    int prior_last_motion_y = 0;
 | 
						|
    int current_macroblock;
 | 
						|
    int current_fragment;
 | 
						|
 | 
						|
    if (s->keyframe)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    memset(motion_x, 0, 6 * sizeof(int));
 | 
						|
    memset(motion_y, 0, 6 * sizeof(int));
 | 
						|
 | 
						|
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
 | 
						|
    coding_mode = get_bits1(gb);
 | 
						|
 | 
						|
    /* iterate through all of the macroblocks that contain 1 or more
 | 
						|
     * coded fragments */
 | 
						|
    for (i = 0; i < s->u_superblock_start; i++) {
 | 
						|
 | 
						|
        for (j = 0; j < 4; j++) {
 | 
						|
            current_macroblock = s->superblock_macroblocks[i * 4 + j];
 | 
						|
            if ((current_macroblock == -1) ||
 | 
						|
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
 | 
						|
                continue;
 | 
						|
            if (current_macroblock >= s->macroblock_count) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
 | 
						|
                    current_macroblock, s->macroblock_count);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
 | 
						|
            current_fragment = s->macroblock_fragments[current_macroblock * 6];
 | 
						|
            if (current_fragment >= s->fragment_count) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
 | 
						|
                    current_fragment, s->fragment_count);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
            switch (s->macroblock_coding[current_macroblock]) {
 | 
						|
 | 
						|
            case MODE_INTER_PLUS_MV:
 | 
						|
            case MODE_GOLDEN_MV:
 | 
						|
                /* all 6 fragments use the same motion vector */
 | 
						|
                if (coding_mode == 0) {
 | 
						|
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                } else {
 | 
						|
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                }
 | 
						|
 | 
						|
                for (k = 1; k < 6; k++) {
 | 
						|
                    motion_x[k] = motion_x[0];
 | 
						|
                    motion_y[k] = motion_y[0];
 | 
						|
                }
 | 
						|
 | 
						|
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
 | 
						|
                if (s->macroblock_coding[current_macroblock] ==
 | 
						|
                    MODE_INTER_PLUS_MV) {
 | 
						|
                    prior_last_motion_x = last_motion_x;
 | 
						|
                    prior_last_motion_y = last_motion_y;
 | 
						|
                    last_motion_x = motion_x[0];
 | 
						|
                    last_motion_y = motion_y[0];
 | 
						|
                }
 | 
						|
                break;
 | 
						|
 | 
						|
            case MODE_INTER_FOURMV:
 | 
						|
                /* vector maintenance */
 | 
						|
                prior_last_motion_x = last_motion_x;
 | 
						|
                prior_last_motion_y = last_motion_y;
 | 
						|
 | 
						|
                /* fetch 4 vectors from the bitstream, one for each
 | 
						|
                 * Y fragment, then average for the C fragment vectors */
 | 
						|
                motion_x[4] = motion_y[4] = 0;
 | 
						|
                for (k = 0; k < 4; k++) {
 | 
						|
                    for (l = 0; l < s->coded_fragment_list_index; l++)
 | 
						|
                        if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
 | 
						|
                            break;
 | 
						|
                    if (l < s->coded_fragment_list_index) {
 | 
						|
                        if (coding_mode == 0) {
 | 
						|
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
 | 
						|
                        } else {
 | 
						|
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
 | 
						|
                        }
 | 
						|
                        last_motion_x = motion_x[k];
 | 
						|
                        last_motion_y = motion_y[k];
 | 
						|
                    } else {
 | 
						|
                        motion_x[k] = 0;
 | 
						|
                        motion_y[k] = 0;
 | 
						|
                    }
 | 
						|
                    motion_x[4] += motion_x[k];
 | 
						|
                    motion_y[4] += motion_y[k];
 | 
						|
                }
 | 
						|
 | 
						|
                motion_x[5]=
 | 
						|
                motion_x[4]= RSHIFT(motion_x[4], 2);
 | 
						|
                motion_y[5]=
 | 
						|
                motion_y[4]= RSHIFT(motion_y[4], 2);
 | 
						|
                break;
 | 
						|
 | 
						|
            case MODE_INTER_LAST_MV:
 | 
						|
                /* all 6 fragments use the last motion vector */
 | 
						|
                motion_x[0] = last_motion_x;
 | 
						|
                motion_y[0] = last_motion_y;
 | 
						|
                for (k = 1; k < 6; k++) {
 | 
						|
                    motion_x[k] = motion_x[0];
 | 
						|
                    motion_y[k] = motion_y[0];
 | 
						|
                }
 | 
						|
 | 
						|
                /* no vector maintenance (last vector remains the
 | 
						|
                 * last vector) */
 | 
						|
                break;
 | 
						|
 | 
						|
            case MODE_INTER_PRIOR_LAST:
 | 
						|
                /* all 6 fragments use the motion vector prior to the
 | 
						|
                 * last motion vector */
 | 
						|
                motion_x[0] = prior_last_motion_x;
 | 
						|
                motion_y[0] = prior_last_motion_y;
 | 
						|
                for (k = 1; k < 6; k++) {
 | 
						|
                    motion_x[k] = motion_x[0];
 | 
						|
                    motion_y[k] = motion_y[0];
 | 
						|
                }
 | 
						|
 | 
						|
                /* vector maintenance */
 | 
						|
                prior_last_motion_x = last_motion_x;
 | 
						|
                prior_last_motion_y = last_motion_y;
 | 
						|
                last_motion_x = motion_x[0];
 | 
						|
                last_motion_y = motion_y[0];
 | 
						|
                break;
 | 
						|
 | 
						|
            default:
 | 
						|
                /* covers intra, inter without MV, golden without MV */
 | 
						|
                memset(motion_x, 0, 6 * sizeof(int));
 | 
						|
                memset(motion_y, 0, 6 * sizeof(int));
 | 
						|
 | 
						|
                /* no vector maintenance */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            /* assign the motion vectors to the correct fragments */
 | 
						|
            for (k = 0; k < 6; k++) {
 | 
						|
                current_fragment =
 | 
						|
                    s->macroblock_fragments[current_macroblock * 6 + k];
 | 
						|
                if (current_fragment == -1)
 | 
						|
                    continue;
 | 
						|
                if (current_fragment >= s->fragment_count) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
 | 
						|
                        current_fragment, s->fragment_count);
 | 
						|
                    return 1;
 | 
						|
                }
 | 
						|
                s->all_fragments[current_fragment].motion_x = motion_x[k];
 | 
						|
                s->all_fragments[current_fragment].motion_y = motion_y[k];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
 | 
						|
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
 | 
						|
 * data. This function unpacks all the VLCs for either the Y plane or both
 | 
						|
 * C planes, and is called for DC coefficients or different AC coefficient
 | 
						|
 * levels (since different coefficient types require different VLC tables.
