patch by Bill O'Shaughnessy % bill P oshaughnessy A gmail.com % + reg tests update gruntwork by me Original thread: date: Nov 21, 2006 11:36 PM subject: [Ffmpeg-devel] Simpler Patch to bring AC3 encoder output up to input level Originally committed as revision 7160 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			1558 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1558 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The simplest AC3 encoder
 | |
|  * Copyright (c) 2000 Fabrice Bellard.
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file ac3enc.c
 | |
|  * The simplest AC3 encoder.
 | |
|  */
 | |
| //#define DEBUG
 | |
| //#define DEBUG_BITALLOC
 | |
| #include "avcodec.h"
 | |
| #include "bitstream.h"
 | |
| #include "crc.h"
 | |
| #include "ac3.h"
 | |
| 
 | |
| typedef struct AC3EncodeContext {
 | |
|     PutBitContext pb;
 | |
|     int nb_channels;
 | |
|     int nb_all_channels;
 | |
|     int lfe_channel;
 | |
|     int bit_rate;
 | |
|     unsigned int sample_rate;
 | |
|     unsigned int bsid;
 | |
|     unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
 | |
|     unsigned int frame_size; /* current frame size in words */
 | |
|     unsigned int bits_written;
 | |
|     unsigned int samples_written;
 | |
|     int halfratecod;
 | |
|     unsigned int frmsizecod;
 | |
|     unsigned int fscod; /* frequency */
 | |
|     unsigned int acmod;
 | |
|     int lfe;
 | |
|     unsigned int bsmod;
 | |
|     short last_samples[AC3_MAX_CHANNELS][256];
 | |
|     unsigned int chbwcod[AC3_MAX_CHANNELS];
 | |
|     int nb_coefs[AC3_MAX_CHANNELS];
 | |
| 
 | |
|     /* bitrate allocation control */
 | |
|     int sgaincod, sdecaycod, fdecaycod, dbkneecod, floorcod;
 | |
|     AC3BitAllocParameters bit_alloc;
 | |
|     int csnroffst;
 | |
|     int fgaincod[AC3_MAX_CHANNELS];
 | |
|     int fsnroffst[AC3_MAX_CHANNELS];
 | |
|     /* mantissa encoding */
 | |
|     int mant1_cnt, mant2_cnt, mant4_cnt;
 | |
| } AC3EncodeContext;
 | |
| 
 | |
| #include "ac3tab.h"
 | |
| 
 | |
| #define MDCT_NBITS 9
 | |
| #define N         (1 << MDCT_NBITS)
 | |
| 
 | |
| /* new exponents are sent if their Norm 1 exceed this number */
 | |
| #define EXP_DIFF_THRESHOLD 1000
 | |
| 
 | |
| static void fft_init(int ln);
 | |
| 
 | |
| static inline int16_t fix15(float a)
 | |
| {
 | |
|     int v;
 | |
|     v = (int)(a * (float)(1 << 15));
 | |
|     if (v < -32767)
 | |
|         v = -32767;
 | |
|     else if (v > 32767)
 | |
|         v = 32767;
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline int calc_lowcomp1(int a, int b0, int b1)
 | |
| {
 | |
|     if ((b0 + 256) == b1) {
 | |
|         a = 384 ;
 | |
|     } else if (b0 > b1) {
 | |
|         a = a - 64;
 | |
|         if (a < 0) a=0;
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static inline int calc_lowcomp(int a, int b0, int b1, int bin)
 | |
| {
 | |
|     if (bin < 7) {
 | |
|         if ((b0 + 256) == b1) {
 | |
|             a = 384 ;
 | |
|         } else if (b0 > b1) {
 | |
|             a = a - 64;
 | |
|             if (a < 0) a=0;
 | |
|         }
 | |
|     } else if (bin < 20) {
 | |
|         if ((b0 + 256) == b1) {
 | |
|             a = 320 ;
 | |
|         } else if (b0 > b1) {
 | |
|             a= a - 64;
 | |
|             if (a < 0) a=0;
 | |
|         }
 | |
|     } else {
 | |
|         a = a - 128;
 | |
|         if (a < 0) a=0;
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /* AC3 bit allocation. The algorithm is the one described in the AC3
 | |
|    spec. */
 | |
| void ac3_parametric_bit_allocation(AC3BitAllocParameters *s, uint8_t *bap,
 | |
|                                    int8_t *exp, int start, int end,
 | |
|                                    int snroffset, int fgain, int is_lfe,
 | |
|                                    int deltbae,int deltnseg,
 | |
|                                    uint8_t *deltoffst, uint8_t *deltlen, uint8_t *deltba)
 | |
| {
 | |
|     int bin,i,j,k,end1,v,v1,bndstrt,bndend,lowcomp,begin;
 | |
|     int fastleak,slowleak,address,tmp;
 | |
|     int16_t psd[256]; /* scaled exponents */
 | |
|     int16_t bndpsd[50]; /* interpolated exponents */
 | |
|     int16_t excite[50]; /* excitation */
 | |
|     int16_t mask[50];   /* masking value */
 | |
| 
 | |
|     /* exponent mapping to PSD */
 | |
|     for(bin=start;bin<end;bin++) {
 | |
|         psd[bin]=(3072 - (exp[bin] << 7));
 | |
|     }
 | |
| 
 | |
|     /* PSD integration */
 | |
|     j=start;
 | |
|     k=masktab[start];
 | |
|     do {
 | |
|         v=psd[j];
 | |
|         j++;
 | |
|         end1=bndtab[k+1];
 | |
|         if (end1 > end) end1=end;
 | |
|         for(i=j;i<end1;i++) {
 | |
|             int c,adr;
 | |
|             /* logadd */
 | |
|             v1=psd[j];
 | |
|             c=v-v1;
 | |
|             if (c >= 0) {
 | |
|                 adr=c >> 1;
 | |
|                 if (adr > 255) adr=255;
 | |
|                 v=v + latab[adr];
 | |
|             } else {
 | |
|                 adr=(-c) >> 1;
 | |
|                 if (adr > 255) adr=255;
 | |
|                 v=v1 + latab[adr];
 | |
|             }
 | |
|             j++;
 | |
|         }
 | |
|         bndpsd[k]=v;
 | |
|         k++;
 | |
|     } while (end > bndtab[k]);
 | |
| 
 | |
|     /* excitation function */
 | |
|     bndstrt = masktab[start];
 | |
|     bndend = masktab[end-1] + 1;
 | |
| 
 | |
|     if (bndstrt == 0) {
 | |
|         lowcomp = 0;
 | |
|         lowcomp = calc_lowcomp1(lowcomp, bndpsd[0], bndpsd[1]) ;
 | |
|         excite[0] = bndpsd[0] - fgain - lowcomp ;
 | |
|         lowcomp = calc_lowcomp1(lowcomp, bndpsd[1], bndpsd[2]) ;
 | |
|         excite[1] = bndpsd[1] - fgain - lowcomp ;
 | |
|         begin = 7 ;
 | |
|         for (bin = 2; bin < 7; bin++) {
 | |
|             if (!(is_lfe && bin == 6))
 | |
|                 lowcomp = calc_lowcomp1(lowcomp, bndpsd[bin], bndpsd[bin+1]) ;
 | |
|             fastleak = bndpsd[bin] - fgain ;
 | |
|             slowleak = bndpsd[bin] - s->sgain ;
 | |
|             excite[bin] = fastleak - lowcomp ;
 | |
|             if (!(is_lfe && bin == 6)) {
 | |
|                 if (bndpsd[bin] <= bndpsd[bin+1]) {
 | |
|                     begin = bin + 1 ;
 | |
|                     break ;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         end1=bndend;
 | |
|         if (end1 > 22) end1=22;
 | |
| 
 | |
|         for (bin = begin; bin < end1; bin++) {
 | |
|             if (!(is_lfe && bin == 6))
 | |
|                 lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
 | |
| 
 | |
|             fastleak -= s->fdecay ;
 | |
|             v = bndpsd[bin] - fgain;
 | |
