* qatar/master: (23 commits) build: cosmetics: Reorder some lists in a more logical fashion x86: pngdsp: Fix assembly for OS/2 fate: add test for RTjpeg in nuv with frameheader rtmp: send check_bw as notification g723_1: clip argument for 15-bit version of normalize_bits() g723_1: use all LPC vectors in formant postfilter id3v2: Support v2.2 PIC avplay: fix build with lavfi disabled. avconv: split configuring filter configuration to a separate file. avconv: split option parsing into a separate file. mpc8: do not leave padding after last frame in buffer for the next decode call mpegaudioenc: list supported channel layouts. mpegaudiodec: don't print an error on > 1 frame in a packet. api-example: update to new audio encoding API. configure: add --enable/disable-random option doc: cygwin: Update list of FATE package requirements build: Remove all installed headers and header directories on uninstall build: change checkheaders to use regular build rules rtmp: Add a new option 'rtmp_subscribe' rtmp: Add support for subscribing live streams ... Conflicts: Makefile common.mak configure doc/examples/decoding_encoding.c ffmpeg.c libavcodec/g723_1.c libavcodec/mpegaudiodec.c libavcodec/x86/pngdsp.asm libavformat/version.h library.mak tests/fate/video.mak Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			2075 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2075 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * MPEG Audio decoder
 | 
						|
 * Copyright (c) 2001, 2002 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * MPEG Audio decoder
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/audioconvert.h"
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "mathops.h"
 | 
						|
#include "mpegaudiodsp.h"
 | 
						|
#include "dsputil.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * TODO:
 | 
						|
 *  - test lsf / mpeg25 extensively.
 | 
						|
 */
 | 
						|
 | 
						|
#include "mpegaudio.h"
 | 
						|
#include "mpegaudiodecheader.h"
 | 
						|
 | 
						|
#define BACKSTEP_SIZE 512
 | 
						|
#define EXTRABYTES 24
 | 
						|
#define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
 | 
						|
 | 
						|
/* layer 3 "granule" */
 | 
						|
typedef struct GranuleDef {
 | 
						|
    uint8_t scfsi;
 | 
						|
    int part2_3_length;
 | 
						|
    int big_values;
 | 
						|
    int global_gain;
 | 
						|
    int scalefac_compress;
 | 
						|
    uint8_t block_type;
 | 
						|
    uint8_t switch_point;
 | 
						|
    int table_select[3];
 | 
						|
    int subblock_gain[3];
 | 
						|
    uint8_t scalefac_scale;
 | 
						|
    uint8_t count1table_select;
 | 
						|
    int region_size[3]; /* number of huffman codes in each region */
 | 
						|
    int preflag;
 | 
						|
    int short_start, long_end; /* long/short band indexes */
 | 
						|
    uint8_t scale_factors[40];
 | 
						|
    DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
 | 
						|
} GranuleDef;
 | 
						|
 | 
						|
typedef struct MPADecodeContext {
 | 
						|
    MPA_DECODE_HEADER
 | 
						|
    uint8_t last_buf[LAST_BUF_SIZE];
 | 
						|
    int last_buf_size;
 | 
						|
    /* next header (used in free format parsing) */
 | 
						|
    uint32_t free_format_next_header;
 | 
						|
    GetBitContext gb;
 | 
						|
    GetBitContext in_gb;
 | 
						|
    DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
 | 
						|
    int synth_buf_offset[MPA_MAX_CHANNELS];
 | 
						|
    DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
 | 
						|
    INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
 | 
						|
    GranuleDef granules[2][2]; /* Used in Layer 3 */
 | 
						|
    int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
 | 
						|
    int dither_state;
 | 
						|
    int err_recognition;
 | 
						|
    AVCodecContext* avctx;
 | 
						|
    MPADSPContext mpadsp;
 | 
						|
    DSPContext dsp;
 | 
						|
    AVFrame frame;
 | 
						|
} MPADecodeContext;
 | 
						|
 | 
						|
#if CONFIG_FLOAT
 | 
						|
#   define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
 | 
						|
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
 | 
						|
#   define FIXR(x)        ((float)(x))
 | 
						|
#   define FIXHR(x)       ((float)(x))
 | 
						|
#   define MULH3(x, y, s) ((s)*(y)*(x))
 | 
						|
#   define MULLx(x, y, s) ((y)*(x))
 | 
						|
#   define RENAME(a) a ## _float
 | 
						|
#   define OUT_FMT AV_SAMPLE_FMT_FLT
 | 
						|
#else
 | 
						|
#   define SHR(a,b)       ((a)>>(b))
 | 
						|
/* WARNING: only correct for positive numbers */
 | 
						|
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
 | 
						|
#   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
 | 
						|
#   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
 | 
						|
#   define MULH3(x, y, s) MULH((s)*(x), y)
 | 
						|
#   define MULLx(x, y, s) MULL(x,y,s)
 | 
						|
#   define RENAME(a)      a ## _fixed
 | 
						|
#   define OUT_FMT AV_SAMPLE_FMT_S16
 | 
						|
#endif
 | 
						|
 | 
						|
/****************/