 | 
						|
 *
 | 
						|
 * This function returns a residual eob run. E.g, if a particular token gave
 | 
						|
 * instructions to EOB the next 5 fragments and there were only 2 fragments
 | 
						|
 * left in the current fragment range, 3 would be returned so that it could
 | 
						|
 * be passed into the next call to this same function.
 | 
						|
 */
 | 
						|
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
 | 
						|
                        VLC *table, int coeff_index,
 | 
						|
                        int first_fragment, int last_fragment,
 | 
						|
                        int eob_run)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int token;
 | 
						|
    int zero_run = 0;
 | 
						|
    DCTELEM coeff = 0;
 | 
						|
    Vp3Fragment *fragment;
 | 
						|
    uint8_t *perm= s->scantable.permutated;
 | 
						|
    int bits_to_get;
 | 
						|
 | 
						|
    if ((first_fragment >= s->fragment_count) ||
 | 
						|
        (last_fragment >= s->fragment_count)) {
 | 
						|
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
 | 
						|
            first_fragment, last_fragment);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = first_fragment; i <= last_fragment; i++) {
 | 
						|
        int fragment_num = s->coded_fragment_list[i];
 | 
						|
 | 
						|
        if (s->coeff_counts[fragment_num] > coeff_index)
 | 
						|
            continue;
 | 
						|
        fragment = &s->all_fragments[fragment_num];
 | 
						|
 | 
						|
        if (!eob_run) {
 | 
						|
            /* decode a VLC into a token */
 | 
						|
            token = get_vlc2(gb, table->table, 5, 3);
 | 
						|
            /* use the token to get a zero run, a coefficient, and an eob run */
 | 
						|
            if (token <= 6) {
 | 
						|
                eob_run = eob_run_base[token];
 | 
						|
                if (eob_run_get_bits[token])
 | 
						|
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
 | 
						|
                coeff = zero_run = 0;
 | 
						|
            } else {
 | 
						|
                bits_to_get = coeff_get_bits[token];
 | 
						|
                if (!bits_to_get)
 | 
						|
                    coeff = coeff_tables[token][0];
 | 
						|
                else
 | 
						|
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
 | 
						|
 | 
						|
                zero_run = zero_run_base[token];
 | 
						|
                if (zero_run_get_bits[token])
 | 
						|
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!eob_run) {
 | 
						|
            s->coeff_counts[fragment_num] += zero_run;
 | 
						|
            if (s->coeff_counts[fragment_num] < 64){
 | 
						|
                fragment->next_coeff->coeff= coeff;
 | 
						|
                fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
 | 
						|
                fragment->next_coeff->next= s->next_coeff;
 | 
						|
                s->next_coeff->next=NULL;
 | 
						|
                fragment->next_coeff= s->next_coeff++;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            s->coeff_counts[fragment_num] |= 128;
 | 
						|
            eob_run--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return eob_run;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function unpacks all of the DCT coefficient data from the
 | 
						|
 * bitstream.
 | 
						|
 */
 | 
						|
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int dc_y_table;
 | 
						|
    int dc_c_table;
 | 
						|
    int ac_y_table;
 | 
						|
    int ac_c_table;
 | 
						|
    int residual_eob_run = 0;
 | 
						|
 | 
						|
    /* fetch the DC table indexes */
 | 
						|
    dc_y_table = get_bits(gb, 4);
 | 
						|
    dc_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    /* unpack the Y plane DC coefficients */
 | 
						|
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
 | 
						|
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | 
						|
 | 
						|
    /* unpack the C plane DC coefficients */
 | 
						|
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
 | 
						|
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | 
						|
 | 
						|
    /* fetch the AC table indexes */
 | 
						|
    ac_y_table = get_bits(gb, 4);
 | 
						|
    ac_c_table = get_bits(gb, 4);
 | 
						|
 | 
						|
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
 | 
						|
    for (i = 1; i <= 5; i++) {
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
 | 
						|
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | 
						|
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
 | 
						|
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | 
						|
    }
 | 
						|
 | 
						|
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
 | 
						|
    for (i = 6; i <= 14; i++) {
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
 | 
						|
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | 
						|
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
 | 
						|
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | 
						|
    }
 | 
						|
 | 
						|
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
 | 
						|
    for (i = 15; i <= 27; i++) {
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
 | 
						|
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | 
						|
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
 | 
						|
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | 
						|
    }
 | 
						|
 | 
						|
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
 | 
						|
    for (i = 28; i <= 63; i++) {
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
 | 
						|
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
 | 
						|
 | 
						|
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
 | 
						|
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function reverses the DC prediction for each coded fragment in
 | 
						|
 * the frame. Much of this function is adapted directly from the original
 | 
						|
 * VP3 source code.
 | 
						|
 */
 | 
						|
#define COMPATIBLE_FRAME(x) \
 | 
						|
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
 | 
						|
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
 | 
						|
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
 | 
						|
 | 
						|
static void reverse_dc_prediction(Vp3DecodeContext *s,
 | 
						|
                                  int first_fragment,
 | 
						|
                                  int fragment_width,
 | 
						|
                                  int fragment_height)
 | 
						|
{
 | 
						|
 | 
						|
#define PUL 8
 | 
						|
#define PU 4
 | 
						|
#define PUR 2
 | 
						|
#define PL 1
 | 
						|
 | 
						|
    int x, y;
 | 
						|
    int i = first_fragment;
 | 
						|
 | 
						|
    int predicted_dc;
 | 
						|
 | 
						|
    /* DC values for the left, up-left, up, and up-right fragments */
 | 
						|
    int vl, vul, vu, vur;
 | 
						|
 | 
						|
    /* indexes for the left, up-left, up, and up-right fragments */