|             if (fastleak < v) fastleak = v;
 | |
| 
 | |
|             slowleak -= s->sdecay ;
 | |
|             v = bndpsd[bin] - s->sgain;
 | |
|             if (slowleak < v) slowleak = v;
 | |
| 
 | |
|             v=fastleak - lowcomp;
 | |
|             if (slowleak > v) v=slowleak;
 | |
| 
 | |
|             excite[bin] = v;
 | |
|         }
 | |
|         begin = 22;
 | |
|     } else {
 | |
|         /* coupling channel */
 | |
|         begin = bndstrt;
 | |
| 
 | |
|         fastleak = (s->cplfleak << 8) + 768;
 | |
|         slowleak = (s->cplsleak << 8) + 768;
 | |
|     }
 | |
| 
 | |
|     for (bin = begin; bin < bndend; bin++) {
 | |
|         fastleak -= s->fdecay ;
 | |
|         v = bndpsd[bin] - fgain;
 | |
|         if (fastleak < v) fastleak = v;
 | |
|         slowleak -= s->sdecay ;
 | |
|         v = bndpsd[bin] - s->sgain;
 | |
|         if (slowleak < v) slowleak = v;
 | |
| 
 | |
|         v=fastleak;
 | |
|         if (slowleak > v) v = slowleak;
 | |
|         excite[bin] = v;
 | |
|     }
 | |
| 
 | |
|     /* compute masking curve */
 | |
| 
 | |
|     for (bin = bndstrt; bin < bndend; bin++) {
 | |
|         v1 = excite[bin];
 | |
|         tmp = s->dbknee - bndpsd[bin];
 | |
|         if (tmp > 0) {
 | |
|             v1 += tmp >> 2;
 | |
|         }
 | |
|         v=hth[bin >> s->halfratecod][s->fscod];
 | |
|         if (v1 > v) v=v1;
 | |
|         mask[bin] = v;
 | |
|     }
 | |
| 
 | |
|     /* delta bit allocation */
 | |
| 
 | |
|     if (deltbae == 0 || deltbae == 1) {
 | |
|         int band, seg, delta;
 | |
|         band = 0 ;
 | |
|         for (seg = 0; seg < deltnseg; seg++) {
 | |
|             band += deltoffst[seg] ;
 | |
|             if (deltba[seg] >= 4) {
 | |
|                 delta = (deltba[seg] - 3) << 7;
 | |
|             } else {
 | |
|                 delta = (deltba[seg] - 4) << 7;
 | |
|             }
 | |
|             for (k = 0; k < deltlen[seg]; k++) {
 | |
|                 mask[band] += delta ;
 | |
|                 band++ ;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* compute bit allocation */
 | |
| 
 | |
|     i = start ;
 | |
|     j = masktab[start] ;
 | |
|     do {
 | |
|         v=mask[j];
 | |
|         v -= snroffset ;
 | |
|         v -= s->floor ;
 | |
|         if (v < 0) v = 0;
 | |
|         v &= 0x1fe0 ;
 | |
|         v += s->floor ;
 | |
| 
 | |
|         end1=bndtab[j] + bndsz[j];
 | |
|         if (end1 > end) end1=end;
 | |
| 
 | |
|         for (k = i; k < end1; k++) {
 | |
|             address = (psd[i] - v) >> 5 ;
 | |
|             if (address < 0) address=0;
 | |
|             else if (address > 63) address=63;
 | |
|             bap[i] = baptab[address];
 | |
|             i++;
 | |
|         }
 | |
|     } while (end > bndtab[j++]) ;
 | |
| }
 | |
| 
 | |
| typedef struct IComplex {
 | |
|     short re,im;
 | |
| } IComplex;
 | |
| 
 | |
| static void fft_init(int ln)
 | |
| {
 | |
|     int i, j, m, n;
 | |
|     float alpha;
 | |
| 
 | |
|     n = 1 << ln;
 | |
| 
 | |
|     for(i=0;i<(n/2);i++) {
 | |
|         alpha = 2 * M_PI * (float)i / (float)n;
 | |
|         costab[i] = fix15(cos(alpha));
 | |
|         sintab[i] = fix15(sin(alpha));
 | |
|     }
 | |
| 
 | |
|     for(i=0;i<n;i++) {
 | |
|         m=0;
 | |
|         for(j=0;j<ln;j++) {
 | |
|             m |= ((i >> j) & 1) << (ln-j-1);
 | |
|         }
 | |
|         fft_rev[i]=m;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* butter fly op */
 | |
| #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
 | |
| {\
 | |
|   int ax, ay, bx, by;\
 | |
|   bx=pre1;\
 | |
|   by=pim1;\
 | |
|   ax=qre1;\
 | |
|   ay=qim1;\
 | |
|   pre = (bx + ax) >> 1;\
 | |
|   pim = (by + ay) >> 1;\
 | |
|   qre = (bx - ax) >> 1;\
 | |
|   qim = (by - ay) >> 1;\
 | |
| }
 | |
| 
 | |
| #define MUL16(a,b) ((a) * (b))
 | |
| 
 | |
| #define CMUL(pre, pim, are, aim, bre, bim) \
 | |
| {\
 | |
|    pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
 | |
|    pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
 | |
| }
 | |
| 
 | |
| 
 | |
| /* do a 2^n point complex fft on 2^ln points. */
 | |
| static void fft(IComplex *z, int ln)
 | |
| {
 | |
|     int        j, l, np, np2;
 | |
|     int        nblocks, nloops;
 | |
|     register IComplex *p,*q;
 | |
|     int tmp_re, tmp_im;
 | |
| 
 | |
|     np = 1 << ln;
 | |
| 
 | |
|     /* reverse */
 | |
|     for(j=0;j<np;j++) {
 | |
|         int k;
 | |
|         IComplex tmp;
 | |
|         k = fft_rev[j];
 | |
|         if (k < j) {
 | |
|             tmp = z[k];
 | |
|             z[k] = z[j];
 | |
|             z[j] = tmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* pass 0 */
 | |
| 
 | |
|     p=&z[0];
 | |
|     j=(np >> 1);
 | |
|     do {
 | |
|         BF(p[0].re, p[0].im, p[1].re, p[1].im,
 | |
|            p[0].re, p[0].im, p[1].re, p[1].im);
 | |
|         p+=2;
 | |
|     } while (--j != 0);
 | |
| 
 | |
|     /* pass 1 */
 | |
| 
 | |
|     p=&z[0];
 | |
|     j=np >> 2;
 | |
|     do {
 | |
|         BF(p[0].re, p[0].im, p[2].re, p[2].im,
 | |
|            p[0].re, p[0].im, p[2].re, p[2].im);
 | |
|         BF(p[1].re, p[1].im, p[3].re, p[3].im,
 | |
|            p[1].re, p[1].im, p[3].im, -p[3].re);
 | |
|         p+=4;
 | |
|     } while (--j != 0);
 | |
| 
 | |
|     /* pass 2 .. ln-1 */
 | |
| 
 | |
|     nblocks = np >> 3;
 | |
|     nloops = 1 << 2;
 | |
|     np2 = np >> 1;
 | |
|     do {
 | |
|         p = z;
 | |
|         q = z + nloops;
 | |
|         for (j = 0; j < nblocks; ++j) {
 | |
| 
 | |
|             BF(p->re, p->im, q->re, q->im,
 | |
|                p->re, p->im, q->re, q->im);
 | |
| 
 | |
|             p++;
 | |
|             q++;
 | |
|             for(l = nblocks; l < np2; l += nblocks) {
 | |
|                 CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
 | |
|                 BF(p->re, p->im, q->re, q->im,
 | |
|                    p->re, p->im, tmp_re, tmp_im);
 | |
|                 p++;
 | |
|                 q++;
 | |
|             }
 | |
|             p += nloops;
 | |
|             q += nloops;
 | |
|         }
 | |
|         nblocks = nblocks >> 1;
 | |
|         nloops = nloops << 1;
 | |
|     } while (nblocks != 0);
 | |
| }
 | |
| 
 | |
| /* do a 512 point mdct */
 | |
| static void mdct512(int32_t *out, int16_t *in)
 | |
| {
 | |
|     int i, re, im, re1, im1;
 | |
|     int16_t rot[N];
 | |
|     IComplex x[N/4];
 | |
| 
 | |
|     /* shift to simplify computations */
 | |
|     for(i=0;i<N/4;i++)
 | |
|         rot[i] = -in[i + 3*N/4];
 | |
|     for(i=N/4;i<N;i++)
 | |
|         rot[i] = in[i - N/4];
 | |
| 
 | |
|     /* pre rotation */
 | |
|     for(i=0;i<N/4;i++) {
