529 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FFT/IFFT transforms
 | |
|  * Copyright (c) 2008 Loren Merritt
 | |
|  * Copyright (c) 2002 Fabrice Bellard
 | |
|  * Partly based on libdjbfft by D. J. Bernstein
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * FFT/IFFT transforms.
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include "libavutil/mathematics.h"
 | |
| #include "fft.h"
 | |
| #include "fft-internal.h"
 | |
| 
 | |
| #if FFT_FIXED_32
 | |
| #include "fft_table.h"
 | |
| #else /* FFT_FIXED_32 */
 | |
| 
 | |
| /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
 | |
| #if !CONFIG_HARDCODED_TABLES
 | |
| COSTABLE(16);
 | |
| COSTABLE(32);
 | |
| COSTABLE(64);
 | |
| COSTABLE(128);
 | |
| COSTABLE(256);
 | |
| COSTABLE(512);
 | |
| COSTABLE(1024);
 | |
| COSTABLE(2048);
 | |
| COSTABLE(4096);
 | |
| COSTABLE(8192);
 | |
| COSTABLE(16384);
 | |
| COSTABLE(32768);
 | |
| COSTABLE(65536);
 | |
| #endif
 | |
| COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
 | |
|     NULL, NULL, NULL, NULL,
 | |
|     FFT_NAME(ff_cos_16),
 | |
|     FFT_NAME(ff_cos_32),
 | |
|     FFT_NAME(ff_cos_64),
 | |
|     FFT_NAME(ff_cos_128),
 | |
|     FFT_NAME(ff_cos_256),
 | |
|     FFT_NAME(ff_cos_512),
 | |
|     FFT_NAME(ff_cos_1024),
 | |
|     FFT_NAME(ff_cos_2048),
 | |
|     FFT_NAME(ff_cos_4096),
 | |
|     FFT_NAME(ff_cos_8192),
 | |
|     FFT_NAME(ff_cos_16384),
 | |
|     FFT_NAME(ff_cos_32768),
 | |
|     FFT_NAME(ff_cos_65536),
 | |
| };
 | |
| 
 | |
| #endif /* FFT_FIXED_32 */
 | |
| 
 | |
| static void fft_permute_c(FFTContext *s, FFTComplex *z);
 | |
| static void fft_calc_c(FFTContext *s, FFTComplex *z);
 | |
| 
 | |
| static int split_radix_permutation(int i, int n, int inverse)
 | |
| {
 | |
|     int m;
 | |
|     if(n <= 2) return i&1;
 | |
|     m = n >> 1;
 | |
|     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
 | |
|     m >>= 1;
 | |
|     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
 | |
|     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
 | |
| }
 | |
| 
 | |
| av_cold void ff_init_ff_cos_tabs(int index)
 | |
| {
 | |
| #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
 | |
|     int i;
 | |
|     int m = 1<<index;
 | |
|     double freq = 2*M_PI/m;
 | |
|     FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
 | |
|     for(i=0; i<=m/4; i++)
 | |
|         tab[i] = FIX15(cos(i*freq));
 | |
|     for(i=1; i<m/4; i++)
 | |
|         tab[m/2-i] = tab[i];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const int avx_tab[] = {
 | |
|     0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
 | |
| };
 | |
| 
 | |
| static int is_second_half_of_fft32(int i, int n)
 | |
| {
 | |
|     if (n <= 32)
 | |
|         return i >= 16;
 | |
|     else if (i < n/2)
 | |
|         return is_second_half_of_fft32(i, n/2);
 | |
|     else if (i < 3*n/4)
 | |
|         return is_second_half_of_fft32(i - n/2, n/4);
 | |
|     else
 | |
|         return is_second_half_of_fft32(i - 3*n/4, n/4);
 | |
| }
 | |
| 
 | |
| static av_cold void fft_perm_avx(FFTContext *s)
 | |
| {
 | |
|     int i;
 | |
|     int n = 1 << s->nbits;
 | |
| 
 | |
|     for (i = 0; i < n; i += 16) {
 | |
|         int k;
 | |
|         if (is_second_half_of_fft32(i, n)) {
 | |
|             for (k = 0; k < 16; k++)
 | |
|                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