 | 
						|
 | 
						|
#define HEADER_SIZE 4
 | 
						|
 | 
						|
#include "mpegaudiodata.h"
 | 
						|
#include "mpegaudiodectab.h"
 | 
						|
 | 
						|
/* vlc structure for decoding layer 3 huffman tables */
 | 
						|
static VLC huff_vlc[16];
 | 
						|
static VLC_TYPE huff_vlc_tables[
 | 
						|
    0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
 | 
						|
  142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
 | 
						|
  ][2];
 | 
						|
static const int huff_vlc_tables_sizes[16] = {
 | 
						|
    0,  128,  128,  128,  130,  128,  154,  166,
 | 
						|
  142,  204,  190,  170,  542,  460,  662,  414
 | 
						|
};
 | 
						|
static VLC huff_quad_vlc[2];
 | 
						|
static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
 | 
						|
static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
 | 
						|
/* computed from band_size_long */
 | 
						|
static uint16_t band_index_long[9][23];
 | 
						|
#include "mpegaudio_tablegen.h"
 | 
						|
/* intensity stereo coef table */
 | 
						|
static INTFLOAT is_table[2][16];
 | 
						|
static INTFLOAT is_table_lsf[2][2][16];
 | 
						|
static INTFLOAT csa_table[8][4];
 | 
						|
 | 
						|
static int16_t division_tab3[1<<6 ];
 | 
						|
static int16_t division_tab5[1<<8 ];
 | 
						|
static int16_t division_tab9[1<<11];
 | 
						|
 | 
						|
static int16_t * const division_tabs[4] = {
 | 
						|
    division_tab3, division_tab5, NULL, division_tab9
 | 
						|
};
 | 
						|
 | 
						|
/* lower 2 bits: modulo 3, higher bits: shift */
 | 
						|
static uint16_t scale_factor_modshift[64];
 | 
						|
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
 | 
						|
static int32_t scale_factor_mult[15][3];
 | 
						|
/* mult table for layer 2 group quantization */
 | 
						|
 | 
						|
#define SCALE_GEN(v) \
 | 
						|
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
 | 
						|
 | 
						|
static const int32_t scale_factor_mult2[3][3] = {
 | 
						|
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
 | 
						|
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
 | 
						|
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert region offsets to region sizes and truncate
 | 
						|
 * size to big_values.
 | 
						|
 */
 | 
						|
static void ff_region_offset2size(GranuleDef *g)
 | 
						|
{
 | 
						|
    int i, k, j = 0;
 | 
						|
    g->region_size[2] = 576 / 2;
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        k = FFMIN(g->region_size[i], g->big_values);
 | 
						|
        g->region_size[i] = k - j;
 | 
						|
        j = k;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
 | 
						|
{
 | 
						|
    if (g->block_type == 2) {
 | 
						|
        if (s->sample_rate_index != 8)
 | 
						|
            g->region_size[0] = (36 / 2);
 | 
						|
        else
 | 
						|
            g->region_size[0] = (72 / 2);
 | 
						|
    } else {
 | 
						|
        if (s->sample_rate_index <= 2)
 | 
						|
            g->region_size[0] = (36 / 2);
 | 
						|
        else if (s->sample_rate_index != 8)
 | 
						|
            g->region_size[0] = (54 / 2);
 | 
						|
        else
 | 
						|
            g->region_size[0] = (108 / 2);
 | 
						|
    }
 | 
						|
    g->region_size[1] = (576 / 2);
 | 
						|
}
 | 
						|
 | 
						|
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
 | 
						|
{
 | 
						|
    int l;
 | 
						|
    g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
 | 
						|
    /* should not overflow */
 | 
						|
    l = FFMIN(ra1 + ra2 + 2, 22);
 | 
						|
    g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
 | 
						|
}
 | 
						|
 | 
						|
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
 | 
						|
{
 | 
						|
    if (g->block_type == 2) {
 | 
						|
        if (g->switch_point) {
 | 
						|
            /* if switched mode, we handle the 36 first samples as
 | 
						|
                long blocks.  For 8000Hz, we handle the 72 first
 | 
						|
                exponents as long blocks */
 | 
						|
            if (s->sample_rate_index <= 2)
 | 
						|
                g->long_end = 8;
 | 
						|
            else
 | 
						|
                g->long_end = 6;
 | 
						|
 | 
						|
            g->short_start = 2 + (s->sample_rate_index != 8);
 | 
						|
        } else {
 | 
						|
            g->long_end    = 0;
 | 
						|
            g->short_start = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        g->short_start = 13;
 | 
						|
        g->long_end    = 22;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* layer 1 unscaling */
 | 
						|
/* n = number of bits of the mantissa minus 1 */
 | 
						|
static inline int l1_unscale(int n, int mant, int scale_factor)
 | 
						|
{
 | 
						|
    int shift, mod;
 | 
						|
    int64_t val;
 | 
						|
 | 
						|
    shift   = scale_factor_modshift[scale_factor];
 | 
						|
    mod     = shift & 3;
 | 
						|
    shift >>= 2;
 | 
						|
    val     = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