 | |
|         re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
 | |
|         im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
 | |
|         CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
 | |
|     }
 | |
| 
 | |
|     fft(x, MDCT_NBITS - 2);
 | |
| 
 | |
|     /* post rotation */
 | |
|     for(i=0;i<N/4;i++) {
 | |
|         re = x[i].re;
 | |
|         im = x[i].im;
 | |
|         CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
 | |
|         out[2*i] = im1;
 | |
|         out[N/2-1-2*i] = re1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: use another norm ? */
 | |
| static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
 | |
| {
 | |
|     int sum, i;
 | |
|     sum = 0;
 | |
|     for(i=0;i<n;i++) {
 | |
|         sum += abs(exp1[i] - exp2[i]);
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | |
|                                  uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | |
|                                  int ch, int is_lfe)
 | |
| {
 | |
|     int i, j;
 | |
|     int exp_diff;
 | |
| 
 | |
|     /* estimate if the exponent variation & decide if they should be
 | |
|        reused in the next frame */
 | |
|     exp_strategy[0][ch] = EXP_NEW;
 | |
|     for(i=1;i<NB_BLOCKS;i++) {
 | |
|         exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
 | |
| #ifdef DEBUG
 | |
|         av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
 | |
| #endif
 | |
|         if (exp_diff > EXP_DIFF_THRESHOLD)
 | |
|             exp_strategy[i][ch] = EXP_NEW;
 | |
|         else
 | |
|             exp_strategy[i][ch] = EXP_REUSE;
 | |
|     }
 | |
|     if (is_lfe)
 | |
|         return;
 | |
| 
 | |
|     /* now select the encoding strategy type : if exponents are often
 | |
|        recoded, we use a coarse encoding */
 | |
|     i = 0;
 | |
|     while (i < NB_BLOCKS) {
 | |
|         j = i + 1;
 | |
|         while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
 | |
|             j++;
 | |
|         switch(j - i) {
 | |
|         case 1:
 | |
|             exp_strategy[i][ch] = EXP_D45;
 | |
|             break;
 | |
|         case 2:
 | |
|         case 3:
 | |
|             exp_strategy[i][ch] = EXP_D25;
 | |
|             break;
 | |
|         default:
 | |
|             exp_strategy[i][ch] = EXP_D15;
 | |
|             break;
 | |
|         }
 | |
|         i = j;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* set exp[i] to min(exp[i], exp1[i]) */
 | |
| static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for(i=0;i<n;i++) {
 | |
|         if (exp1[i] < exp[i])
 | |
|             exp[i] = exp1[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the exponents so that they are the ones the decoder will
 | |
|    decode. Return the number of bits used to code the exponents */
 | |
| static int encode_exp(uint8_t encoded_exp[N/2],
 | |
|                       uint8_t exp[N/2],
 | |
|                       int nb_exps,
 | |
|                       int exp_strategy)
 | |
| {
 | |
|     int group_size, nb_groups, i, j, k, exp_min;
 | |
|     uint8_t exp1[N/2];
 | |
| 
 | |
|     switch(exp_strategy) {
 | |
|     case EXP_D15:
 | |
|         group_size = 1;
 | |
|         break;
 | |
|     case EXP_D25:
 | |
|         group_size = 2;
 | |
|         break;
 | |
|     default:
 | |
|     case EXP_D45:
 | |
|         group_size = 4;
 | |
|         break;
 | |
|     }
 | |
|     nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
 | |
| 
 | |
|     /* for each group, compute the minimum exponent */
 | |
|     exp1[0] = exp[0]; /* DC exponent is handled separately */
 | |
|     k = 1;
 | |
|     for(i=1;i<=nb_groups;i++) {
 | |
|         exp_min = exp[k];
 | |
|         assert(exp_min >= 0 && exp_min <= 24);
 | |
|         for(j=1;j<group_size;j++) {
 | |
|             if (exp[k+j] < exp_min)
 | |
|                 exp_min = exp[k+j];
 | |
|         }
 | |
|         exp1[i] = exp_min;
 | |
|         k += group_size;
 | |
|     }
 | |
| 
 | |
|     /* constraint for DC exponent */
 | |
|     if (exp1[0] > 15)
 | |
|         exp1[0] = 15;
 | |
| 
 | |
|     /* Decrease the delta between each groups to within 2
 | |
|      * so that they can be differentially encoded */
 | |
|     for (i=1;i<=nb_groups;i++)
 | |
|         exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
 | |
|     for (i=nb_groups-1;i>=0;i--)
 | |
|         exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
 | |
| 
 | |
|     /* now we have the exponent values the decoder will see */
 | |
|     encoded_exp[0] = exp1[0];
 | |
|     k = 1;
 | |
|     for(i=1;i<=nb_groups;i++) {
 | |
|         for(j=0;j<group_size;j++) {
 | |
|             encoded_exp[k+j] = exp1[i];
 | |
|         }
 | |
|         k += group_size;
 | |
|     }
 | |
| 
 | |
| #if defined(DEBUG)
 | |
|     av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
 | |
|     for(i=0;i<=nb_groups * group_size;i++) {
 | |
|         av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
 | |
|     }
 | |
|     av_log(NULL, AV_LOG_DEBUG, "\n");
 | |
| #endif
 | |
| 
 | |
|     return 4 + (nb_groups / 3) * 7;
 | |
| }
 | |
| 
 | |
| /* return the size in bits taken by the mantissa */
 | |
| static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
 | |
| {
 | |
|     int bits, mant, i;
 | |
| 
 | |
|     bits = 0;
 | |
|     for(i=0;i<nb_coefs;i++) {
 | |
|         mant = m[i];
 | |
|         switch(mant) {
 | |
|         case 0:
 | |
|             /* nothing */
 | |
|             break;
 | |
|         case 1:
 | |
|             /* 3 mantissa in 5 bits */
 | |
|             if (s->mant1_cnt == 0)
 | |
|                 bits += 5;
 | |
|             if (++s->mant1_cnt == 3)
 | |
|                 s->mant1_cnt = 0;
 | |
|             break;
 | |
|         case 2:
 | |
|             /* 3 mantissa in 7 bits */
 | |
|             if (s->mant2_cnt == 0)
 | |
|                 bits += 7;
 | |
|             if (++s->mant2_cnt == 3)
 | |
|                 s->mant2_cnt = 0;
 | |
|             break;
 | |
|         case 3:
 | |
|             bits += 3;
 | |
|             break;
 | |
|         case 4:
 | |
|             /* 2 mantissa in 7 bits */
 | |
|             if (s->mant4_cnt == 0)
 | |
|                 bits += 7;
 | |
|             if (++s->mant4_cnt == 2)
 | |
|                 s->mant4_cnt = 0;
 | |
|             break;
 | |
|         case 14:
 | |
|             bits += 14;
 | |
|             break;
 | |
|         case 15:
 | |
|             bits += 16;
 | |
|             break;
 | |
|         default:
 | |
|             bits += mant - 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return bits;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int bit_alloc(AC3EncodeContext *s,