 | 
						|
    int l, ul, u, ur;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The 6 fields mean:
 | 
						|
     *   0: up-left multiplier
 | 
						|
     *   1: up multiplier
 | 
						|
     *   2: up-right multiplier
 | 
						|
     *   3: left multiplier
 | 
						|
     */
 | 
						|
    int predictor_transform[16][4] = {
 | 
						|
        {  0,  0,  0,  0},
 | 
						|
        {  0,  0,  0,128},        // PL
 | 
						|
        {  0,  0,128,  0},        // PUR
 | 
						|
        {  0,  0, 53, 75},        // PUR|PL
 | 
						|
        {  0,128,  0,  0},        // PU
 | 
						|
        {  0, 64,  0, 64},        // PU|PL
 | 
						|
        {  0,128,  0,  0},        // PU|PUR
 | 
						|
        {  0,  0, 53, 75},        // PU|PUR|PL
 | 
						|
        {128,  0,  0,  0},        // PUL
 | 
						|
        {  0,  0,  0,128},        // PUL|PL
 | 
						|
        { 64,  0, 64,  0},        // PUL|PUR
 | 
						|
        {  0,  0, 53, 75},        // PUL|PUR|PL
 | 
						|
        {  0,128,  0,  0},        // PUL|PU
 | 
						|
       {-104,116,  0,116},        // PUL|PU|PL
 | 
						|
        { 24, 80, 24,  0},        // PUL|PU|PUR
 | 
						|
       {-104,116,  0,116}         // PUL|PU|PUR|PL
 | 
						|
    };
 | 
						|
 | 
						|
    /* This table shows which types of blocks can use other blocks for
 | 
						|
     * prediction. For example, INTRA is the only mode in this table to
 | 
						|
     * have a frame number of 0. That means INTRA blocks can only predict
 | 
						|
     * from other INTRA blocks. There are 2 golden frame coding types;
 | 
						|
     * blocks encoding in these modes can only predict from other blocks
 | 
						|
     * that were encoded with these 1 of these 2 modes. */
 | 
						|
    unsigned char compatible_frame[8] = {
 | 
						|
        1,    /* MODE_INTER_NO_MV */
 | 
						|
        0,    /* MODE_INTRA */
 | 
						|
        1,    /* MODE_INTER_PLUS_MV */
 | 
						|
        1,    /* MODE_INTER_LAST_MV */
 | 
						|
        1,    /* MODE_INTER_PRIOR_MV */
 | 
						|
        2,    /* MODE_USING_GOLDEN */
 | 
						|
        2,    /* MODE_GOLDEN_MV */
 | 
						|
        1     /* MODE_INTER_FOUR_MV */
 | 
						|
    };
 | 
						|
    int current_frame_type;
 | 
						|
 | 
						|
    /* there is a last DC predictor for each of the 3 frame types */
 | 
						|
    short last_dc[3];
 | 
						|
 | 
						|
    int transform = 0;
 | 
						|
 | 
						|
    vul = vu = vur = vl = 0;
 | 
						|
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
 | 
						|
 | 
						|
    /* for each fragment row... */
 | 
						|
    for (y = 0; y < fragment_height; y++) {
 | 
						|
 | 
						|
        /* for each fragment in a row... */
 | 
						|
        for (x = 0; x < fragment_width; x++, i++) {
 | 
						|
 | 
						|
            /* reverse prediction if this block was coded */
 | 
						|
            if (s->all_fragments[i].coding_method != MODE_COPY) {
 | 
						|
 | 
						|
                current_frame_type =
 | 
						|
                    compatible_frame[s->all_fragments[i].coding_method];
 | 
						|
 | 
						|
                transform= 0;
 | 
						|
                if(x){
 | 
						|
                    l= i-1;
 | 
						|
                    vl = DC_COEFF(l);
 | 
						|
                    if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
 | 
						|
                        transform |= PL;
 | 
						|
                }
 | 
						|
                if(y){
 | 
						|
                    u= i-fragment_width;
 | 
						|
                    vu = DC_COEFF(u);
 | 
						|
                    if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
 | 
						|
                        transform |= PU;
 | 
						|
                    if(x){
 | 
						|
                        ul= i-fragment_width-1;
 | 
						|
                        vul = DC_COEFF(ul);
 | 
						|
                        if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
 | 
						|
                            transform |= PUL;
 | 
						|
                    }
 | 
						|
                    if(x + 1 < fragment_width){
 | 
						|
                        ur= i-fragment_width+1;
 | 
						|
                        vur = DC_COEFF(ur);
 | 
						|
                        if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
 | 
						|
                            transform |= PUR;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if (transform == 0) {
 | 
						|
 | 
						|
                    /* if there were no fragments to predict from, use last
 | 
						|
                     * DC saved */
 | 
						|
                    predicted_dc = last_dc[current_frame_type];
 | 
						|
                } else {
 | 
						|
 | 
						|
                    /* apply the appropriate predictor transform */
 | 
						|
                    predicted_dc =
 | 
						|
                        (predictor_transform[transform][0] * vul) +
 | 
						|
                        (predictor_transform[transform][1] * vu) +
 | 
						|
                        (predictor_transform[transform][2] * vur) +
 | 
						|
                        (predictor_transform[transform][3] * vl);
 | 
						|
 | 
						|
                    predicted_dc /= 128;
 | 
						|
 | 
						|
                    /* check for outranging on the [ul u l] and
 | 
						|
                     * [ul u ur l] predictors */
 | 
						|
                    if ((transform == 13) || (transform == 15)) {
 | 
						|
                        if (FFABS(predicted_dc - vu) > 128)
 | 
						|
                            predicted_dc = vu;
 | 
						|
                        else if (FFABS(predicted_dc - vl) > 128)
 | 
						|
                            predicted_dc = vl;
 | 
						|
                        else if (FFABS(predicted_dc - vul) > 128)
 | 
						|
                            predicted_dc = vul;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                /* at long last, apply the predictor */
 | 
						|
                if(s->coeffs[i].index){
 | 
						|
                    *s->next_coeff= s->coeffs[i];
 | 
						|
                    s->coeffs[i].index=0;
 | 
						|
                    s->coeffs[i].coeff=0;
 | 
						|
                    s->coeffs[i].next= s->next_coeff++;
 | 
						|
                }
 | 
						|
                s->coeffs[i].coeff += predicted_dc;
 | 
						|
                /* save the DC */
 | 
						|
                last_dc[current_frame_type] = DC_COEFF(i);
 | 
						|
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
 | 
						|
                    s->coeff_counts[i]= 129;
 | 
						|
//                    s->all_fragments[i].next_coeff= s->next_coeff;
 | 
						|
                    s->coeffs[i].next= s->next_coeff;
 | 
						|
                    (s->next_coeff++)->next=NULL;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform the final rendering for a particular slice of data.
 | 
						|
 * The slice number ranges from 0..(macroblock_height - 1).