 | 
						|
    shift  += n;
 | 
						|
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
 | 
						|
    return (int)((val + (1LL << (shift - 1))) >> shift);
 | 
						|
}
 | 
						|
 | 
						|
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
 | 
						|
{
 | 
						|
    int shift, mod, val;
 | 
						|
 | 
						|
    shift   = scale_factor_modshift[scale_factor];
 | 
						|
    mod     = shift & 3;
 | 
						|
    shift >>= 2;
 | 
						|
 | 
						|
    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
 | 
						|
    /* NOTE: at this point, 0 <= shift <= 21 */
 | 
						|
    if (shift > 0)
 | 
						|
        val = (val + (1 << (shift - 1))) >> shift;
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
 | 
						|
static inline int l3_unscale(int value, int exponent)
 | 
						|
{
 | 
						|
    unsigned int m;
 | 
						|
    int e;
 | 
						|
 | 
						|
    e  = table_4_3_exp  [4 * value + (exponent & 3)];
 | 
						|
    m  = table_4_3_value[4 * value + (exponent & 3)];
 | 
						|
    e -= exponent >> 2;
 | 
						|
#ifdef DEBUG
 | 
						|
    if(e < 1)
 | 
						|
        av_log(0, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
 | 
						|
#endif
 | 
						|
    if (e > 31)
 | 
						|
        return 0;
 | 
						|
    m = (m + (1 << (e - 1))) >> e;
 | 
						|
 | 
						|
    return m;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold void decode_init_static(void)
 | 
						|
{
 | 
						|
    int i, j, k;
 | 
						|
    int offset;
 | 
						|
 | 
						|
    /* scale factors table for layer 1/2 */
 | 
						|
    for (i = 0; i < 64; i++) {
 | 
						|
        int shift, mod;
 | 
						|
        /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
 | 
						|
        shift = i / 3;
 | 
						|
        mod   = i % 3;
 | 
						|
        scale_factor_modshift[i] = mod | (shift << 2);
 | 
						|
    }
 | 
						|
 | 
						|
    /* scale factor multiply for layer 1 */
 | 
						|
    for (i = 0; i < 15; i++) {
 | 
						|
        int n, norm;
 | 
						|
        n = i + 2;
 | 
						|
        norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
 | 
						|
        scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
 | 
						|
        scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
 | 
						|
        scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
 | 
						|
        av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
 | 
						|
                scale_factor_mult[i][0],
 | 
						|
                scale_factor_mult[i][1],
 | 
						|
                scale_factor_mult[i][2]);
 | 
						|
    }
 | 
						|
 | 
						|
    RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
 | 
						|
 | 
						|
    /* huffman decode tables */
 | 
						|
    offset = 0;
 | 
						|
    for (i = 1; i < 16; i++) {
 | 
						|
        const HuffTable *h = &mpa_huff_tables[i];
 | 
						|
        int xsize, x, y;
 | 
						|
        uint8_t  tmp_bits [512] = { 0 };
 | 
						|
        uint16_t tmp_codes[512] = { 0 };
 | 
						|
 | 
						|
        xsize = h->xsize;
 | 
						|
 | 
						|
        j = 0;
 | 
						|
        for (x = 0; x < xsize; x++) {
 | 
						|
            for (y = 0; y < xsize; y++) {
 | 
						|
                tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
 | 
						|
                tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* XXX: fail test */
 | 
						|
        huff_vlc[i].table = huff_vlc_tables+offset;
 | 
						|
        huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
 | 
						|
        init_vlc(&huff_vlc[i], 7, 512,
 | 
						|
                 tmp_bits, 1, 1, tmp_codes, 2, 2,
 | 
						|
                 INIT_VLC_USE_NEW_STATIC);
 | 
						|
        offset += huff_vlc_tables_sizes[i];
 | 
						|
    }
 | 
						|
    av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
 | 
						|
 | 
						|
    offset = 0;
 | 
						|
    for (i = 0; i < 2; i++) {
 | 
						|
        huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
 | 
						|
        huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
 | 
						|
        init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
 | 
						|
                 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
 | 
						|
                 INIT_VLC_USE_NEW_STATIC);
 | 
						|
        offset += huff_quad_vlc_tables_sizes[i];
 | 
						|
    }
 | 
						|
    av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
 | 
						|
 | 
						|
    for (i = 0; i < 9; i++) {
 | 
						|
        k = 0;
 | 
						|
        for (j = 0; j < 22; j++) {
 | 
						|
            band_index_long[i][j] = k;
 | 
						|
            k += band_size_long[i][j];
 | 
						|
        }
 | 
						|
        band_index_long[i][22] = k;
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute n ^ (4/3) and store it in mantissa/exp format */
 | 
						|
 | 
						|
    mpegaudio_tableinit();
 | 
						|
 | 
						|
    for (i = 0; i < 4; i++) {
 | 
						|
        if (ff_mpa_quant_bits[i] < 0) {
 | 
						|