 | |
|                     i + avx_tab[k];
 | |
| 
 | |
|         } else {
 | |
|             for (k = 0; k < 16; k++) {
 | |
|                 int j = i + k;
 | |
|                 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
 | |
|                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
 | |
| {
 | |
|     int i, j, n;
 | |
| 
 | |
|     if (nbits < 2 || nbits > 16)
 | |
|         goto fail;
 | |
|     s->nbits = nbits;
 | |
|     n = 1 << nbits;
 | |
| 
 | |
|     s->revtab = av_malloc(n * sizeof(uint16_t));
 | |
|     if (!s->revtab)
 | |
|         goto fail;
 | |
|     s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
 | |
|     if (!s->tmp_buf)
 | |
|         goto fail;
 | |
|     s->inverse = inverse;
 | |
|     s->fft_permutation = FF_FFT_PERM_DEFAULT;
 | |
| 
 | |
|     s->fft_permute = fft_permute_c;
 | |
|     s->fft_calc    = fft_calc_c;
 | |
| #if CONFIG_MDCT
 | |
|     s->imdct_calc  = ff_imdct_calc_c;
 | |
|     s->imdct_half  = ff_imdct_half_c;
 | |
|     s->mdct_calc   = ff_mdct_calc_c;
 | |
| #endif
 | |
| 
 | |
| #if FFT_FIXED_32
 | |
|     {
 | |
|         int n=0;
 | |
|         ff_fft_lut_init(ff_fft_offsets_lut, 0, 1 << 16, &n);
 | |
|     }
 | |
| #else /* FFT_FIXED_32 */
 | |
| #if FFT_FLOAT
 | |
|     if (ARCH_AARCH64) ff_fft_init_aarch64(s);
 | |
|     if (ARCH_ARM)     ff_fft_init_arm(s);
 | |
|     if (ARCH_PPC)     ff_fft_init_ppc(s);
 | |
|     if (ARCH_X86)     ff_fft_init_x86(s);
 | |
|     if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
 | |
|     if (HAVE_MIPSFPU) ff_fft_init_mips(s);
 | |
| #else
 | |
|     if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
 | |
|     if (ARCH_ARM)     ff_fft_fixed_init_arm(s);
 | |
| #endif
 | |
|     for(j=4; j<=nbits; j++) {
 | |
|         ff_init_ff_cos_tabs(j);
 | |
|     }
 | |
| #endif /* FFT_FIXED_32 */
 | |
| 
 | |
| 
 | |
|     if (s->fft_permutation == FF_FFT_PERM_AVX) {
 | |
|         fft_perm_avx(s);
 | |
|     } else {
 | |
|         for(i=0; i<n; i++) {
 | |
|             j = i;
 | |
|             if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
 | |
|                 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
 | |
|             s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|  fail:
 | |
|     av_freep(&s->revtab);
 | |
|     av_freep(&s->tmp_buf);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void fft_permute_c(FFTContext *s, FFTComplex *z)
 | |
| {
 | |
|     int j, np;
 | |
|     const uint16_t *revtab = s->revtab;
 | |
|     np = 1 << s->nbits;
 | |
|     /* TODO: handle split-radix permute in a more optimal way, probably in-place */
 | |
|     for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
 | |
|     memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
 | |
| }
 | |
| 
 | |
| av_cold void ff_fft_end(FFTContext *s)
 | |
| {
 | |
|     av_freep(&s->revtab);
 | |
|     av_freep(&s->tmp_buf);
 | |
| }
 | |
| 
 | |
| #if FFT_FIXED_32
 | |
| 
 | |
| static void fft_calc_c(FFTContext *s, FFTComplex *z) {
 | |
| 
 | |
|     int nbits, i, n, num_transforms, offset, step;
 | |
|     int n4, n2, n34;
 | |
|     FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
 | |
|     FFTComplex *tmpz;
 | |
|     const int fft_size = (1 << s->nbits);
 | |
|     int64_t accu;
 | |
| 
 | |
|     num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
 | |
| 
