Makes it robust against adding fields before it, which will be useful in
following commits.
Majority of the patch generated by the following Coccinelle script:
@@
typedef AVOption;
identifier arr_name;
initializer list il;
initializer list[8] il1;
expression tail;
@@
AVOption arr_name[] = { il, { il1,
- tail
+ .unit = tail
}, ...  };
with some manual changes, as the script:
* has trouble with options defined inside macros
* sometimes does not handle options under an #else branch
* sometimes swallows whitespace
		
	
			
		
			
				
	
	
		
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2019 The FFmpeg Project
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "libavutil/channel_layout.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "avfilter.h"
 | 
						|
#include "audio.h"
 | 
						|
 | 
						|
#define MAX_OVERSAMPLE 64
 | 
						|
 | 
						|
enum ASoftClipTypes {
 | 
						|
    ASC_HARD = -1,
 | 
						|
    ASC_TANH,
 | 
						|
    ASC_ATAN,
 | 
						|
    ASC_CUBIC,
 | 
						|
    ASC_EXP,
 | 
						|
    ASC_ALG,
 | 
						|
    ASC_QUINTIC,
 | 
						|
    ASC_SIN,
 | 
						|
    ASC_ERF,
 | 
						|
    NB_TYPES,
 | 
						|
};
 | 
						|
 | 
						|
typedef struct Lowpass {
 | 
						|
    float  fb0, fb1, fb2;
 | 
						|
    float  fa0, fa1, fa2;
 | 
						|
 | 
						|
    double db0, db1, db2;
 | 
						|
    double da0, da1, da2;
 | 
						|
} Lowpass;
 | 
						|
 | 
						|
typedef struct ASoftClipContext {
 | 
						|
    const AVClass *class;
 | 
						|
 | 
						|
    int type;
 | 
						|
    int oversample;
 | 
						|
    int64_t delay;
 | 
						|
    double threshold;
 | 
						|
    double output;
 | 
						|
    double param;
 | 
						|
 | 
						|
    Lowpass lowpass[MAX_OVERSAMPLE];
 | 
						|
    AVFrame *frame[2];
 | 
						|
 | 
						|
    void (*filter)(struct ASoftClipContext *s, void **dst, const void **src,
 | 
						|
                   int nb_samples, int channels, int start, int end);
 | 
						|
} ASoftClipContext;
 | 
						|
 | 
						|
#define OFFSET(x) offsetof(ASoftClipContext, x)
 | 
						|
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
 | 
						|
 | 
						|
static const AVOption asoftclip_options[] = {
 | 
						|
    { "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT,    {.i64=0},         -1, NB_TYPES-1, A, .unit = "types" },
 | 
						|
    { "hard",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_HARD},   0,          0, A, .unit = "types" },
 | 
						|
    { "tanh",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_TANH},   0,          0, A, .unit = "types" },
 | 
						|
    { "atan",                NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ATAN},   0,          0, A, .unit = "types" },
 | 
						|
    { "cubic",               NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_CUBIC},  0,          0, A, .unit = "types" },
 | 
						|
    { "exp",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_EXP},    0,          0, A, .unit = "types" },
 | 
						|
    { "alg",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ALG},    0,          0, A, .unit = "types" },
 | 
						|
    { "quintic",             NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_QUINTIC},0,          0, A, .unit = "types" },
 | 
						|
    { "sin",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_SIN},    0,          0, A, .unit = "types" },
 | 
						|
    { "erf",                 NULL,            0, AV_OPT_TYPE_CONST,  {.i64=ASC_ERF},    0,          0, A, .unit = "types" },
 | 
						|
    { "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A },
 | 
						|
    { "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A },
 | 
						|
    { "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01,        3, A },
 | 
						|
    { "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A },
 | 
						|
    { NULL }
 | 
						|
};
 | 
						|
 | 
						|
AVFILTER_DEFINE_CLASS(asoftclip);
 | 
						|
 | 
						|
static void get_lowpass(Lowpass *s,
 | 
						|
                        double frequency,
 | 
						|
                        double sample_rate)
 | 
						|
{
 | 
						|
    double w0 = 2 * M_PI * frequency / sample_rate;
 | 
						|
    double alpha = sin(w0) / (2 * 0.8);
 | 
						|
    double factor;
 | 
						|
 | 
						|
    s->da0 =  1 + alpha;
 | 
						|
    s->da1 = -2 * cos(w0);
 | 
						|