            for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
 | 
						|
                int val1, val2, val3, steps;
 | 
						|
                int val = j;
 | 
						|
                steps   = ff_mpa_quant_steps[i];
 | 
						|
                val1    = val % steps;
 | 
						|
                val    /= steps;
 | 
						|
                val2    = val % steps;
 | 
						|
                val3    = val / steps;
 | 
						|
                division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    for (i = 0; i < 7; i++) {
 | 
						|
        float f;
 | 
						|
        INTFLOAT v;
 | 
						|
        if (i != 6) {
 | 
						|
            f = tan((double)i * M_PI / 12.0);
 | 
						|
            v = FIXR(f / (1.0 + f));
 | 
						|
        } else {
 | 
						|
            v = FIXR(1.0);
 | 
						|
        }
 | 
						|
        is_table[0][    i] = v;
 | 
						|
        is_table[1][6 - i] = v;
 | 
						|
    }
 | 
						|
    /* invalid values */
 | 
						|
    for (i = 7; i < 16; i++)
 | 
						|
        is_table[0][i] = is_table[1][i] = 0.0;
 | 
						|
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        double f;
 | 
						|
        int e, k;
 | 
						|
 | 
						|
        for (j = 0; j < 2; j++) {
 | 
						|
            e = -(j + 1) * ((i + 1) >> 1);
 | 
						|
            f = pow(2.0, e / 4.0);
 | 
						|
            k = i & 1;
 | 
						|
            is_table_lsf[j][k ^ 1][i] = FIXR(f);
 | 
						|
            is_table_lsf[j][k    ][i] = FIXR(1.0);
 | 
						|
            av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
 | 
						|
                    i, j, (float) is_table_lsf[j][0][i],
 | 
						|
                    (float) is_table_lsf[j][1][i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < 8; i++) {
 | 
						|
        float ci, cs, ca;
 | 
						|
        ci = ci_table[i];
 | 
						|
        cs = 1.0 / sqrt(1.0 + ci * ci);
 | 
						|
        ca = cs * ci;
 | 
						|
#if !CONFIG_FLOAT
 | 
						|
        csa_table[i][0] = FIXHR(cs/4);
 | 
						|
        csa_table[i][1] = FIXHR(ca/4);
 | 
						|
        csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
 | 
						|
        csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
 | 
						|
#else
 | 
						|
        csa_table[i][0] = cs;
 | 
						|
        csa_table[i][1] = ca;
 | 
						|
        csa_table[i][2] = ca + cs;
 | 
						|
        csa_table[i][3] = ca - cs;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int decode_init(AVCodecContext * avctx)
 | 
						|
{
 | 
						|
    static int initialized_tables = 0;
 | 
						|
    MPADecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    if (!initialized_tables) {
 | 
						|
        decode_init_static();
 | 
						|
        initialized_tables = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    ff_mpadsp_init(&s->mpadsp);
 | 
						|
    ff_dsputil_init(&s->dsp, avctx);
 | 
						|
 | 
						|
    avctx->sample_fmt= OUT_FMT;
 | 
						|
    s->err_recognition = avctx->err_recognition;
 | 
						|
 | 
						|
    if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
 | 
						|
        s->adu_mode = 1;
 | 
						|
 | 
						|
    avcodec_get_frame_defaults(&s->frame);
 | 
						|
    avctx->coded_frame = &s->frame;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define C3 FIXHR(0.86602540378443864676/2)
 | 
						|
#define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
 | 
						|
#define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
 | 
						|
#define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
 | 
						|
 | 
						|
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
 | 
						|
   cases. */
 | 
						|
static void imdct12(INTFLOAT *out, INTFLOAT *in)
 | 
						|
{
 | 
						|
    INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
 | 
						|
 | 
						|
    in0  = in[0*3];
 | 
						|
    in1  = in[1*3] + in[0*3];
 | 
						|
    in2  = in[2*3] + in[1*3];
 | 
						|
    in3  = in[3*3] + in[2*3];
 | 
						|
    in4  = in[4*3] + in[3*3];
 | 
						|
    in5  = in[5*3] + in[4*3];
 | 
						|
    in5 += in3;
 | 
						|
    in3 += in1;
 | 
						|
 | 
						|
    in2  = MULH3(in2, C3, 2);
 | 
						|
    in3  = MULH3(in3, C3, 4);
 | 
						|
 | 
						|
    t1   = in0 - in4;
 | 
						|
    t2   = MULH3(in1 - in5, C4, 2);
 | 
						|
 | 
						|
    out[ 7] =
 | 
						|
    out[10] = t1 + t2;
 | 
						|
    out[ 1] =
 | 
						|
    out[ 4] = t1 - t2;
 | 
						|
 | 
						|
    in0    += SHR(in4, 1);
 | 
						|
    in4     = in0 + in2;
 | 
						|
    in5    += 2*in1;
 | 
						|
    in1     = MULH3(in5 + in3, C5, 1);
 | 
						|
    out[ 8] =
 | 
						|
    out[ 9] = in4 + in1;
 | 
						|
    out[ 2] =
 | 
						|
    out[ 3] = in4 - in1;
 | 
						|
 | 
						|
    in0    -= in2;
 | 
						|
    in5     = MULH3(in5 - in3, C6, 2);
 | 
						|
    out[ 0] =
 | 
						|
    out[ 5] = in0 - in5;
 | 
						|
    out[ 6] =
 | 
						|
    out[11] = in0 + in5;
 | 
						|
}
 | 
						|
 | 
						|
/* return the number of decoded frames */