 | 
						|
 */
 | 
						|
static void render_slice(Vp3DecodeContext *s, int slice)
 | 
						|
{
 | 
						|
    int x;
 | 
						|
    int16_t *dequantizer;
 | 
						|
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
 | 
						|
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
 | 
						|
    int motion_halfpel_index;
 | 
						|
    uint8_t *motion_source;
 | 
						|
    int plane;
 | 
						|
    int current_macroblock_entry = slice * s->macroblock_width * 6;
 | 
						|
 | 
						|
    if (slice >= s->macroblock_height)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        uint8_t *output_plane = s->current_frame.data    [plane];
 | 
						|
        uint8_t *  last_plane = s->   last_frame.data    [plane];
 | 
						|
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
 | 
						|
        int stride            = s->current_frame.linesize[plane];
 | 
						|
        int plane_width       = s->width  >> !!plane;
 | 
						|
        int plane_height      = s->height >> !!plane;
 | 
						|
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
 | 
						|
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
 | 
						|
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
 | 
						|
 | 
						|
        if (!s->flipped_image) stride = -stride;
 | 
						|
 | 
						|
 | 
						|
        if(FFABS(stride) > 2048)
 | 
						|
            return; //various tables are fixed size
 | 
						|
 | 
						|
        /* for each fragment row in the slice (both of them)... */
 | 
						|
        for (; y < slice_height; y += 8) {
 | 
						|
 | 
						|
            /* for each fragment in a row... */
 | 
						|
            for (x = 0; x < plane_width; x += 8, i++) {
 | 
						|
 | 
						|
                if ((i < 0) || (i >= s->fragment_count)) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
 | 
						|
                /* transform if this block was coded */
 | 
						|
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
 | 
						|
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
 | 
						|
 | 
						|
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
 | 
						|
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
 | 
						|
                        motion_source= golden_plane;
 | 
						|
                    else
 | 
						|
                        motion_source= last_plane;
 | 
						|
 | 
						|
                    motion_source += s->all_fragments[i].first_pixel;
 | 
						|
                    motion_halfpel_index = 0;
 | 
						|
 | 
						|
                    /* sort out the motion vector if this fragment is coded
 | 
						|
                     * using a motion vector method */
 | 
						|
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
 | 
						|
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
 | 
						|
                        int src_x, src_y;
 | 
						|
                        motion_x = s->all_fragments[i].motion_x;
 | 
						|
                        motion_y = s->all_fragments[i].motion_y;
 | 
						|
                        if(plane){
 | 
						|
                            motion_x= (motion_x>>1) | (motion_x&1);
 | 
						|
                            motion_y= (motion_y>>1) | (motion_y&1);
 | 
						|
                        }
 | 
						|
 | 
						|
                        src_x= (motion_x>>1) + x;
 | 
						|
                        src_y= (motion_y>>1) + y;
 | 
						|
                        if ((motion_x == 127) || (motion_y == 127))
 | 
						|
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
 | 
						|
 | 
						|
                        motion_halfpel_index = motion_x & 0x01;
 | 
						|
                        motion_source += (motion_x >> 1);
 | 
						|
 | 
						|
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
 | 
						|
                        motion_source += ((motion_y >> 1) * stride);
 | 
						|
 | 
						|
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
 | 
						|
                            uint8_t *temp= s->edge_emu_buffer;
 | 
						|
                            if(stride<0) temp -= 9*stride;
 | 
						|
                            else temp += 9*stride;
 | 
						|
 | 
						|
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
 | 
						|
                            motion_source= temp;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
 | 
						|
                    /* first, take care of copying a block from either the
 | 
						|
                     * previous or the golden frame */
 | 
						|
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
 | 
						|
                        /* Note, it is possible to implement all MC cases with
 | 
						|
                           put_no_rnd_pixels_l2 which would look more like the
 | 
						|
                           VP3 source but this would be slower as
 | 
						|
                           put_no_rnd_pixels_tab is better optimzed */
 | 
						|
                        if(motion_halfpel_index != 3){
 | 
						|
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
 | 
						|
                                output_plane + s->all_fragments[i].first_pixel,
 | 
						|
                                motion_source, stride, 8);
 | 
						|
                        }else{
 | 
						|
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
 | 
						|
                            s->dsp.put_no_rnd_pixels_l2[1](
 | 
						|
                                output_plane + s->all_fragments[i].first_pixel,
 | 
						|
                                motion_source - d,
 | 
						|
                                motion_source + stride + 1 + d,
 | 
						|
                                stride, 8);
 | 
						|
                        }
 | 
						|
                        dequantizer = s->qmat[1][plane];
 | 
						|
                    }else{
 | 
						|
                        dequantizer = s->qmat[0][plane];
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* dequantize the DCT coefficients */
 | 
						|
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
 | 
						|
                        Coeff *coeff= s->coeffs + i;
 | 
						|
                        s->dsp.clear_block(block);
 | 
						|
                        while(coeff->next){
 | 
						|
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
 | 
						|
                            coeff= coeff->next;
 | 
						|
                        }
 | 
						|
                    }else{
 | 
						|
                        Coeff *coeff= s->coeffs + i;
 | 
						|
                        s->dsp.clear_block(block);
 | 
						|
                        while(coeff->next){
 | 
						|
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
 | 
						|
                            coeff= coeff->next;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* invert DCT and place (or add) in final output */
 | 
						|
 | 
						|
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
 | 
						|
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
 | 
						|
                            block[0] += 128<<3;
 | 
						|
                        s->dsp.idct_put(
 | 
						|
                            output_plane + s->all_fragments[i].first_pixel,
 | 
						|
                            stride,
 | 
						|
                            block);
 | 
						|
                    } else {
 | 
						|
                        s->dsp.idct_add(
 | 
						|
                            output_plane + s->all_fragments[i].first_pixel,
 | 
						|
                            stride,
 | 
						|
                            block);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
 | 
						|
                    /* copy directly from the previous frame */
 | 
						|
                    s->dsp.put_pixels_tab[1][0](
 | 
						|
                        output_plane + s->all_fragments[i].first_pixel,
 | 
						|
                        last_plane + s->all_fragments[i].first_pixel,
 | 
						|
                        stride, 8);
 | 
						|
 | 
						|
                }
 | 
						|
#if 0
 | 
						|
                /* perform the left edge filter if:
 | 
						|
                 *   - the fragment is not on the left column
 | 
						|
                 *   - the fragment is coded in this frame
 | 
						|