 | |
|                      uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | |
|                      uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | |
|                      uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | |
|                      int frame_bits, int csnroffst, int fsnroffst)
 | |
| {
 | |
|     int i, ch;
 | |
| 
 | |
|     /* compute size */
 | |
|     for(i=0;i<NB_BLOCKS;i++) {
 | |
|         s->mant1_cnt = 0;
 | |
|         s->mant2_cnt = 0;
 | |
|         s->mant4_cnt = 0;
 | |
|         for(ch=0;ch<s->nb_all_channels;ch++) {
 | |
|             ac3_parametric_bit_allocation(&s->bit_alloc,
 | |
|                                           bap[i][ch], (int8_t *)encoded_exp[i][ch],
 | |
|                                           0, s->nb_coefs[ch],
 | |
|                                           (((csnroffst-15) << 4) +
 | |
|                                            fsnroffst) << 2,
 | |
|                                           fgaintab[s->fgaincod[ch]],
 | |
|                                           ch == s->lfe_channel,
 | |
|                                           2, 0, NULL, NULL, NULL);
 | |
|             frame_bits += compute_mantissa_size(s, bap[i][ch],
 | |
|                                                  s->nb_coefs[ch]);
 | |
|         }
 | |
|     }
 | |
| #if 0
 | |
|     printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
 | |
|            csnroffst, fsnroffst, frame_bits,
 | |
|            16 * s->frame_size - ((frame_bits + 7) & ~7));
 | |
| #endif
 | |
|     return 16 * s->frame_size - frame_bits;
 | |
| }
 | |
| 
 | |
| #define SNR_INC1 4
 | |
| 
 | |
| static int compute_bit_allocation(AC3EncodeContext *s,
 | |
|                                   uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | |
|                                   uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
 | |
|                                   uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
 | |
|                                   int frame_bits)
 | |
| {
 | |
|     int i, ch;
 | |
|     int csnroffst, fsnroffst;
 | |
|     uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | |
|     static int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
 | |
| 
 | |
|     /* init default parameters */
 | |
|     s->sdecaycod = 2;
 | |
|     s->fdecaycod = 1;
 | |
|     s->sgaincod = 1;
 | |
|     s->dbkneecod = 2;
 | |
|     s->floorcod = 4;
 | |
|     for(ch=0;ch<s->nb_all_channels;ch++)
 | |
|         s->fgaincod[ch] = 4;
 | |
| 
 | |
|     /* compute real values */
 | |
|     s->bit_alloc.fscod = s->fscod;
 | |
|     s->bit_alloc.halfratecod = s->halfratecod;
 | |
|     s->bit_alloc.sdecay = sdecaytab[s->sdecaycod] >> s->halfratecod;
 | |
|     s->bit_alloc.fdecay = fdecaytab[s->fdecaycod] >> s->halfratecod;
 | |
|     s->bit_alloc.sgain = sgaintab[s->sgaincod];
 | |
|     s->bit_alloc.dbknee = dbkneetab[s->dbkneecod];
 | |
|     s->bit_alloc.floor = floortab[s->floorcod];
 | |
| 
 | |
|     /* header size */
 | |
|     frame_bits += 65;
 | |
|     // if (s->acmod == 2)
 | |
|     //    frame_bits += 2;
 | |
|     frame_bits += frame_bits_inc[s->acmod];
 | |
| 
 | |
|     /* audio blocks */
 | |
|     for(i=0;i<NB_BLOCKS;i++) {
 | |
|         frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
 | |
|         if (s->acmod == 2) {
 | |
|             frame_bits++; /* rematstr */
 | |
|             if(i==0) frame_bits += 4;
 | |
|         }
 | |
|         frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
 | |
|         if (s->lfe)
 | |
|             frame_bits++; /* lfeexpstr */
 | |
|         for(ch=0;ch<s->nb_channels;ch++) {
 | |
|             if (exp_strategy[i][ch] != EXP_REUSE)
 | |
|                 frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
 | |
|         }
 | |
|         frame_bits++; /* baie */
 | |
|         frame_bits++; /* snr */
 | |
|         frame_bits += 2; /* delta / skip */
 | |
|     }
 | |
|     frame_bits++; /* cplinu for block 0 */
 | |
|     /* bit alloc info */
 | |
|     /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
 | |
|     /* csnroffset[6] */
 | |
|     /* (fsnoffset[4] + fgaincod[4]) * c */
 | |
|     frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
 | |
| 
 | |
|     /* auxdatae, crcrsv */
 | |
|     frame_bits += 2;
 | |
| 
 | |
|     /* CRC */
 | |
|     frame_bits += 16;
 | |
| 
 | |
|     /* now the big work begins : do the bit allocation. Modify the snr
 | |
|        offset until we can pack everything in the requested frame size */
 | |
| 
 | |
|     csnroffst = s->csnroffst;
 | |
|     while (csnroffst >= 0 &&
 | |
|            bit_alloc(s, bap, encoded_exp, exp_strategy, frame_bits, csnroffst, 0) < 0)
 | |
|         csnroffst -= SNR_INC1;
 | |
|     if (csnroffst < 0) {
 | |
|         av_log(NULL, AV_LOG_ERROR, "Bit allocation failed, try increasing the bitrate, -ab 384 for example!\n");
 | |
|         return -1;
 | |
|     }
 | |
|     while ((csnroffst + SNR_INC1) <= 63 &&
 | |
|            bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
 | |
|                      csnroffst + SNR_INC1, 0) >= 0) {
 | |
|         csnroffst += SNR_INC1;
 | |
|         memcpy(bap, bap1, sizeof(bap1));
 | |
|     }
 | |
|     while ((csnroffst + 1) <= 63 &&
 | |
|            bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits, csnroffst + 1, 0) >= 0) {
 | |
|         csnroffst++;
 | |
|         memcpy(bap, bap1, sizeof(bap1));
 | |
|     }
 | |
| 
 | |
|     fsnroffst = 0;
 | |
|     while ((fsnroffst + SNR_INC1) <= 15 &&
 | |
|            bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
 | |
|                      csnroffst, fsnroffst + SNR_INC1) >= 0) {
 | |
|         fsnroffst += SNR_INC1;
 | |
|         memcpy(bap, bap1, sizeof(bap1));
 | |
|     }
 | |
|     while ((fsnroffst + 1) <= 15 &&
 | |
|            bit_alloc(s, bap1, encoded_exp, exp_strategy, frame_bits,
 | |
|                      csnroffst, fsnroffst + 1) >= 0) {
 | |
|         fsnroffst++;
 | |
|         memcpy(bap, bap1, sizeof(bap1));
 | |
|     }
 | |
| 
 | |
|     s->csnroffst = csnroffst;
 | |
|     for(ch=0;ch<s->nb_all_channels;ch++)
 | |
|         s->fsnroffst[ch] = fsnroffst;
 | |
| #if defined(DEBUG_BITALLOC)
 | |
|     {
 | |
|         int j;
 | |
| 
 | |
|         for(i=0;i<6;i++) {
 | |
|             for(ch=0;ch<s->nb_all_channels;ch++) {
 | |
|                 printf("Block #%d Ch%d:\n", i, ch);
 | |
|                 printf("bap=");
 | |
|                 for(j=0;j<s->nb_coefs[ch];j++) {
 | |
|                     printf("%d ",bap[i][ch][j]);
 | |
|                 }
 | |