 | |
|     for (n=0; n<num_transforms; n++){
 | |
|         offset = ff_fft_offsets_lut[n] << 2;
 | |
|         tmpz = z + offset;
 | |
| 
 | |
|         tmp1 = tmpz[0].re + tmpz[1].re;
 | |
|         tmp5 = tmpz[2].re + tmpz[3].re;
 | |
|         tmp2 = tmpz[0].im + tmpz[1].im;
 | |
|         tmp6 = tmpz[2].im + tmpz[3].im;
 | |
|         tmp3 = tmpz[0].re - tmpz[1].re;
 | |
|         tmp8 = tmpz[2].im - tmpz[3].im;
 | |
|         tmp4 = tmpz[0].im - tmpz[1].im;
 | |
|         tmp7 = tmpz[2].re - tmpz[3].re;
 | |
| 
 | |
|         tmpz[0].re = tmp1 + tmp5;
 | |
|         tmpz[2].re = tmp1 - tmp5;
 | |
|         tmpz[0].im = tmp2 + tmp6;
 | |
|         tmpz[2].im = tmp2 - tmp6;
 | |
|         tmpz[1].re = tmp3 + tmp8;
 | |
|         tmpz[3].re = tmp3 - tmp8;
 | |
|         tmpz[1].im = tmp4 - tmp7;
 | |
|         tmpz[3].im = tmp4 + tmp7;
 | |
|     }
 | |
| 
 | |
|     if (fft_size < 8)
 | |
|         return;
 | |
| 
 | |
|     num_transforms = (num_transforms >> 1) | 1;
 | |
| 
 | |
|     for (n=0; n<num_transforms; n++){
 | |
|         offset = ff_fft_offsets_lut[n] << 3;
 | |
|         tmpz = z + offset;
 | |
| 
 | |
|         tmp1 = tmpz[4].re + tmpz[5].re;
 | |
|         tmp3 = tmpz[6].re + tmpz[7].re;
 | |
|         tmp2 = tmpz[4].im + tmpz[5].im;
 | |
|         tmp4 = tmpz[6].im + tmpz[7].im;
 | |
|         tmp5 = tmp1 + tmp3;
 | |
|         tmp7 = tmp1 - tmp3;
 | |
|         tmp6 = tmp2 + tmp4;
 | |
|         tmp8 = tmp2 - tmp4;
 | |
| 
 | |
|         tmp1 = tmpz[4].re - tmpz[5].re;
 | |
|         tmp2 = tmpz[4].im - tmpz[5].im;
 | |
|         tmp3 = tmpz[6].re - tmpz[7].re;
 | |
|         tmp4 = tmpz[6].im - tmpz[7].im;
 | |
| 
 | |
|         tmpz[4].re = tmpz[0].re - tmp5;
 | |
|         tmpz[0].re = tmpz[0].re + tmp5;
 | |
|         tmpz[4].im = tmpz[0].im - tmp6;
 | |
|         tmpz[0].im = tmpz[0].im + tmp6;
 | |
|         tmpz[6].re = tmpz[2].re - tmp8;
 | |
|         tmpz[2].re = tmpz[2].re + tmp8;
 | |
|         tmpz[6].im = tmpz[2].im + tmp7;
 | |
|         tmpz[2].im = tmpz[2].im - tmp7;
 | |
| 
 | |
|         accu = (int64_t)Q31(M_SQRT1_2)*(tmp1 + tmp2);
 | |
|         tmp5 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|         accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 - tmp4);
 | |
|         tmp7 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|         accu = (int64_t)Q31(M_SQRT1_2)*(tmp2 - tmp1);
 | |
|         tmp6 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|         accu = (int64_t)Q31(M_SQRT1_2)*(tmp3 + tmp4);
 | |
|         tmp8 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|         tmp1 = tmp5 + tmp7;
 | |
|         tmp3 = tmp5 - tmp7;
 | |
|         tmp2 = tmp6 + tmp8;
 | |
|         tmp4 = tmp6 - tmp8;
 | |
| 
 | |
|         tmpz[5].re = tmpz[1].re - tmp1;
 | |
|         tmpz[1].re = tmpz[1].re + tmp1;
 | |
|         tmpz[5].im = tmpz[1].im - tmp2;
 | |
|         tmpz[1].im = tmpz[1].im + tmp2;
 | |
|         tmpz[7].re = tmpz[3].re - tmp4;
 | |
|         tmpz[3].re = tmpz[3].re + tmp4;
 | |
|         tmpz[7].im = tmpz[3].im + tmp3;
 | |
|         tmpz[3].im = tmpz[3].im - tmp3;
 | |
|     }
 | |
| 
 | |
|     step = 1 << ((MAX_LOG2_NFFT-4) - 4);
 | |
|     n4 = 4;
 | |
| 
 | |
|     for (nbits=4; nbits<=s->nbits; nbits++){
 | |
|         n2  = 2*n4;
 | |
|         n34 = 3*n4;
 | |
|         num_transforms = (num_transforms >> 1) | 1;
 | |
| 
 | |