                 *   - the fragment is not coded in this frame but the left
 | 
						|
                 *     fragment is coded in this frame (this is done instead
 | 
						|
                 *     of a right edge filter when rendering the left fragment
 | 
						|
                 *     since this fragment is not available yet) */
 | 
						|
                if ((x > 0) &&
 | 
						|
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
 | 
						|
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
 | 
						|
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
 | 
						|
                    horizontal_filter(
 | 
						|
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
 | 
						|
                        -stride, s->bounding_values_array + 127);
 | 
						|
                }
 | 
						|
 | 
						|
                /* perform the top edge filter if:
 | 
						|
                 *   - the fragment is not on the top row
 | 
						|
                 *   - the fragment is coded in this frame
 | 
						|
                 *   - the fragment is not coded in this frame but the above
 | 
						|
                 *     fragment is coded in this frame (this is done instead
 | 
						|
                 *     of a bottom edge filter when rendering the above
 | 
						|
                 *     fragment since this fragment is not available yet) */
 | 
						|
                if ((y > 0) &&
 | 
						|
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
 | 
						|
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
 | 
						|
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
 | 
						|
                    vertical_filter(
 | 
						|
                        output_plane + s->all_fragments[i].first_pixel - stride,
 | 
						|
                        -stride, s->bounding_values_array + 127);
 | 
						|
                }
 | 
						|
#endif
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
     /* this looks like a good place for slice dispatch... */
 | 
						|
     /* algorithm:
 | 
						|
      *   if (slice == s->macroblock_height - 1)
 | 
						|
      *     dispatch (both last slice & 2nd-to-last slice);
 | 
						|
      *   else if (slice > 0)
 | 
						|
      *     dispatch (slice - 1);
 | 
						|
      */
 | 
						|
 | 
						|
    emms_c();
 | 
						|
}
 | 
						|
 | 
						|
static void apply_loop_filter(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
    int plane;
 | 
						|
    int x, y;
 | 
						|
    int *bounding_values= s->bounding_values_array+127;
 | 
						|
 | 
						|
#if 0
 | 
						|
    int bounding_values_array[256];
 | 
						|
    int filter_limit;
 | 
						|
 | 
						|
    /* find the right loop limit value */
 | 
						|
    for (x = 63; x >= 0; x--) {
 | 
						|
        if (vp31_ac_scale_factor[x] >= s->quality_index)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    filter_limit = vp31_filter_limit_values[s->quality_index];
 | 
						|
 | 
						|
    /* set up the bounding values */
 | 
						|
    memset(bounding_values_array, 0, 256 * sizeof(int));
 | 
						|
    for (x = 0; x < filter_limit; x++) {
 | 
						|
        bounding_values[-x - filter_limit] = -filter_limit + x;
 | 
						|
        bounding_values[-x] = -x;
 | 
						|
        bounding_values[x] = x;
 | 
						|
        bounding_values[x + filter_limit] = filter_limit - x;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    for (plane = 0; plane < 3; plane++) {
 | 
						|
        int width           = s->fragment_width  >> !!plane;
 | 
						|
        int height          = s->fragment_height >> !!plane;
 | 
						|
        int fragment        = s->fragment_start        [plane];
 | 
						|
        int stride          = s->current_frame.linesize[plane];
 | 
						|
        uint8_t *plane_data = s->current_frame.data    [plane];
 | 
						|
        if (!s->flipped_image) stride = -stride;
 | 
						|
 | 
						|
        for (y = 0; y < height; y++) {
 | 
						|
 | 
						|
            for (x = 0; x < width; x++) {
 | 
						|
                /* do not perform left edge filter for left columns frags */
 | 
						|
                if ((x > 0) &&
 | 
						|
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
 | 
						|
                    s->dsp.vp3_h_loop_filter(
 | 
						|
                        plane_data + s->all_fragments[fragment].first_pixel,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform top edge filter for top row fragments */
 | 
						|
                if ((y > 0) &&
 | 
						|
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
 | 
						|
                    s->dsp.vp3_v_loop_filter(
 | 
						|
                        plane_data + s->all_fragments[fragment].first_pixel,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform right edge filter for right column
 | 
						|
                 * fragments or if right fragment neighbor is also coded
 | 
						|
                 * in this frame (it will be filtered in next iteration) */
 | 
						|
                if ((x < width - 1) &&
 | 
						|
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
 | 
						|
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
 | 
						|
                    s->dsp.vp3_h_loop_filter(
 | 
						|
                        plane_data + s->all_fragments[fragment + 1].first_pixel,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                /* do not perform bottom edge filter for bottom row
 | 
						|
                 * fragments or if bottom fragment neighbor is also coded
 | 
						|
                 * in this frame (it will be filtered in the next row) */
 | 
						|
                if ((y < height - 1) &&
 | 
						|
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
 | 
						|
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
 | 
						|
                    s->dsp.vp3_v_loop_filter(
 | 
						|
                        plane_data + s->all_fragments[fragment + width].first_pixel,
 | 
						|
                        stride, bounding_values);
 | 
						|
                }
 | 
						|
 | 
						|
                fragment++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function computes the first pixel addresses for each fragment.
 | 
						|
 * This function needs to be invoked after the first frame is allocated
 | 
						|
 * so that it has access to the plane strides.
 | 
						|
 */
 | 
						|
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
 | 
						|
{
 | 
						|
#define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
 | 
						|
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
 | 
						|
 | 
						|
    int i, x, y;
 | 
						|
    const int y_inc = s->flipped_image ? 1 : -1;
 | 
						|
 | 
						|
    /* figure out the first pixel addresses for each of the fragments */
 | 
						|
    /* Y plane */
 | 
						|
    i = 0;
 | 
						|
    for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
 | 
						|
        for (x = 0; x < s->fragment_width; x++) {
 | 
						|
            s->all_fragments[i++].first_pixel =
 | 
						|
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
 | 
						|
                    s->golden_frame.linesize[0] +
 | 
						|
                    x * FRAGMENT_PIXELS;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* U plane */
 | 
						|
    i = s->fragment_start[1];
 | 
						|
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
 | 
						|
        for (x = 0; x < s->fragment_width / 2; x++) {
 | 
						|
            s->all_fragments[i++].first_pixel =
 | 
						|
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
 | 
						|
                    s->golden_frame.linesize[1] +
 | 
						|
                    x * FRAGMENT_PIXELS;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* V plane */
 | 
						|
    i = s->fragment_start[2];
 | 
						|
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
 | 
						|
        for (x = 0; x < s->fragment_width / 2; x++) {
 | 
						|
            s->all_fragments[i++].first_pixel =
 | 
						|
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
 | 
						|
                    s->golden_frame.linesize[2] +
 | 
						|
                    x * FRAGMENT_PIXELS;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the ffmpeg/libavcodec API init function.