 | 
						|
static int mp_decode_layer1(MPADecodeContext *s)
 | 
						|
{
 | 
						|
    int bound, i, v, n, ch, j, mant;
 | 
						|
    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
 | 
						|
    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
 | 
						|
 | 
						|
    if (s->mode == MPA_JSTEREO)
 | 
						|
        bound = (s->mode_ext + 1) * 4;
 | 
						|
    else
 | 
						|
        bound = SBLIMIT;
 | 
						|
 | 
						|
    /* allocation bits */
 | 
						|
    for (i = 0; i < bound; i++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            allocation[ch][i] = get_bits(&s->gb, 4);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i = bound; i < SBLIMIT; i++)
 | 
						|
        allocation[0][i] = get_bits(&s->gb, 4);
 | 
						|
 | 
						|
    /* scale factors */
 | 
						|
    for (i = 0; i < bound; i++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            if (allocation[ch][i])
 | 
						|
                scale_factors[ch][i] = get_bits(&s->gb, 6);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i = bound; i < SBLIMIT; i++) {
 | 
						|
        if (allocation[0][i]) {
 | 
						|
            scale_factors[0][i] = get_bits(&s->gb, 6);
 | 
						|
            scale_factors[1][i] = get_bits(&s->gb, 6);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute samples */
 | 
						|
    for (j = 0; j < 12; j++) {
 | 
						|
        for (i = 0; i < bound; i++) {
 | 
						|
            for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
                n = allocation[ch][i];
 | 
						|
                if (n) {
 | 
						|
                    mant = get_bits(&s->gb, n + 1);
 | 
						|
                    v = l1_unscale(n, mant, scale_factors[ch][i]);
 | 
						|
                } else {
 | 
						|
                    v = 0;
 | 
						|
                }
 | 
						|
                s->sb_samples[ch][j][i] = v;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (i = bound; i < SBLIMIT; i++) {
 | 
						|
            n = allocation[0][i];
 | 
						|
            if (n) {
 | 
						|
                mant = get_bits(&s->gb, n + 1);
 | 
						|
                v = l1_unscale(n, mant, scale_factors[0][i]);
 | 
						|
                s->sb_samples[0][j][i] = v;
 | 
						|
                v = l1_unscale(n, mant, scale_factors[1][i]);
 | 
						|
                s->sb_samples[1][j][i] = v;
 | 
						|
            } else {
 | 
						|
                s->sb_samples[0][j][i] = 0;
 | 
						|
                s->sb_samples[1][j][i] = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 12;
 | 
						|
}
 | 
						|
 | 
						|
static int mp_decode_layer2(MPADecodeContext *s)
 | 
						|
{
 | 
						|
    int sblimit; /* number of used subbands */
 | 
						|
    const unsigned char *alloc_table;
 | 
						|
    int table, bit_alloc_bits, i, j, ch, bound, v;
 | 
						|
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
 | 
						|
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
 | 
						|
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
 | 
						|
    int scale, qindex, bits, steps, k, l, m, b;
 | 
						|
 | 
						|
    /* select decoding table */
 | 
						|
    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
 | 
						|
                                   s->sample_rate, s->lsf);
 | 
						|
    sblimit     = ff_mpa_sblimit_table[table];
 | 
						|
    alloc_table = ff_mpa_alloc_tables[table];
 | 
						|
 | 
						|
    if (s->mode == MPA_JSTEREO)
 | 
						|
        bound = (s->mode_ext + 1) * 4;
 | 
						|
    else
 | 
						|
        bound = sblimit;
 | 
						|
 | 
						|
    av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
 | 
						|
 | 
						|
    /* sanity check */
 | 
						|
    if (bound > sblimit)
 | 
						|
        bound = sblimit;
 | 
						|
 | 
						|
    /* parse bit allocation */
 | 
						|
    j = 0;
 | 
						|
    for (i = 0; i < bound; i++) {
 | 
						|
        bit_alloc_bits = alloc_table[j];
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++)
 | 
						|
            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
 | 
						|
        j += 1 << bit_alloc_bits;
 | 
						|
    }
 | 
						|
    for (i = bound; i < sblimit; i++) {
 | 
						|
        bit_alloc_bits = alloc_table[j];
 | 
						|
        v = get_bits(&s->gb, bit_alloc_bits);
 | 
						|
        bit_alloc[0][i] = v;
 | 
						|
        bit_alloc[1][i] = v;
 | 
						|
        j += 1 << bit_alloc_bits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* scale codes */
 | 
						|
    for (i = 0; i < sblimit; i++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            if (bit_alloc[ch][i])
 | 
						|
                scale_code[ch][i] = get_bits(&s->gb, 2);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* scale factors */
 | 
						|
    for (i = 0; i < sblimit; i++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            if (bit_alloc[ch][i]) {
 | 
						|
                sf = scale_factors[ch][i];
 | 
						|
                switch (scale_code[ch][i]) {