|         for (n=0; n<num_transforms; n++){
 | |
|             const FFTSample *w_re_ptr = ff_w_tab_sr + step;
 | |
|             const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
 | |
|             offset = ff_fft_offsets_lut[n] << nbits;
 | |
|             tmpz = z + offset;
 | |
| 
 | |
|             tmp5 = tmpz[ n2].re + tmpz[n34].re;
 | |
|             tmp1 = tmpz[ n2].re - tmpz[n34].re;
 | |
|             tmp6 = tmpz[ n2].im + tmpz[n34].im;
 | |
|             tmp2 = tmpz[ n2].im - tmpz[n34].im;
 | |
| 
 | |
|             tmpz[ n2].re = tmpz[ 0].re - tmp5;
 | |
|             tmpz[  0].re = tmpz[ 0].re + tmp5;
 | |
|             tmpz[ n2].im = tmpz[ 0].im - tmp6;
 | |
|             tmpz[  0].im = tmpz[ 0].im + tmp6;
 | |
|             tmpz[n34].re = tmpz[n4].re - tmp2;
 | |
|             tmpz[ n4].re = tmpz[n4].re + tmp2;
 | |
|             tmpz[n34].im = tmpz[n4].im + tmp1;
 | |
|             tmpz[ n4].im = tmpz[n4].im - tmp1;
 | |
| 
 | |
|             for (i=1; i<n4; i++){
 | |
|                 FFTSample w_re = w_re_ptr[0];
 | |
|                 FFTSample w_im = w_im_ptr[0];
 | |
|                 accu  = (int64_t)w_re*tmpz[ n2+i].re;
 | |
|                 accu += (int64_t)w_im*tmpz[ n2+i].im;
 | |
|                 tmp1 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|                 accu  = (int64_t)w_re*tmpz[ n2+i].im;
 | |
|                 accu -= (int64_t)w_im*tmpz[ n2+i].re;
 | |
|                 tmp2 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|                 accu  = (int64_t)w_re*tmpz[n34+i].re;
 | |
|                 accu -= (int64_t)w_im*tmpz[n34+i].im;
 | |
|                 tmp3 = (int32_t)((accu + 0x40000000) >> 31);
 | |
|                 accu  = (int64_t)w_re*tmpz[n34+i].im;
 | |
|                 accu += (int64_t)w_im*tmpz[n34+i].re;
 | |
|                 tmp4 = (int32_t)((accu + 0x40000000) >> 31);
 | |
| 
 | |
|                 tmp5 = tmp1 + tmp3;
 | |
|                 tmp1 = tmp1 - tmp3;
 | |
|                 tmp6 = tmp2 + tmp4;
 | |
|                 tmp2 = tmp2 - tmp4;
 | |
| 
 | |
|                 tmpz[ n2+i].re = tmpz[   i].re - tmp5;
 | |
|                 tmpz[    i].re = tmpz[   i].re + tmp5;
 | |
|                 tmpz[ n2+i].im = tmpz[   i].im - tmp6;
 | |
|                 tmpz[    i].im = tmpz[   i].im + tmp6;
 | |
|                 tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
 | |
|                 tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
 | |
|                 tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
 | |
|                 tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
 | |
| 
 | |
|                 w_re_ptr += step;
 | |
|                 w_im_ptr -= step;
 | |
|             }
 | |
|         }
 | |
|         step >>= 1;
 | |
|         n4   <<= 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* FFT_FIXED_32 */
 | |
| 
 | |
| #define BUTTERFLIES(a0,a1,a2,a3) {\
 | |
|     BF(t3, t5, t5, t1);\
 | |
|     BF(a2.re, a0.re, a0.re, t5);\
 | |
|     BF(a3.im, a1.im, a1.im, t3);\
 | |
|     BF(t4, t6, t2, t6);\
 | |
|     BF(a3.re, a1.re, a1.re, t4);\
 | |
|     BF(a2.im, a0.im, a0.im, t6);\
 | |
| }
 | |
| 
 | |
| // force loading all the inputs before storing any.
 | |
| // this is slightly slower for small data, but avoids store->load aliasing
 | |
| // for addresses separated by large powers of 2.