|                 printf("\n");
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void ac3_common_init(void)
 | |
| {
 | |
|     int i, j, k, l, v;
 | |
|     /* compute bndtab and masktab from bandsz */
 | |
|     k = 0;
 | |
|     l = 0;
 | |
|     for(i=0;i<50;i++) {
 | |
|         bndtab[i] = l;
 | |
|         v = bndsz[i];
 | |
|         for(j=0;j<v;j++) masktab[k++]=i;
 | |
|         l += v;
 | |
|     }
 | |
|     bndtab[50] = l;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int AC3_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     int freq = avctx->sample_rate;
 | |
|     int bitrate = avctx->bit_rate;
 | |
|     int channels = avctx->channels;
 | |
|     AC3EncodeContext *s = avctx->priv_data;
 | |
|     int i, j, ch;
 | |
|     float alpha;
 | |
|     static const uint8_t acmod_defs[6] = {
 | |
|         0x01, /* C */
 | |
|         0x02, /* L R */
 | |
|         0x03, /* L C R */
 | |
|         0x06, /* L R SL SR */
 | |
|         0x07, /* L C R SL SR */
 | |
|         0x07, /* L C R SL SR (+LFE) */
 | |
|     };
 | |
| 
 | |
|     avctx->frame_size = AC3_FRAME_SIZE;
 | |
| 
 | |
|     /* number of channels */
 | |
|     if (channels < 1 || channels > 6)
 | |
|         return -1;
 | |
|     s->acmod = acmod_defs[channels - 1];
 | |
|     s->lfe = (channels == 6) ? 1 : 0;
 | |
|     s->nb_all_channels = channels;
 | |
|     s->nb_channels = channels > 5 ? 5 : channels;
 | |
|     s->lfe_channel = s->lfe ? 5 : -1;
 | |
| 
 | |
|     /* frequency */
 | |
|     for(i=0;i<3;i++) {
 | |
|         for(j=0;j<3;j++)
 | |
|             if ((ac3_freqs[j] >> i) == freq)
 | |
|                 goto found;
 | |
|     }
 | |
|     return -1;
 | |
|  found:
 | |
|     s->sample_rate = freq;
 | |
|     s->halfratecod = i;
 | |
|     s->fscod = j;
 | |
|     s->bsid = 8 + s->halfratecod;
 | |
|     s->bsmod = 0; /* complete main audio service */
 | |
| 
 | |
|     /* bitrate & frame size */
 | |
|     bitrate /= 1000;
 | |
|     for(i=0;i<19;i++) {
 | |
|         if ((ac3_bitratetab[i] >> s->halfratecod) == bitrate)
 | |
|             break;
 | |
|     }
 | |
|     if (i == 19)
 | |
|         return -1;
 | |
|     s->bit_rate = bitrate;
 | |
|     s->frmsizecod = i << 1;
 | |
|     s->frame_size_min = (bitrate * 1000 * AC3_FRAME_SIZE) / (freq * 16);
 | |
|     s->bits_written = 0;
 | |
|     s->samples_written = 0;
 | |
|     s->frame_size = s->frame_size_min;
 | |
| 
 | |
|     /* bit allocation init */
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         /* bandwidth for each channel */
 | |
|         /* XXX: should compute the bandwidth according to the frame
 | |
|            size, so that we avoid anoying high freq artefacts */
 | |
|         s->chbwcod[ch] = 50; /* sample bandwidth as mpeg audio layer 2 table 0 */
 | |
|         s->nb_coefs[ch] = ((s->chbwcod[ch] + 12) * 3) + 37;
 | |
|     }
 | |
|     if (s->lfe) {
 | |
|         s->nb_coefs[s->lfe_channel] = 7; /* fixed */
 | |
|     }
 | |
|     /* initial snr offset */
 | |
|     s->csnroffst = 40;
 | |
| 
 | |
|     ac3_common_init();
 | |
| 
 | |
|     /* mdct init */
 | |
|     fft_init(MDCT_NBITS - 2);
 | |
|     for(i=0;i<N/4;i++) {
 | |
|         alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
 | |
|         xcos1[i] = fix15(-cos(alpha));
 | |
|         xsin1[i] = fix15(-sin(alpha));
 | |
|     }
 | |
| 
 | |
|     avctx->coded_frame= avcodec_alloc_frame();
 | |
|     avctx->coded_frame->key_frame= 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* output the AC3 frame header */
 | |
| static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
 | |
| {
 | |
|     init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
 | |
| 
 | |
|     put_bits(&s->pb, 16, 0x0b77); /* frame header */
 | |
|     put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
 | |
|     put_bits(&s->pb, 2, s->fscod);
 | |
|     put_bits(&s->pb, 6, s->frmsizecod + (s->frame_size - s->frame_size_min));
 | |
|     put_bits(&s->pb, 5, s->bsid);
 | |
|     put_bits(&s->pb, 3, s->bsmod);
 | |
|     put_bits(&s->pb, 3, s->acmod);
 | |
|     if ((s->acmod & 0x01) && s->acmod != 0x01)
 | |
|         put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
 | |
|     if (s->acmod & 0x04)
 | |
|         put_bits(&s->pb, 2, 1); /* XXX -6 dB */
 | |
|     if (s->acmod == 0x02)
 | |
|         put_bits(&s->pb, 2, 0); /* surround not indicated */
 | |
|     put_bits(&s->pb, 1, s->lfe); /* LFE */
 | |
|     put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
 | |
|     put_bits(&s->pb, 1, 0); /* no compression control word */
 | |
|     put_bits(&s->pb, 1, 0); /* no lang code */
 | |
|     put_bits(&s->pb, 1, 0); /* no audio production info */
 | |
|     put_bits(&s->pb, 1, 0); /* no copyright */
 | |
|     put_bits(&s->pb, 1, 1); /* original bitstream */
 | |
|     put_bits(&s->pb, 1, 0); /* no time code 1 */
 | |
|     put_bits(&s->pb, 1, 0); /* no time code 2 */
 | |
|     put_bits(&s->pb, 1, 0); /* no addtional bit stream info */
 | |
| }
 | |
| 
 | |
| /* symetric quantization on 'levels' levels */
 | |
| static inline int sym_quant(int c, int e, int levels)
 | |
| {
 | |
|     int v;
 | |
| 
 | |
|     if (c >= 0) {
 | |
|         v = (levels * (c << e)) >> 24;
 | |
|         v = (v + 1) >> 1;
 | |
|         v = (levels >> 1) + v;
 | |
|     } else {
 | |
|         v = (levels * ((-c) << e)) >> 24;
 | |
|         v = (v + 1) >> 1;
 | |
|         v = (levels >> 1) - v;
 | |
|     }
 | |
|     assert (v >= 0 && v < levels);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /* asymetric quantization on 2^qbits levels */
 | |
| static inline int asym_quant(int c, int e, int qbits)
 | |
| {
 | |
|     int lshift, m, v;
 | |
| 
 | |
|     lshift = e + qbits - 24;
 | |
|     if (lshift >= 0)
 | |
|         v = c << lshift;
 | |
|     else
 | |
|         v = c >> (-lshift);
 | |
|     /* rounding */
 | |
|     v = (v + 1) >> 1;
 | |
|     m = (1 << (qbits-1));
 | |
|     if (v >= m)
 | |
|         v = m - 1;
 | |
|     assert(v >= -m);
 | |
|     return v & ((1 << qbits)-1);
 | |
| }
 | |
| 
 | |
| /* Output one audio block. There are NB_BLOCKS audio blocks in one AC3
 | |
|    frame */
 | |
| static void output_audio_block(AC3EncodeContext *s,
 | |
|                                uint8_t exp_strategy[AC3_MAX_CHANNELS],
 | |
|                                uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
 | |
|                                uint8_t bap[AC3_MAX_CHANNELS][N/2],
 | |
|                                int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
 | |
|                                int8_t global_exp[AC3_MAX_CHANNELS],
 | |
|                                int block_num)