 | 
						|
                default:
 | 
						|
                case 0:
 | 
						|
                    sf[0] = get_bits(&s->gb, 6);
 | 
						|
                    sf[1] = get_bits(&s->gb, 6);
 | 
						|
                    sf[2] = get_bits(&s->gb, 6);
 | 
						|
                    break;
 | 
						|
                case 2:
 | 
						|
                    sf[0] = get_bits(&s->gb, 6);
 | 
						|
                    sf[1] = sf[0];
 | 
						|
                    sf[2] = sf[0];
 | 
						|
                    break;
 | 
						|
                case 1:
 | 
						|
                    sf[0] = get_bits(&s->gb, 6);
 | 
						|
                    sf[2] = get_bits(&s->gb, 6);
 | 
						|
                    sf[1] = sf[0];
 | 
						|
                    break;
 | 
						|
                case 3:
 | 
						|
                    sf[0] = get_bits(&s->gb, 6);
 | 
						|
                    sf[2] = get_bits(&s->gb, 6);
 | 
						|
                    sf[1] = sf[2];
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* samples */
 | 
						|
    for (k = 0; k < 3; k++) {
 | 
						|
        for (l = 0; l < 12; l += 3) {
 | 
						|
            j = 0;
 | 
						|
            for (i = 0; i < bound; i++) {
 | 
						|
                bit_alloc_bits = alloc_table[j];
 | 
						|
                for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
                    b = bit_alloc[ch][i];
 | 
						|
                    if (b) {
 | 
						|
                        scale = scale_factors[ch][i][k];
 | 
						|
                        qindex = alloc_table[j+b];
 | 
						|
                        bits = ff_mpa_quant_bits[qindex];
 | 
						|
                        if (bits < 0) {
 | 
						|
                            int v2;
 | 
						|
                            /* 3 values at the same time */
 | 
						|
                            v = get_bits(&s->gb, -bits);
 | 
						|
                            v2 = division_tabs[qindex][v];
 | 
						|
                            steps  = ff_mpa_quant_steps[qindex];
 | 
						|
 | 
						|
                            s->sb_samples[ch][k * 12 + l + 0][i] =
 | 
						|
                                l2_unscale_group(steps,  v2       & 15, scale);
 | 
						|
                            s->sb_samples[ch][k * 12 + l + 1][i] =
 | 
						|
                                l2_unscale_group(steps, (v2 >> 4) & 15, scale);
 | 
						|
                            s->sb_samples[ch][k * 12 + l + 2][i] =
 | 
						|
                                l2_unscale_group(steps,  v2 >> 8      , scale);
 | 
						|
                        } else {
 | 
						|
                            for (m = 0; m < 3; m++) {
 | 
						|
                                v = get_bits(&s->gb, bits);
 | 
						|
                                v = l1_unscale(bits - 1, v, scale);
 | 
						|
                                s->sb_samples[ch][k * 12 + l + m][i] = v;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | 
						|
                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | 
						|
                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                /* next subband in alloc table */
 | 
						|
                j += 1 << bit_alloc_bits;
 | 
						|
            }
 | 
						|
            /* XXX: find a way to avoid this duplication of code */
 | 
						|
            for (i = bound; i < sblimit; i++) {
 | 
						|
                bit_alloc_bits = alloc_table[j];
 | 
						|
                b = bit_alloc[0][i];
 | 
						|
                if (b) {
 | 
						|
                    int mant, scale0, scale1;
 | 
						|
                    scale0 = scale_factors[0][i][k];
 | 
						|
                    scale1 = scale_factors[1][i][k];
 | 
						|
                    qindex = alloc_table[j+b];
 | 
						|
                    bits = ff_mpa_quant_bits[qindex];
 | 
						|
                    if (bits < 0) {
 | 
						|
                        /* 3 values at the same time */
 | 
						|
                        v = get_bits(&s->gb, -bits);
 | 
						|
                        steps = ff_mpa_quant_steps[qindex];
 | 
						|
                        mant = v % steps;
 | 
						|
                        v = v / steps;
 | 
						|
                        s->sb_samples[0][k * 12 + l + 0][i] =
 | 
						|
                            l2_unscale_group(steps, mant, scale0);
 | 
						|
                        s->sb_samples[1][k * 12 + l + 0][i] =
 | 
						|
                            l2_unscale_group(steps, mant, scale1);
 | 
						|
                        mant = v % steps;
 | 
						|
                        v = v / steps;
 | 
						|
                        s->sb_samples[0][k * 12 + l + 1][i] =
 | 
						|
                            l2_unscale_group(steps, mant, scale0);
 | 
						|
                        s->sb_samples[1][k * 12 + l + 1][i] =
 | 
						|
                            l2_unscale_group(steps, mant, scale1);
 | 
						|
                        s->sb_samples[0][k * 12 + l + 2][i] =
 | 
						|