 | 
						|
 */
 | 
						|
static av_cold int vp3_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i, inter, plane;
 | 
						|
    int c_width;
 | 
						|
    int c_height;
 | 
						|
    int y_superblock_count;
 | 
						|
    int c_superblock_count;
 | 
						|
 | 
						|
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
 | 
						|
        s->version = 0;
 | 
						|
    else
 | 
						|
        s->version = 1;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
 | 
						|
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
 | 
						|
    avctx->pix_fmt = PIX_FMT_YUV420P;
 | 
						|
    if(avctx->idct_algo==FF_IDCT_AUTO)
 | 
						|
        avctx->idct_algo=FF_IDCT_VP3;
 | 
						|
    dsputil_init(&s->dsp, avctx);
 | 
						|
 | 
						|
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
 | 
						|
 | 
						|
    /* initialize to an impossible value which will force a recalculation
 | 
						|
     * in the first frame decode */
 | 
						|
    s->quality_index = -1;
 | 
						|
 | 
						|
    s->y_superblock_width = (s->width + 31) / 32;
 | 
						|
    s->y_superblock_height = (s->height + 31) / 32;
 | 
						|
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
 | 
						|
 | 
						|
    /* work out the dimensions for the C planes */
 | 
						|
    c_width = s->width / 2;
 | 
						|
    c_height = s->height / 2;
 | 
						|
    s->c_superblock_width = (c_width + 31) / 32;
 | 
						|
    s->c_superblock_height = (c_height + 31) / 32;
 | 
						|
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
 | 
						|
 | 
						|
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
 | 
						|
    s->u_superblock_start = y_superblock_count;
 | 
						|
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
 | 
						|
    s->superblock_coding = av_malloc(s->superblock_count);
 | 
						|
 | 
						|
    s->macroblock_width = (s->width + 15) / 16;
 | 
						|
    s->macroblock_height = (s->height + 15) / 16;
 | 
						|
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
 | 
						|
 | 
						|
    s->fragment_width = s->width / FRAGMENT_PIXELS;
 | 
						|
    s->fragment_height = s->height / FRAGMENT_PIXELS;
 | 
						|
 | 
						|
    /* fragment count covers all 8x8 blocks for all 3 planes */
 | 
						|
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
 | 
						|
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
 | 
						|
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
 | 
						|
 | 
						|
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
 | 
						|
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
 | 
						|
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
 | 
						|
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
 | 
						|
    s->pixel_addresses_initialized = 0;
 | 
						|
 | 
						|
    if (!s->theora_tables)
 | 
						|
    {
 | 
						|
        for (i = 0; i < 64; i++) {
 | 
						|
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
 | 
						|
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
 | 
						|
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
 | 
						|
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
 | 
						|
            s->base_matrix[2][i] = vp31_inter_dequant[i];
 | 
						|
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
 | 
						|
        }
 | 
						|
 | 
						|
        for(inter=0; inter<2; inter++){
 | 
						|
            for(plane=0; plane<3; plane++){
 | 
						|
                s->qr_count[inter][plane]= 1;
 | 
						|
                s->qr_size [inter][plane][0]= 63;
 | 
						|
                s->qr_base [inter][plane][0]=
 | 
						|
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* init VLC tables */
 | 
						|
        for (i = 0; i < 16; i++) {
 | 
						|
 | 
						|
            /* DC histograms */
 | 
						|
            init_vlc(&s->dc_vlc[i], 5, 32,
 | 
						|
                &dc_bias[i][0][1], 4, 2,
 | 
						|
                &dc_bias[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 1 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_1[i], 5, 32,
 | 
						|
                &ac_bias_0[i][0][1], 4, 2,
 | 
						|
                &ac_bias_0[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 2 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_2[i], 5, 32,
 | 
						|
                &ac_bias_1[i][0][1], 4, 2,
 | 
						|
                &ac_bias_1[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 3 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_3[i], 5, 32,
 | 
						|
                &ac_bias_2[i][0][1], 4, 2,
 | 
						|
                &ac_bias_2[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 4 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_4[i], 5, 32,
 | 
						|
                &ac_bias_3[i][0][1], 4, 2,
 | 
						|
                &ac_bias_3[i][0][0], 4, 2, 0);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < 16; i++) {
 | 
						|
 | 
						|
            /* DC histograms */
 | 
						|
            init_vlc(&s->dc_vlc[i], 5, 32,
 | 
						|
                &s->huffman_table[i][0][1], 4, 2,
 | 
						|
                &s->huffman_table[i][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 1 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_1[i], 5, 32,
 | 
						|
                &s->huffman_table[i+16][0][1], 4, 2,
 | 
						|
                &s->huffman_table[i+16][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 2 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_2[i], 5, 32,
 | 
						|
                &s->huffman_table[i+16*2][0][1], 4, 2,
 | 
						|
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 3 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_3[i], 5, 32,
 | 
						|
                &s->huffman_table[i+16*3][0][1], 4, 2,
 | 
						|
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
 | 
						|
 | 
						|
            /* group 4 AC histograms */
 | 
						|
            init_vlc(&s->ac_vlc_4[i], 5, 32,
 | 
						|
                &s->huffman_table[i+16*4][0][1], 4, 2,
 | 
						|
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
 | 
						|
        &superblock_run_length_vlc_table[0][1], 4, 2,
 | 
						|
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
 | 
						|
 | 
						|
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
 | 
						|
        &fragment_run_length_vlc_table[0][1], 4, 2,
 | 
						|
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
 | 
						|
 | 
						|
    init_vlc(&s->mode_code_vlc, 3, 8,
 | 
						|
        &mode_code_vlc_table[0][1], 2, 1,
 | 
						|
        &mode_code_vlc_table[0][0], 2, 1, 0);
 | 
						|
 | 
						|
    init_vlc(&s->motion_vector_vlc, 6, 63,
 | 
						|
        &motion_vector_vlc_table[0][1], 2, 1,
 | 
						|
        &motion_vector_vlc_table[0][0], 2, 1, 0);
 | 
						|
 | 
						|
    /* work out the block mapping tables */
 | 
						|
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
 | 
						|
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
 | 
						|
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
 | 
						|
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
 | 
						|
    init_block_mapping(s);
 | 
						|
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        s->current_frame.data[i] = NULL;
 | 
						|
        s->last_frame.data[i] = NULL;
 | 
						|
        s->golden_frame.data[i] = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the ffmpeg/libavcodec API frame decode function.
 | 
						|
 */
 | 
						|
static int vp3_decode_frame(AVCodecContext *avctx,
 | 
						|
                            void *data, int *data_size,
 | 
						|
                            const uint8_t *buf, int buf_size)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    GetBitContext gb;
 | 
						|
    static int counter = 0;
 | 
						|
    int i;
 | 
						|
 | 
						|
    init_get_bits(&gb, buf, buf_size * 8);
 | 
						|
 | 
						|
    if (s->theora && get_bits1(&gb))
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    s->keyframe = !get_bits1(&gb);
 | 
						|
    if (!s->theora)
 | 
						|
        skip_bits(&gb, 1);
 | 