 | |
| {
 | |
|     int ch, nb_groups, group_size, i, baie, rbnd;
 | |
|     uint8_t *p;
 | |
|     uint16_t qmant[AC3_MAX_CHANNELS][N/2];
 | |
|     int exp0, exp1;
 | |
|     int mant1_cnt, mant2_cnt, mant4_cnt;
 | |
|     uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
 | |
|     int delta0, delta1, delta2;
 | |
| 
 | |
|     for(ch=0;ch<s->nb_channels;ch++)
 | |
|         put_bits(&s->pb, 1, 0); /* 512 point MDCT */
 | |
|     for(ch=0;ch<s->nb_channels;ch++)
 | |
|         put_bits(&s->pb, 1, 1); /* no dither */
 | |
|     put_bits(&s->pb, 1, 0); /* no dynamic range */
 | |
|     if (block_num == 0) {
 | |
|         /* for block 0, even if no coupling, we must say it. This is a
 | |
|            waste of bit :-) */
 | |
|         put_bits(&s->pb, 1, 1); /* coupling strategy present */
 | |
|         put_bits(&s->pb, 1, 0); /* no coupling strategy */
 | |
|     } else {
 | |
|         put_bits(&s->pb, 1, 0); /* no new coupling strategy */
 | |
|     }
 | |
| 
 | |
|     if (s->acmod == 2)
 | |
|       {
 | |
|         if(block_num==0)
 | |
|           {
 | |
|             /* first block must define rematrixing (rematstr)  */
 | |
|             put_bits(&s->pb, 1, 1);
 | |
| 
 | |
|             /* dummy rematrixing rematflg(1:4)=0 */
 | |
|             for (rbnd=0;rbnd<4;rbnd++)
 | |
|               put_bits(&s->pb, 1, 0);
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             /* no matrixing (but should be used in the future) */
 | |
|             put_bits(&s->pb, 1, 0);
 | |
|           }
 | |
|       }
 | |
| 
 | |
| #if defined(DEBUG)
 | |
|     {
 | |
|       static int count = 0;
 | |
|       av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
 | |
|     }
 | |
| #endif
 | |
|     /* exponent strategy */
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         put_bits(&s->pb, 2, exp_strategy[ch]);
 | |
|     }
 | |
| 
 | |
|     if (s->lfe) {
 | |
|         put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
 | |
|     }
 | |
| 
 | |
|     for(ch=0;ch<s->nb_channels;ch++) {
 | |
|         if (exp_strategy[ch] != EXP_REUSE)
 | |
|             put_bits(&s->pb, 6, s->chbwcod[ch]);
 | |
|     }
 | |
| 
 | |
|     /* exponents */
 | |
|     for (ch = 0; ch < s->nb_all_channels; ch++) {
 | |
|         switch(exp_strategy[ch]) {
 | |
|         case EXP_REUSE:
 | |
|             continue;
 | |
|         case EXP_D15:
 | |
|             group_size = 1;
 | |
|             break;
 | |
|         case EXP_D25:
 | |
|             group_size = 2;
 | |
|             break;
 | |
|         default:
 | |
|         case EXP_D45:
 | |
|             group_size = 4;
 | |
|             break;
 | |
|         }
 | |
|         nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
 | |
|         p = encoded_exp[ch];
 | |
| 
 | |
|         /* first exponent */
 | |
|         exp1 = *p++;
 | |
|         put_bits(&s->pb, 4, exp1);
 | |
| 
 | |
|         /* next ones are delta encoded */
 | |
|         for(i=0;i<nb_groups;i++) {
 | |
|             /* merge three delta in one code */
 | |
|             exp0 = exp1;
 | |
|             exp1 = p[0];
 | |
|             p += group_size;
 | |
|             delta0 = exp1 - exp0 + 2;
 | |
| 
 | |
|             exp0 = exp1;
 | |
|             exp1 = p[0];
 | |
|             p += group_size;
 | |
|             delta1 = exp1 - exp0 + 2;
 | |
| 
 | |
|             exp0 = exp1;
 | |
|             exp1 = p[0];
 | |
|             p += group_size;
 | |
|             delta2 = exp1 - exp0 + 2;
 | |
| 
 | |
|             put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
 | |
|         }
 | |
| 
 | |
|         if (ch != s->lfe_channel)
 | |
|             put_bits(&s->pb, 2, 0); /* no gain range info */
 | |
|     }
 | |
| 
 | |
|     /* bit allocation info */
 | |
|     baie = (block_num == 0);
 | |
|     put_bits(&s->pb, 1, baie);
 | |
|     if (baie) {
 | |
|         put_bits(&s->pb, 2, s->sdecaycod);
 | |
|         put_bits(&s->pb, 2, s->fdecaycod);
 | |
|         put_bits(&s->pb, 2, s->sgaincod);
 | |
|         put_bits(&s->pb, 2, s->dbkneecod);
 | |
|         put_bits(&s->pb, 3, s->floorcod);
 | |
|     }
 | |
| 
 | |
|     /* snr offset */
 | |
|     put_bits(&s->pb, 1, baie); /* always present with bai */
 | |
|     if (baie) {
 | |
|         put_bits(&s->pb, 6, s->csnroffst);
 | |
|         for(ch=0;ch<s->nb_all_channels;ch++) {
 | |
|             put_bits(&s->pb, 4, s->fsnroffst[ch]);
 | |
|             put_bits(&s->pb, 3, s->fgaincod[ch]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     put_bits(&s->pb, 1, 0); /* no delta bit allocation */
 | |
|     put_bits(&s->pb, 1, 0); /* no data to skip */
 | |
| 
 | |
|     /* mantissa encoding : we use two passes to handle the grouping. A
 | |
|        one pass method may be faster, but it would necessitate to
 | |
|        modify the output stream. */
 | |
| 
 | |
|     /* first pass: quantize */
 | |
|     mant1_cnt = mant2_cnt = mant4_cnt = 0;
 | |
|     qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
 | |
| 
 | |
|     for (ch = 0; ch < s->nb_all_channels; ch++) {
 | |
|         int b, c, e, v;
 | |
| 
 | |
|         for(i=0;i<s->nb_coefs[ch];i++) {
 | |
|             c = mdct_coefs[ch][i];
 | |
|             e = encoded_exp[ch][i] - global_exp[ch];
 | |
|             b = bap[ch][i];
 | |
|             switch(b) {
 | |
|             case 0:
 | |
|                 v = 0;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 v = sym_quant(c, e, 3);
 | |
|                 switch(mant1_cnt) {
 | |
|                 case 0:
 | |
|                     qmant1_ptr = &qmant[ch][i];
 | |
|                     v = 9 * v;
 | |
|                     mant1_cnt = 1;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     *qmant1_ptr += 3 * v;
 | |
|                     mant1_cnt = 2;
 | |
|                     v = 128;
 | |
|                     break;
 | |
|                 default:
 | |
|                     *qmant1_ptr += v;
 | |
|                     mant1_cnt = 0;
 | |
|                     v = 128;
 | |
|                     break;
 | |
|                 }
 | |
|                 break;
 | |
|             case 2:
 | |
|                 v = sym_quant(c, e, 5);
 | |
|                 switch(mant2_cnt) {
 | |
|                 case 0:
 | |
|                     qmant2_ptr = &qmant[ch][i];
 | |
|                     v = 25 * v;
 | |
|                     mant2_cnt = 1;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     *qmant2_ptr += 5 * v;
 | |
|                     mant2_cnt = 2;
 | |
|                     v = 128;
 | |
|                     break;
 | |
|                 default:
 | |
|                     *qmant2_ptr += v;