    s->da2 =  1 - alpha;
 | 
						|
    s->db0 = (1 - cos(w0)) / 2;
 | 
						|
    s->db1 =  1 - cos(w0);
 | 
						|
    s->db2 = (1 - cos(w0)) / 2;
 | 
						|
 | 
						|
    s->da1 /= s->da0;
 | 
						|
    s->da2 /= s->da0;
 | 
						|
    s->db0 /= s->da0;
 | 
						|
    s->db1 /= s->da0;
 | 
						|
    s->db2 /= s->da0;
 | 
						|
    s->da0 /= s->da0;
 | 
						|
 | 
						|
    factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2);
 | 
						|
    s->db0 *= factor;
 | 
						|
    s->db1 *= factor;
 | 
						|
    s->db2 *= factor;
 | 
						|
 | 
						|
    s->fa0 = s->da0;
 | 
						|
    s->fa1 = s->da1;
 | 
						|
    s->fa2 = s->da2;
 | 
						|
    s->fb0 = s->db0;
 | 
						|
    s->fb1 = s->db1;
 | 
						|
    s->fb2 = s->db2;
 | 
						|
}
 | 
						|
 | 
						|
static inline float run_lowpassf(const Lowpass *const s,
 | 
						|
                                 float src, float *w)
 | 
						|
{
 | 
						|
    float dst;
 | 
						|
 | 
						|
    dst = src * s->fb0 + w[0];
 | 
						|
    w[0] = s->fb1 * src + w[1] - s->fa1 * dst;
 | 
						|
    w[1] = s->fb2 * src - s->fa2 * dst;
 | 
						|
 | 
						|
    return dst;
 | 
						|
}
 | 
						|
 | 
						|
static void filter_flt(ASoftClipContext *s,
 | 
						|
                       void **dptr, const void **sptr,
 | 
						|
                       int nb_samples, int channels,
 | 
						|
                       int start, int end)
 | 
						|
{
 | 
						|
    const int oversample = s->oversample;
 | 
						|
    const int nb_osamples = nb_samples * oversample;
 | 
						|
    const float scale = oversample > 1 ? oversample * 0.5f : 1.f;
 | 
						|
    float threshold = s->threshold;
 | 
						|
    float gain = s->output * threshold;
 | 
						|
    float factor = 1.f / threshold;
 | 
						|
    float param = s->param;
 | 
						|
 | 
						|
    for (int c = start; c < end; c++) {
 | 
						|
        float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
 | 
						|
        const float *src = sptr[c];
 | 
						|
        float *dst = dptr[c];
 | 
						|
 | 
						|
        for (int n = 0; n < nb_samples; n++) {
 | 
						|
            dst[oversample * n] = src[n];
 | 
						|
 | 
						|
            for (int m = 1; m < oversample; m++)
 | 
						|
                dst[oversample * n + m] = 0.f;
 | 
						|
        }
 | 
						|
 | 
						|
        for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | 
						|
            dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
 | 
						|
 | 
						|
        switch (s->type) {
 | 
						|
        case ASC_HARD:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_TANH:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = tanhf(dst[n] * factor * param);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ATAN:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_CUBIC:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                float sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= 1.5f)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sample - 0.1481f * powf(sample, 3.f);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_EXP:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.;
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ALG:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                float sample = dst[n] * factor;
 | 
						|
 | 
						|
                dst[n] = sample / (sqrtf(param + sample * sample));
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_QUINTIC:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                float sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= 1.25)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sample - 0.08192f * powf(sample, 5.f);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_SIN:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                float sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= M_PI_2)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sinf(sample);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ERF:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = erff(dst[n] * factor);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
 | 
						|
        w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
 | 
						|
        for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | 
						|
            dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w);