						|
    s->last_quality_index = s->quality_index;
 | 
						|
 | 
						|
    s->nqis=0;
 | 
						|
    do{
 | 
						|
        s->qis[s->nqis++]= get_bits(&gb, 6);
 | 
						|
    } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
 | 
						|
 | 
						|
    s->quality_index= s->qis[0];
 | 
						|
 | 
						|
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
 | 
						|
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
 | 
						|
            s->keyframe?"key":"", counter, s->quality_index);
 | 
						|
    counter++;
 | 
						|
 | 
						|
    if (s->quality_index != s->last_quality_index) {
 | 
						|
        init_dequantizer(s);
 | 
						|
        init_loop_filter(s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
 | 
						|
        return buf_size;
 | 
						|
 | 
						|
    if (s->keyframe) {
 | 
						|
        if (!s->theora)
 | 
						|
        {
 | 
						|
            skip_bits(&gb, 4); /* width code */
 | 
						|
            skip_bits(&gb, 4); /* height code */
 | 
						|
            if (s->version)
 | 
						|
            {
 | 
						|
                s->version = get_bits(&gb, 5);
 | 
						|
                if (counter == 1)
 | 
						|
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (s->version || s->theora)
 | 
						|
        {
 | 
						|
                if (get_bits1(&gb))
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
 | 
						|
            skip_bits(&gb, 2); /* reserved? */
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
 | 
						|
            if (s->golden_frame.data[0])
 | 
						|
                avctx->release_buffer(avctx, &s->golden_frame);
 | 
						|
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
 | 
						|
        } else {
 | 
						|
            if (s->golden_frame.data[0])
 | 
						|
                avctx->release_buffer(avctx, &s->golden_frame);
 | 
						|
            if (s->last_frame.data[0])
 | 
						|
                avctx->release_buffer(avctx, &s->last_frame);
 | 
						|
        }
 | 
						|
 | 
						|
        s->golden_frame.reference = 3;
 | 
						|
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* golden frame is also the current frame */
 | 
						|
        s->current_frame= s->golden_frame;
 | 
						|
 | 
						|
        /* time to figure out pixel addresses? */
 | 
						|
        if (!s->pixel_addresses_initialized)
 | 
						|
        {
 | 
						|
            vp3_calculate_pixel_addresses(s);
 | 
						|
            s->pixel_addresses_initialized = 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* allocate a new current frame */
 | 
						|
        s->current_frame.reference = 3;
 | 
						|
        if (!s->pixel_addresses_initialized) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
 | 
						|
    s->current_frame.qstride= 0;
 | 
						|
 | 
						|
    init_frame(s, &gb);
 | 
						|
 | 
						|
    if (unpack_superblocks(s, &gb)){
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (unpack_modes(s, &gb)){
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (unpack_vectors(s, &gb)){
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (unpack_dct_coeffs(s, &gb)){
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
 | 
						|
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
 | 
						|
        reverse_dc_prediction(s, s->fragment_start[1],
 | 
						|
            s->fragment_width / 2, s->fragment_height / 2);
 | 
						|
        reverse_dc_prediction(s, s->fragment_start[2],
 | 
						|
            s->fragment_width / 2, s->fragment_height / 2);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < s->macroblock_height; i++)
 | 
						|
        render_slice(s, i);
 | 
						|
 | 
						|
    apply_loop_filter(s);
 | 
						|
 | 
						|
    *data_size=sizeof(AVFrame);
 | 
						|
    *(AVFrame*)data= s->current_frame;
 | 
						|
 | 
						|
    /* release the last frame, if it is allocated and if it is not the
 | 
						|
     * golden frame */
 | 
						|
    if ((s->last_frame.data[0]) &&
 | 
						|
        (s->last_frame.data[0] != s->golden_frame.data[0]))
 | 
						|
        avctx->release_buffer(avctx, &s->last_frame);
 | 
						|
 | 
						|
    /* shuffle frames (last = current) */
 | 
						|
    s->last_frame= s->current_frame;
 | 
						|
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
 | 
						|
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is the ffmpeg/libavcodec API module cleanup function.
 | 
						|
 */
 | 
						|
static av_cold int vp3_decode_end(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    av_free(s->superblock_coding);
 | 
						|
    av_free(s->all_fragments);
 | 
						|
    av_free(s->coeff_counts);
 | 
						|
    av_free(s->coeffs);
 | 
						|
    av_free(s->coded_fragment_list);
 | 
						|
    av_free(s->superblock_fragments);
 | 
						|
    av_free(s->superblock_macroblocks);
 | 
						|
    av_free(s->macroblock_fragments);
 | 
						|
    av_free(s->macroblock_coding);
 | 
						|
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        free_vlc(&s->dc_vlc[i]);
 | 
						|
        free_vlc(&s->ac_vlc_1[i]);
 | 
						|
        free_vlc(&s->ac_vlc_2[i]);
 | 
						|
        free_vlc(&s->ac_vlc_3[i]);
 | 
						|
        free_vlc(&s->ac_vlc_4[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    free_vlc(&s->superblock_run_length_vlc);
 | 
						|
    free_vlc(&s->fragment_run_length_vlc);
 | 
						|
    free_vlc(&s->mode_code_vlc);
 | 
						|
    free_vlc(&s->motion_vector_vlc);
 | 
						|
 | 
						|
    /* release all frames */
 | 
						|
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
 | 
						|
        avctx->release_buffer(avctx, &s->golden_frame);
 | 
						|
    if (s->last_frame.data[0])
 | 
						|
        avctx->release_buffer(avctx, &s->last_frame);
 | 
						|
    /* no need to release the current_frame since it will always be pointing
 | 
						|
     * to the same frame as either the golden or last frame */
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    if (get_bits1(gb)) {
 | 
						|
        int token;
 | 
						|
        if (s->entries >= 32) { /* overflow */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        token = get_bits(gb, 5);
 | 
						|
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
 | 
						|
        s->huffman_table[s->hti][token][0] = s->hbits;
 | 
						|
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
 | 
						|
        s->entries++;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (s->huff_code_size >= 32) {/* overflow */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->huff_code_size++;
 | 
						|
        s->hbits <<= 1;
 | 
						|
        if (read_huffman_tree(avctx, gb))
 | 
						|
            return -1;
 | 
						|
        s->hbits |= 1;
 | 
						|
        if (read_huffman_tree(avctx, gb))
 | 
						|
            return -1;
 | 
						|
        s->hbits >>= 1;
 | 
						|
        s->huff_code_size--;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_THEORA_DECODER
 | 
						|
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int visible_width, visible_height;
 | 
						|
 | 
						|
    s->theora = get_bits_long(gb, 24);
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
 | 
						|
 | 
						|
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
 | 
						|
    /* but previous versions have the image flipped relative to vp3 */
 | 
						|
    if (s->theora < 0x030200)
 | 
						|
    {
 | 
						|
        s->flipped_image = 1;
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
 | 
						|
    }
 | 
						|
 | 
						|
    visible_width  = s->width  = get_bits(gb, 16) << 4;
 | 
						|
    visible_height = s->height = get_bits(gb, 16) << 4;
 | 
						|
 | 
						|
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
 | 
						|
        s->width= s->height= 0;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->theora >= 0x030400)
 | 
						|
    {
 | 
						|
        skip_bits(gb, 32); /* total number of superblocks in a frame */
 | 
						|
        // fixme, the next field is 36bits long
 | 
						|
        skip_bits(gb, 32); /* total number of blocks in a frame */