 | |
|                     mant2_cnt = 0;
 | |
|                     v = 128;
 | |
|                     break;
 | |
|                 }
 | |
|                 break;
 | |
|             case 3:
 | |
|                 v = sym_quant(c, e, 7);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 v = sym_quant(c, e, 11);
 | |
|                 switch(mant4_cnt) {
 | |
|                 case 0:
 | |
|                     qmant4_ptr = &qmant[ch][i];
 | |
|                     v = 11 * v;
 | |
|                     mant4_cnt = 1;
 | |
|                     break;
 | |
|                 default:
 | |
|                     *qmant4_ptr += v;
 | |
|                     mant4_cnt = 0;
 | |
|                     v = 128;
 | |
|                     break;
 | |
|                 }
 | |
|                 break;
 | |
|             case 5:
 | |
|                 v = sym_quant(c, e, 15);
 | |
|                 break;
 | |
|             case 14:
 | |
|                 v = asym_quant(c, e, 14);
 | |
|                 break;
 | |
|             case 15:
 | |
|                 v = asym_quant(c, e, 16);
 | |
|                 break;
 | |
|             default:
 | |
|                 v = asym_quant(c, e, b - 1);
 | |
|                 break;
 | |
|             }
 | |
|             qmant[ch][i] = v;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* second pass : output the values */
 | |
|     for (ch = 0; ch < s->nb_all_channels; ch++) {
 | |
|         int b, q;
 | |
| 
 | |
|         for(i=0;i<s->nb_coefs[ch];i++) {
 | |
|             q = qmant[ch][i];
 | |
|             b = bap[ch][i];
 | |
|             switch(b) {
 | |
|             case 0:
 | |
|                 break;
 | |
|             case 1:
 | |
|                 if (q != 128)
 | |
|                     put_bits(&s->pb, 5, q);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 if (q != 128)
 | |
|                     put_bits(&s->pb, 7, q);
 | |
|                 break;
 | |
|             case 3:
 | |
|                 put_bits(&s->pb, 3, q);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 if (q != 128)
 | |
|                     put_bits(&s->pb, 7, q);
 | |
|                 break;
 | |
|             case 14:
 | |
|                 put_bits(&s->pb, 14, q);
 | |
|                 break;
 | |
|             case 15:
 | |
|                 put_bits(&s->pb, 16, q);
 | |
|                 break;
 | |
|             default:
 | |
|                 put_bits(&s->pb, b - 1, q);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
 | |
| 
 | |
| static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
 | |
| {
 | |
|     unsigned int c;
 | |
| 
 | |
|     c = 0;
 | |
|     while (a) {
 | |
|         if (a & 1)
 | |
|             c ^= b;
 | |
|         a = a >> 1;
 | |
|         b = b << 1;
 | |
|         if (b & (1 << 16))
 | |
|             b ^= poly;
 | |
|     }
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
 | |
| {
 | |
|     unsigned int r;
 | |
|     r = 1;
 | |
|     while (n) {
 | |
|         if (n & 1)
 | |
|             r = mul_poly(r, a, poly);
 | |
|         a = mul_poly(a, a, poly);
 | |
|         n >>= 1;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* compute log2(max(abs(tab[]))) */
 | |
| static int log2_tab(int16_t *tab, int n)
 | |
| {
 | |
|     int i, v;
 | |
| 
 | |
|     v = 0;
 | |
|     for(i=0;i<n;i++) {
 | |
|         v |= abs(tab[i]);
 | |
|     }
 | |
|     return av_log2(v);
 | |
| }
 | |
| 
 | |
| static void lshift_tab(int16_t *tab, int n, int lshift)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (lshift > 0) {
 | |
|         for(i=0;i<n;i++) {
 | |
|             tab[i] <<= lshift;
 | |
|         }
 | |
|     } else if (lshift < 0) {
 | |
|         lshift = -lshift;
 | |
|         for(i=0;i<n;i++) {
 | |
|             tab[i] >>= lshift;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* fill the end of the frame and compute the two crcs */
 | |
| static int output_frame_end(AC3EncodeContext *s)
 | |
| {
 | |
|     int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
 | |
|     uint8_t *frame;
 | |
| 
 | |
|     frame_size = s->frame_size; /* frame size in words */
 | |
|     /* align to 8 bits */
 | |
|     flush_put_bits(&s->pb);
 | |
|     /* add zero bytes to reach the frame size */
 | |
|     frame = s->pb.buf;
 | |
|     n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2;
 | |
|     assert(n >= 0);
 | |
|     if(n>0)
 | |
|       memset(pbBufPtr(&s->pb), 0, n);
 | |
| 
 | |
|     /* Now we must compute both crcs : this is not so easy for crc1
 | |
|        because it is at the beginning of the data... */
 | |
|     frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
 | |
|     crc1 = bswap_16(av_crc(av_crc8005, 0, frame + 4, 2 * frame_size_58 - 4));
 | |
|     /* XXX: could precompute crc_inv */
 | |
|     crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
 | |
|     crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
 | |
|     frame[2] = crc1 >> 8;
 | |
|     frame[3] = crc1;
 | |
| 
 | |
|     crc2 = bswap_16(av_crc(av_crc8005, 0, frame + 2 * frame_size_58, (frame_size - frame_size_58) * 2 - 2));
 | |
|     frame[2*frame_size - 2] = crc2 >> 8;
 | |
|     frame[2*frame_size - 1] = crc2;
 | |
| 
 | |
|     //    printf("n=%d frame_size=%d\n", n, frame_size);
 | |
|     return frame_size * 2;
 | |
| }
 | |
| 
 | |
| static int AC3_encode_frame(AVCodecContext *avctx,
 | |
|                             unsigned char *frame, int buf_size, void *data)
 | |
| {
 | |
|     AC3EncodeContext *s = avctx->priv_data;
 | |
|     int16_t *samples = data;
 | |
|     int i, j, k, v, ch;
 | |
|     int16_t input_samples[N];
 | |
|     int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | |
|     uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | |
|     uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
 | |
|     uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | |
|     uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
 | |
|     int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
 | |
|     int frame_bits;
 | |
| 
 | |
|     frame_bits = 0;
 | |
|     for(ch=0;ch<s->nb_all_channels;ch++) {
 | |
|         /* fixed mdct to the six sub blocks & exponent computation */
 | |
|         for(i=0;i<NB_BLOCKS;i++) {
 | |
|             int16_t *sptr;
 | |
|             int sinc;
 | |
| 
 | |
|             /* compute input samples */
 | |
|             memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t));
 | |
|             sinc = s->nb_all_channels;
 | |
|             sptr = samples + (sinc * (N/2) * i) + ch;
 | |
|             for(j=0;j<N/2;j++) {
 | |
|                 v = *sptr;
 | |
|                 input_samples[j + N/2] = v;