 | 
						|
 | 
						|
        for (int n = 0; n < nb_samples; n++)
 | 
						|
            dst[n] = dst[n * oversample] * scale;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline double run_lowpassd(const Lowpass *const s,
 | 
						|
                                  double src, double *w)
 | 
						|
{
 | 
						|
    double dst;
 | 
						|
 | 
						|
    dst = src * s->db0 + w[0];
 | 
						|
    w[0] = s->db1 * src + w[1] - s->da1 * dst;
 | 
						|
    w[1] = s->db2 * src - s->da2 * dst;
 | 
						|
 | 
						|
    return dst;
 | 
						|
}
 | 
						|
 | 
						|
static void filter_dbl(ASoftClipContext *s,
 | 
						|
                       void **dptr, const void **sptr,
 | 
						|
                       int nb_samples, int channels,
 | 
						|
                       int start, int end)
 | 
						|
{
 | 
						|
    const int oversample = s->oversample;
 | 
						|
    const int nb_osamples = nb_samples * oversample;
 | 
						|
    const double scale = oversample > 1 ? oversample * 0.5 : 1.;
 | 
						|
    double threshold = s->threshold;
 | 
						|
    double gain = s->output * threshold;
 | 
						|
    double factor = 1. / threshold;
 | 
						|
    double param = s->param;
 | 
						|
 | 
						|
    for (int c = start; c < end; c++) {
 | 
						|
        double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1);
 | 
						|
        const double *src = sptr[c];
 | 
						|
        double *dst = dptr[c];
 | 
						|
 | 
						|
        for (int n = 0; n < nb_samples; n++) {
 | 
						|
            dst[oversample * n] = src[n];
 | 
						|
 | 
						|
            for (int m = 1; m < oversample; m++)
 | 
						|
                dst[oversample * n + m] = 0.f;
 | 
						|
        }
 | 
						|
 | 
						|
        for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | 
						|
            dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
 | 
						|
 | 
						|
        switch (s->type) {
 | 
						|
        case ASC_HARD:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = av_clipd(dst[n] * factor, -1., 1.);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_TANH:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = tanh(dst[n] * factor * param);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ATAN:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = 2. / M_PI * atan(dst[n] * factor * param);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_CUBIC:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                double sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= 1.5)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sample - 0.1481 * pow(sample, 3.);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_EXP:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.;
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ALG:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                double sample = dst[n] * factor;
 | 
						|
 | 
						|
                dst[n] = sample / (sqrt(param + sample * sample));
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_QUINTIC:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                double sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= 1.25)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sample - 0.08192 * pow(sample, 5.);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_SIN:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                double sample = dst[n] * factor;
 | 
						|
 | 
						|
                if (FFABS(sample) >= M_PI_2)
 | 
						|
                    dst[n] = FFSIGN(sample);
 | 
						|
                else
 | 
						|
                    dst[n] = sin(sample);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case ASC_ERF:
 | 
						|
            for (int n = 0; n < nb_osamples; n++) {
 | 
						|
                dst[n] = erf(dst[n] * factor);
 | 
						|
                dst[n] *= gain;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
 | 
						|
        w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1);
 | 
						|
        for (int n = 0; n < nb_osamples && oversample > 1; n++)
 | 
						|
            dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w);
 | 
						|
 | 
						|
        for (int n = 0; n < nb_samples; n++)
 | 
						|
            dst[n] = dst[n * oversample] * scale;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int config_input(AVFilterLink *inlink)