                            l2_unscale_group(steps, v, scale0);
 | 
						|
                        s->sb_samples[1][k * 12 + l + 2][i] =
 | 
						|
                            l2_unscale_group(steps, v, scale1);
 | 
						|
                    } else {
 | 
						|
                        for (m = 0; m < 3; m++) {
 | 
						|
                            mant = get_bits(&s->gb, bits);
 | 
						|
                            s->sb_samples[0][k * 12 + l + m][i] =
 | 
						|
                                l1_unscale(bits - 1, mant, scale0);
 | 
						|
                            s->sb_samples[1][k * 12 + l + m][i] =
 | 
						|
                                l1_unscale(bits - 1, mant, scale1);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
 | 
						|
                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
 | 
						|
                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
 | 
						|
                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
 | 
						|
                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
 | 
						|
                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
 | 
						|
                }
 | 
						|
                /* next subband in alloc table */
 | 
						|
                j += 1 << bit_alloc_bits;
 | 
						|
            }
 | 
						|
            /* fill remaining samples to zero */
 | 
						|
            for (i = sblimit; i < SBLIMIT; i++) {
 | 
						|
                for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
 | 
						|
                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
 | 
						|
                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 3 * 12;
 | 
						|
}
 | 
						|
 | 
						|
#define SPLIT(dst,sf,n)             \
 | 
						|
    if (n == 3) {                   \
 | 
						|
        int m = (sf * 171) >> 9;    \
 | 
						|
        dst   = sf - 3 * m;         \
 | 
						|
        sf    = m;                  \
 | 
						|
    } else if (n == 4) {            \
 | 
						|
        dst  = sf & 3;              \
 | 
						|
        sf >>= 2;                   \
 | 
						|
    } else if (n == 5) {            \
 | 
						|
        int m = (sf * 205) >> 10;   \
 | 
						|
        dst   = sf - 5 * m;         \
 | 
						|
        sf    = m;                  \
 | 
						|
    } else if (n == 6) {            \
 | 
						|
        int m = (sf * 171) >> 10;   \
 | 
						|
        dst   = sf - 6 * m;         \
 | 
						|
        sf    = m;                  \
 | 
						|
    } else {                        \
 | 
						|
        dst = 0;                    \
 | 
						|
    }
 | 
						|
 | 
						|
static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
 | 
						|
                                           int n3)
 | 
						|
{
 | 
						|
    SPLIT(slen[3], sf, n3)
 | 
						|
    SPLIT(slen[2], sf, n2)
 | 
						|
    SPLIT(slen[1], sf, n1)
 | 
						|
    slen[0] = sf;
 | 
						|
}
 | 
						|
 | 
						|
static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
 | 
						|
                                         int16_t *exponents)
 | 
						|
{
 | 
						|
    const uint8_t *bstab, *pretab;
 | 
						|
    int len, i, j, k, l, v0, shift, gain, gains[3];
 | 
						|
    int16_t *exp_ptr;
 | 
						|
 | 
						|
    exp_ptr = exponents;
 | 
						|
    gain    = g->global_gain - 210;
 | 
						|
    shift   = g->scalefac_scale + 1;
 | 
						|
 | 
						|
    bstab  = band_size_long[s->sample_rate_index];
 | 
						|
    pretab = mpa_pretab[g->preflag];
 | 
						|
    for (i = 0; i < g->long_end; i++) {
 | 
						|
        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
 | 
						|
        len = bstab[i];
 | 
						|
        for (j = len; j > 0; j--)
 | 
						|
            *exp_ptr++ = v0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (g->short_start < 13) {
 | 
						|
        bstab    = band_size_short[s->sample_rate_index];
 | 
						|
        gains[0] = gain - (g->subblock_gain[0] << 3);
 | 
						|
        gains[1] = gain - (g->subblock_gain[1] << 3);
 | 
						|
        gains[2] = gain - (g->subblock_gain[2] << 3);
 | 
						|
        k        = g->long_end;
 | 
						|
        for (i = g->short_start; i < 13; i++) {
 | 
						|
            len = bstab[i];
 | 
						|
            for (l = 0; l < 3; l++) {
 | 
						|
                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
 | 
						|
                for (j = len; j > 0; j--)
 | 
						|
                    *exp_ptr++ = v0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* handle n = 0 too */
 | 
						|
static inline int get_bitsz(GetBitContext *s, int n)
 | 
						|
{
 | 
						|
    return n ? get_bits(s, n) : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
 | 
						|
                          int *end_pos2)
 | 
						|
{
 | 
						|
    if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
 | 
						|
        s->gb           = s->in_gb;
 | 
						|
        s->in_gb.buffer = NULL;
 | 
						|
        av_assert2((get_bits_count(&s->gb) & 7) == 0);