 | 
						|
        skip_bits(gb, 4); /* total number of blocks in a frame */
 | 
						|
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->theora >= 0x030200) {
 | 
						|
        visible_width  = get_bits_long(gb, 24);
 | 
						|
        visible_height = get_bits_long(gb, 24);
 | 
						|
 | 
						|
        skip_bits(gb, 8); /* offset x */
 | 
						|
        skip_bits(gb, 8); /* offset y */
 | 
						|
    }
 | 
						|
 | 
						|
    skip_bits(gb, 32); /* fps numerator */
 | 
						|
    skip_bits(gb, 32); /* fps denumerator */
 | 
						|
    skip_bits(gb, 24); /* aspect numerator */
 | 
						|
    skip_bits(gb, 24); /* aspect denumerator */
 | 
						|
 | 
						|
    if (s->theora < 0x030200)
 | 
						|
        skip_bits(gb, 5); /* keyframe frequency force */
 | 
						|
    skip_bits(gb, 8); /* colorspace */
 | 
						|
    if (s->theora >= 0x030400)
 | 
						|
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
 | 
						|
    skip_bits(gb, 24); /* bitrate */
 | 
						|
 | 
						|
    skip_bits(gb, 6); /* quality hint */
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
    {
 | 
						|
        skip_bits(gb, 5); /* keyframe frequency force */
 | 
						|
 | 
						|
        if (s->theora < 0x030400)
 | 
						|
            skip_bits(gb, 5); /* spare bits */
 | 
						|
    }
 | 
						|
 | 
						|
//    align_get_bits(gb);
 | 
						|
 | 
						|
    if (   visible_width  <= s->width  && visible_width  > s->width-16
 | 
						|
        && visible_height <= s->height && visible_height > s->height-16)
 | 
						|
        avcodec_set_dimensions(avctx, visible_width, visible_height);
 | 
						|
    else
 | 
						|
        avcodec_set_dimensions(avctx, s->width, s->height);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    int i, n, matrices, inter, plane;
 | 
						|
 | 
						|
    if (s->theora >= 0x030200) {
 | 
						|
        n = get_bits(gb, 3);
 | 
						|
        /* loop filter limit values table */
 | 
						|
        for (i = 0; i < 64; i++)
 | 
						|
            s->filter_limit_values[i] = get_bits(gb, n);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        n = get_bits(gb, 4) + 1;
 | 
						|
    else
 | 
						|
        n = 16;
 | 
						|
    /* quality threshold table */
 | 
						|
    for (i = 0; i < 64; i++)
 | 
						|
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        n = get_bits(gb, 4) + 1;
 | 
						|
    else
 | 
						|
        n = 16;
 | 
						|
    /* dc scale factor table */
 | 
						|
    for (i = 0; i < 64; i++)
 | 
						|
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
 | 
						|
 | 
						|
    if (s->theora >= 0x030200)
 | 
						|
        matrices = get_bits(gb, 9) + 1;
 | 
						|
    else
 | 
						|
        matrices = 3;
 | 
						|
 | 
						|
    if(matrices > 384){
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for(n=0; n<matrices; n++){
 | 
						|
        for (i = 0; i < 64; i++)
 | 
						|
            s->base_matrix[n][i]= get_bits(gb, 8);
 | 
						|
    }
 | 
						|
 | 
						|
    for (inter = 0; inter <= 1; inter++) {
 | 
						|
        for (plane = 0; plane <= 2; plane++) {
 | 
						|
            int newqr= 1;
 | 
						|
            if (inter || plane > 0)
 | 
						|
                newqr = get_bits1(gb);
 | 
						|
            if (!newqr) {
 | 
						|
                int qtj, plj;
 | 
						|
                if(inter && get_bits1(gb)){
 | 
						|
                    qtj = 0;
 | 
						|
                    plj = plane;
 | 
						|
                }else{
 | 
						|
                    qtj= (3*inter + plane - 1) / 3;
 | 
						|
                    plj= (plane + 2) % 3;
 | 
						|
                }
 | 
						|
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
 | 
						|
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
 | 
						|
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
 | 
						|
            } else {
 | 
						|
                int qri= 0;
 | 
						|
                int qi = 0;
 | 
						|
 | 
						|
                for(;;){
 | 
						|
                    i= get_bits(gb, av_log2(matrices-1)+1);
 | 
						|
                    if(i>= matrices){
 | 
						|
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
 | 
						|
                        return -1;
 | 
						|
                    }
 | 
						|
                    s->qr_base[inter][plane][qri]= i;
 | 
						|
                    if(qi >= 63)
 | 
						|
                        break;
 | 
						|
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
 | 
						|
                    s->qr_size[inter][plane][qri++]= i;
 | 
						|
                    qi += i;
 | 
						|
                }
 | 
						|
 | 
						|
                if (qi > 63) {
 | 
						|
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
 | 
						|
                    return -1;
 | 
						|
                }
 | 
						|
                s->qr_count[inter][plane]= qri;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Huffman tables */
 | 
						|
    for (s->hti = 0; s->hti < 80; s->hti++) {
 | 
						|
        s->entries = 0;
 | 
						|
        s->huff_code_size = 1;
 | 
						|
        if (!get_bits1(gb)) {
 | 
						|
            s->hbits = 0;
 | 
						|
            if(read_huffman_tree(avctx, gb))
 | 
						|
                return -1;
 | 
						|
            s->hbits = 1;
 | 
						|
            if(read_huffman_tree(avctx, gb))
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->theora_tables = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int theora_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    Vp3DecodeContext *s = avctx->priv_data;
 | 
						|
    GetBitContext gb;
 | 
						|
    int ptype;
 | 
						|
    uint8_t *header_start[3];
 | 
						|
    int header_len[3];
 | 
						|
    int i;
 | 
						|
 | 
						|
    s->theora = 1;
 | 
						|
 | 
						|
    if (!avctx->extradata_size)
 | 
						|
    {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
 | 
						|
                              42, header_start, header_len) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
  for(i=0;i<3;i++) {
 | 
						|
    init_get_bits(&gb, header_start[i], header_len[i]);
 | 
						|
 | 
						|
    ptype = get_bits(&gb, 8);
 | 
						|
 | 
						|
     if (!(ptype & 0x80))
 | 
						|
     {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
 | 
						|
//        return -1;
 | 
						|
     }
 | 
						|
 | 
						|
    // FIXME: Check for this as well.
 | 
						|
    skip_bits(&gb, 6*8); /* "theora" */
 | 
						|
 | 
						|
    switch(ptype)
 | 
						|
    {
 | 
						|
        case 0x80:
 | 
						|
            theora_decode_header(avctx, &gb);
 | 
						|
                break;
 | 
						|
        case 0x81:
 | 
						|
// FIXME: is this needed? it breaks sometimes
 | 
						|
//            theora_decode_comments(avctx, gb);
 | 
						|
            break;
 | 
						|
        case 0x82:
 | 
						|
            if (theora_decode_tables(avctx, &gb))
 | 
						|
                return -1;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
 | 
						|
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
 | 
						|
    if (s->theora < 0x030200)
 | 
						|
        break;
 | 
						|
  }
 | 
						|
 | 
						|
    vp3_decode_init(avctx);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
AVCodec theora_decoder = {
 | 
						|
    "theora",
 | 
						|
    CODEC_TYPE_VIDEO,
 | 
						|
    CODEC_ID_THEORA,
 | 
						|
    sizeof(Vp3DecodeContext),
 | 
						|
    theora_decode_init,
 | 
						|
    NULL,
 | 
						|
    vp3_decode_end,
 | 
						|
    vp3_decode_frame,
 | 
						|
    0,
 | 
						|
    NULL,
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
AVCodec vp3_decoder = {
 | 
						|
    "vp3",
 | 
						|
    CODEC_TYPE_VIDEO,
 | 
						|
    CODEC_ID_VP3,
 | 
						|
    sizeof(Vp3DecodeContext),
 | 
						|
    vp3_decode_init,
 | 
						|
    NULL,
 | 
						|
    vp3_decode_end,
 | 
						|
    vp3_decode_frame,
 | 
						|
    0,
 | 
						|
    NULL,
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
 | 
						|
};
 |