 | 
						|
{
 | 
						|
    AVFilterContext *ctx = inlink->dst;
 | 
						|
    ASoftClipContext *s = ctx->priv;
 | 
						|
 | 
						|
    switch (inlink->format) {
 | 
						|
    case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break;
 | 
						|
    case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break;
 | 
						|
    default: av_assert0(0);
 | 
						|
    }
 | 
						|
 | 
						|
    s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
 | 
						|
    s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE);
 | 
						|
    if (!s->frame[0] || !s->frame[1])
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    for (int i = 0; i < MAX_OVERSAMPLE; i++) {
 | 
						|
        get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1));
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
typedef struct ThreadData {
 | 
						|
    AVFrame *in, *out;
 | 
						|
    int nb_samples;
 | 
						|
    int channels;
 | 
						|
} ThreadData;
 | 
						|
 | 
						|
static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | 
						|
{
 | 
						|
    ASoftClipContext *s = ctx->priv;
 | 
						|
    ThreadData *td = arg;
 | 
						|
    AVFrame *out = td->out;
 | 
						|
    AVFrame *in = td->in;
 | 
						|
    const int channels = td->channels;
 | 
						|
    const int nb_samples = td->nb_samples;
 | 
						|
    const int start = (channels * jobnr) / nb_jobs;
 | 
						|
    const int end = (channels * (jobnr+1)) / nb_jobs;
 | 
						|
 | 
						|
    s->filter(s, (void **)out->extended_data, (const void **)in->extended_data,
 | 
						|
              nb_samples, channels, start, end);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | 
						|
{
 | 
						|
    AVFilterContext *ctx = inlink->dst;
 | 
						|
    ASoftClipContext *s = ctx->priv;
 | 
						|
    AVFilterLink *outlink = ctx->outputs[0];
 | 
						|
    int nb_samples, channels;
 | 
						|
    ThreadData td;
 | 
						|
    AVFrame *out;
 | 
						|
 | 
						|
    if (av_frame_is_writable(in) && s->oversample == 1) {
 | 
						|
        out = in;
 | 
						|
    } else {
 | 
						|
        out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample);
 | 
						|
        if (!out) {
 | 
						|
            av_frame_free(&in);
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        }
 | 
						|
        av_frame_copy_props(out, in);
 | 
						|
    }
 | 
						|
 | 
						|
    nb_samples = in->nb_samples;
 | 
						|
    channels = in->ch_layout.nb_channels;
 | 
						|
 | 
						|
    td.in = in;
 | 
						|
    td.out = out;
 | 
						|
    td.nb_samples = nb_samples;
 | 
						|
    td.channels = channels;
 | 
						|
    ff_filter_execute(ctx, filter_channels, &td, NULL,
 | 
						|
                      FFMIN(channels, ff_filter_get_nb_threads(ctx)));
 | 
						|
 | 
						|
    if (out != in)
 | 
						|
        av_frame_free(&in);
 | 
						|
 | 
						|
    out->nb_samples /= s->oversample;
 | 
						|
    return ff_filter_frame(outlink, out);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void uninit(AVFilterContext *ctx)
 | 
						|
{
 | 
						|
    ASoftClipContext *s = ctx->priv;
 | 
						|
 | 
						|
    av_frame_free(&s->frame[0]);
 | 
						|
    av_frame_free(&s->frame[1]);
 | 
						|
}
 | 
						|
 | 
						|
static const AVFilterPad inputs[] = {
 | 
						|
    {
 | 
						|
        .name         = "default",
 | 
						|
        .type         = AVMEDIA_TYPE_AUDIO,
 | 
						|
        .filter_frame = filter_frame,
 | 
						|
        .config_props = config_input,
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
const AVFilter ff_af_asoftclip = {
 | 
						|
    .name           = "asoftclip",
 | 
						|
    .description    = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."),
 | 
						|
    .priv_size      = sizeof(ASoftClipContext),
 | 
						|
    .priv_class     = &asoftclip_class,
 | 
						|
    FILTER_INPUTS(inputs),
 | 
						|
    FILTER_OUTPUTS(ff_audio_default_filterpad),
 | 
						|
    FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP),
 | 
						|
    .uninit         = uninit,
 | 
						|
    .process_command = ff_filter_process_command,
 | 
						|
    .flags          = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC |
 | 
						|
                      AVFILTER_FLAG_SLICE_THREADS,
 | 
						|
};
 |