 | |
|                 s->last_samples[ch][j] = v;
 | |
|                 sptr += sinc;
 | |
|             }
 | |
| 
 | |
|             /* apply the MDCT window */
 | |
|             for(j=0;j<N/2;j++) {
 | |
|                 input_samples[j] = MUL16(input_samples[j],
 | |
|                                          ac3_window[j]) >> 15;
 | |
|                 input_samples[N-j-1] = MUL16(input_samples[N-j-1],
 | |
|                                              ac3_window[j]) >> 15;
 | |
|             }
 | |
| 
 | |
|             /* Normalize the samples to use the maximum available
 | |
|                precision */
 | |
|             v = 14 - log2_tab(input_samples, N);
 | |
|             if (v < 0)
 | |
|                 v = 0;
 | |
|             exp_samples[i][ch] = v - 10;
 | |
|             lshift_tab(input_samples, N, v);
 | |
| 
 | |
|             /* do the MDCT */
 | |
|             mdct512(mdct_coef[i][ch], input_samples);
 | |
| 
 | |
|             /* compute "exponents". We take into account the
 | |
|                normalization there */
 | |
|             for(j=0;j<N/2;j++) {
 | |
|                 int e;
 | |
|                 v = abs(mdct_coef[i][ch][j]);
 | |
|                 if (v == 0)
 | |
|                     e = 24;
 | |
|                 else {
 | |
|                     e = 23 - av_log2(v) + exp_samples[i][ch];
 | |
|                     if (e >= 24) {
 | |
|                         e = 24;
 | |
|                         mdct_coef[i][ch][j] = 0;
 | |
|                     }
 | |
|                 }
 | |
|                 exp[i][ch][j] = e;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
 | |
| 
 | |
|         /* compute the exponents as the decoder will see them. The
 | |
|            EXP_REUSE case must be handled carefully : we select the
 | |
|            min of the exponents */
 | |
|         i = 0;
 | |
|         while (i < NB_BLOCKS) {
 | |
|             j = i + 1;
 | |
|             while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
 | |
|                 exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
 | |
|                 j++;
 | |
|             }
 | |
|             frame_bits += encode_exp(encoded_exp[i][ch],
 | |
|                                      exp[i][ch], s->nb_coefs[ch],
 | |
|                                      exp_strategy[i][ch]);
 | |
|             /* copy encoded exponents for reuse case */
 | |
|             for(k=i+1;k<j;k++) {
 | |
|                 memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
 | |
|                        s->nb_coefs[ch] * sizeof(uint8_t));
 | |
|             }
 | |
|             i = j;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* adjust for fractional frame sizes */
 | |
|     while(s->bits_written >= s->bit_rate*1000 && s->samples_written >= s->sample_rate) {
 | |
|         s->bits_written -= s->bit_rate*1000;
 | |
|         s->samples_written -= s->sample_rate;
 | |
|     }
 | |
|     s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate*1000);
 | |
|     s->bits_written += s->frame_size * 16;
 | |
|     s->samples_written += AC3_FRAME_SIZE;
 | |
| 
 | |
|     compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
 | |
|     /* everything is known... let's output the frame */
 | |
|     output_frame_header(s, frame);
 | |
| 
 | |
|     for(i=0;i<NB_BLOCKS;i++) {
 | |
|         output_audio_block(s, exp_strategy[i], encoded_exp[i],
 | |
|                            bap[i], mdct_coef[i], exp_samples[i], i);
 | |
|     }
 | |
|     return output_frame_end(s);
 | |
| }
 | |
| 
 | |
| static int AC3_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     av_freep(&avctx->coded_frame);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*************************************************************************/
 | |
| /* TEST */
 | |
| 
 | |
| #define FN (N/4)
 | |
| 
 | |
| void fft_test(void)
 | |
| {
 | |
|     IComplex in[FN], in1[FN];
 | |
|     int k, n, i;
 | |
|     float sum_re, sum_im, a;
 | |
| 
 | |
|     /* FFT test */
 | |
| 
 | |
|     for(i=0;i<FN;i++) {
 | |
|         in[i].re = random() % 65535 - 32767;
 | |
|         in[i].im = random() % 65535 - 32767;
 | |
|         in1[i] = in[i];
 | |
|     }
 | |
|     fft(in, 7);
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for(k=0;k<FN;k++) {
 | |
|         sum_re = 0;
 | |
|         sum_im = 0;
 | |
|         for(n=0;n<FN;n++) {
 | |
|             a = -2 * M_PI * (n * k) / FN;
 | |
|             sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
 | |
|             sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
 | |
|         }
 | |
|         printf("%3d: %6d,%6d %6.0f,%6.0f\n",
 | |
|                k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void mdct_test(void)
 | |
| {
 | |
|     int16_t input[N];
 | |
|     int32_t output[N/2];
 | |
|     float input1[N];
 | |
|     float output1[N/2];
 | |
|     float s, a, err, e, emax;
 | |
|     int i, k, n;
 | |
| 
 | |
|     for(i=0;i<N;i++) {
 | |
|         input[i] = (random() % 65535 - 32767) * 9 / 10;
 | |
|         input1[i] = input[i];
 | |
|     }
 | |
| 
 | |
|     mdct512(output, input);
 | |
| 
 | |
|     /* do it by hand */
 | |
|     for(k=0;k<N/2;k++) {
 | |
|         s = 0;
 | |
|         for(n=0;n<N;n++) {
 | |
|             a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
 | |
|             s += input1[n] * cos(a);
 | |
|         }
 | |
|         output1[k] = -2 * s / N;
 | |
|     }
 | |
| 
 | |
|     err = 0;
 | |
|     emax = 0;
 | |
|     for(i=0;i<N/2;i++) {
 | |
|         printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
 | |
|         e = output[i] - output1[i];
 | |
|         if (e > emax)
 | |
|             emax = e;
 | |
|         err += e * e;
 | |
|     }
 | |
|     printf("err2=%f emax=%f\n", err / (N/2), emax);
 | |
| }
 | |
| 
 | |
| void test_ac3(void)
 | |
| {
 | |
|     AC3EncodeContext ctx;
 | |
|     unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
 | |
|     short samples[AC3_FRAME_SIZE];
 | |
|     int ret, i;
 | |
| 
 | |
|     AC3_encode_init(&ctx, 44100, 64000, 1);
 | |
| 
 | |
|     fft_test();
 | |
|     mdct_test();
 | |
| 
 | |
|     for(i=0;i<AC3_FRAME_SIZE;i++)
 | |
|         samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
 | |
|     ret = AC3_encode_frame(&ctx, frame, samples);
 | |
|     printf("ret=%d\n", ret);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| AVCodec ac3_encoder = {
 | |
|     "ac3",
 | |
|     CODEC_TYPE_AUDIO,
 | |
|     CODEC_ID_AC3,
 | |
|     sizeof(AC3EncodeContext),
 | |
|     AC3_encode_init,
 | |
|     AC3_encode_frame,
 | |
|     AC3_encode_close,
 | |
|     NULL,
 | |
| };
 |