 | |
| #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
 | |
|     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
 | |
|     BF(t3, t5, t5, t1);\
 | |
|     BF(a2.re, a0.re, r0, t5);\
 | |
|     BF(a3.im, a1.im, i1, t3);\
 | |
|     BF(t4, t6, t2, t6);\
 | |
|     BF(a3.re, a1.re, r1, t4);\
 | |
|     BF(a2.im, a0.im, i0, t6);\
 | |
| }
 | |
| 
 | |
| #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
 | |
|     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
 | |
|     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
 | |
|     BUTTERFLIES(a0,a1,a2,a3)\
 | |
| }
 | |
| 
 | |
| #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
 | |
|     t1 = a2.re;\
 | |
|     t2 = a2.im;\
 | |
|     t5 = a3.re;\
 | |
|     t6 = a3.im;\
 | |
|     BUTTERFLIES(a0,a1,a2,a3)\
 | |
| }
 | |
| 
 | |
| /* z[0...8n-1], w[1...2n-1] */
 | |
| #define PASS(name)\
 | |
| static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
 | |
| {\
 | |
|     FFTDouble t1, t2, t3, t4, t5, t6;\
 | |
|     int o1 = 2*n;\
 | |
|     int o2 = 4*n;\
 | |
|     int o3 = 6*n;\
 | |
|     const FFTSample *wim = wre+o1;\
 | |
|     n--;\
 | |
| \
 | |
|     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
 | |
|     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | |
|     do {\
 | |
|         z += 2;\
 | |
|         wre += 2;\
 | |
|         wim -= 2;\
 | |
|         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
 | |
|         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
 | |
|     } while(--n);\
 | |
| }
 | |
| 
 | |
| PASS(pass)
 | |
| #undef BUTTERFLIES
 | |
| #define BUTTERFLIES BUTTERFLIES_BIG
 | |
| PASS(pass_big)
 | |
| 
 | |
| #define DECL_FFT(n,n2,n4)\
 | |
| static void fft##n(FFTComplex *z)\
 | |
| {\
 | |
|     fft##n2(z);\
 | |
|     fft##n4(z+n4*2);\
 | |
|     fft##n4(z+n4*3);\
 | |
|     pass(z,FFT_NAME(ff_cos_##n),n4/2);\
 | |
| }
 | |
| 
 | |
| static void fft4(FFTComplex *z)
 | |
| {
 | |
|     FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
 | |
| 
 | |
|     BF(t3, t1, z[0].re, z[1].re);
 | |
|     BF(t8, t6, z[3].re, z[2].re);
 | |
|     BF(z[2].re, z[0].re, t1, t6);
 | |
|     BF(t4, t2, z[0].im, z[1].im);
 | |
|     BF(t7, t5, z[2].im, z[3].im);
 | |
|     BF(z[3].im, z[1].im, t4, t8);
 | |
|     BF(z[3].re, z[1].re, t3, t7);
 | |
|     BF(z[2].im, z[0].im, t2, t5);
 | |
| }
 | |
| 
 | |
| static void fft8(FFTComplex *z)
 | |
| {
 | |
|     FFTDouble t1, t2, t3, t4, t5, t6;
 | |
| 
 | |
|     fft4(z);
 | |
| 
 | |
|     BF(t1, z[5].re, z[4].re, -z[5].re);
 | |
|     BF(t2, z[5].im, z[4].im, -z[5].im);
 | |
|     BF(t5, z[7].re, z[6].re, -z[7].re);
 | |
|     BF(t6, z[7].im, z[6].im, -z[7].im);
 | |
| 
 | |
|     BUTTERFLIES(z[0],z[2],z[4],z[6]);
 | |
|     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
 | |
| }
 | |
| 
 | |
| #if !CONFIG_SMALL
 | |
| static void fft16(FFTComplex *z)
 | |
| {
 | |
|     FFTDouble t1, t2, t3, t4, t5, t6;
 | |
|     FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
 | |
|     FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
 | |
| 
 | |
|     fft8(z);
 | |
|     fft4(z+8);
 | |
|     fft4(z+12);
 | |
| 
 | |
|     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
 | |
|     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
 | |
|     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
 | |
|     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
 | |
| }
 | |
| #else
 | |
| DECL_FFT(16,8,4)
 | |
| #endif
 | |
| DECL_FFT(32,16,8)
 | |
| DECL_FFT(64,32,16)
 | |
| DECL_FFT(128,64,32)
 | |
| DECL_FFT(256,128,64)
 | |
| DECL_FFT(512,256,128)
 | |
| #if !CONFIG_SMALL
 | |
| #define pass pass_big
 | |
| #endif
 | |
| DECL_FFT(1024,512,256)
 | |
| DECL_FFT(2048,1024,512)
 | |
| DECL_FFT(4096,2048,1024)
 | |
| DECL_FFT(8192,4096,2048)
 | |
| DECL_FFT(16384,8192,4096)
 | |
| DECL_FFT(32768,16384,8192)
 | |
| DECL_FFT(65536,32768,16384)
 | |
| 
 | |
| static void (* const fft_dispatch[])(FFTComplex*) = {
 | |
|     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
 | |
|     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
 | |
| };
 | |
| 
 | |
| static void fft_calc_c(FFTContext *s, FFTComplex *z)
 | |
| {
 | |
|     fft_dispatch[s->nbits-2](z);
 | |
| }
 | |
| #endif /* FFT_FIXED_32 */
 |