 | 
						|
        skip_bits_long(&s->gb, *pos - *end_pos);
 | 
						|
        *end_pos2 =
 | 
						|
        *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
 | 
						|
        *pos      = get_bits_count(&s->gb);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Following is a optimized code for
 | 
						|
            INTFLOAT v = *src
 | 
						|
            if(get_bits1(&s->gb))
 | 
						|
                v = -v;
 | 
						|
            *dst = v;
 | 
						|
*/
 | 
						|
#if CONFIG_FLOAT
 | 
						|
#define READ_FLIP_SIGN(dst,src)                     \
 | 
						|
    v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
 | 
						|
    AV_WN32A(dst, v);
 | 
						|
#else
 | 
						|
#define READ_FLIP_SIGN(dst,src)     \
 | 
						|
    v      = -get_bits1(&s->gb);    \
 | 
						|
    *(dst) = (*(src) ^ v) - v;
 | 
						|
#endif
 | 
						|
 | 
						|
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
 | 
						|
                          int16_t *exponents, int end_pos2)
 | 
						|
{
 | 
						|
    int s_index;
 | 
						|
    int i;
 | 
						|
    int last_pos, bits_left;
 | 
						|
    VLC *vlc;
 | 
						|
    int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
 | 
						|
 | 
						|
    /* low frequencies (called big values) */
 | 
						|
    s_index = 0;
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        int j, k, l, linbits;
 | 
						|
        j = g->region_size[i];
 | 
						|
        if (j == 0)
 | 
						|
            continue;
 | 
						|
        /* select vlc table */
 | 
						|
        k       = g->table_select[i];
 | 
						|
        l       = mpa_huff_data[k][0];
 | 
						|
        linbits = mpa_huff_data[k][1];
 | 
						|
        vlc     = &huff_vlc[l];
 | 
						|
 | 
						|
        if (!l) {
 | 
						|
            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
 | 
						|
            s_index += 2 * j;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* read huffcode and compute each couple */
 | 
						|
        for (; j > 0; j--) {
 | 
						|
            int exponent, x, y;
 | 
						|
            int v;
 | 
						|
            int pos = get_bits_count(&s->gb);
 | 
						|
 | 
						|
            if (pos >= end_pos){
 | 
						|
//                av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
 | 
						|
                switch_buffer(s, &pos, &end_pos, &end_pos2);
 | 
						|
//                av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
 | 
						|
                if (pos >= end_pos)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            y = get_vlc2(&s->gb, vlc->table, 7, 3);
 | 
						|
 | 
						|
            if (!y) {
 | 
						|
                g->sb_hybrid[s_index  ] =
 | 
						|
                g->sb_hybrid[s_index+1] = 0;
 | 
						|
                s_index += 2;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            exponent= exponents[s_index];
 | 
						|
 | 
						|
            av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
 | 
						|
                    i, g->region_size[i] - j, x, y, exponent);
 | 
						|
            if (y & 16) {
 | 
						|
                x = y >> 5;
 | 
						|
                y = y & 0x0f;
 | 
						|
                if (x < 15) {
 | 
						|
                    READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
 | 
						|
                } else {
 | 
						|
                    x += get_bitsz(&s->gb, linbits);
 | 
						|
                    v  = l3_unscale(x, exponent);
 | 
						|
                    if (get_bits1(&s->gb))
 | 
						|
                        v = -v;
 | 
						|
                    g->sb_hybrid[s_index] = v;
 | 
						|
                }
 | 
						|
                if (y < 15) {
 | 
						|
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
 | 
						|
                } else {
 | 
						|
                    y += get_bitsz(&s->gb, linbits);
 | 
						|
                    v  = l3_unscale(y, exponent);
 | 
						|
                    if (get_bits1(&s->gb))
 | 
						|
                        v = -v;
 | 
						|
                    g->sb_hybrid[s_index+1] = v;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                x = y >> 5;
 | 
						|
                y = y & 0x0f;
 | 
						|
                x += y;
 | 
						|
                if (x < 15) {
 | 
						|
                    READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
 | 
						|
                } else {
 | 
						|
                    x += get_bitsz(&s->gb, linbits);
 | 
						|
                    v  = l3_unscale(x, exponent);
 | 
						|
                    if (get_bits1(&s->gb))
 | 
						|
                        v = -v;
 | 
						|
                    g->sb_hybrid[s_index+!!y] = v;
 | 
						|
                }
 | 
						|
                g->sb_hybrid[s_index + !y] = 0;
 | 
						|
            }
 | 
						|
            s_index += 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* high frequencies */
 | 
						|
    vlc = &huff_quad_vlc[g->count1table_select];
 | 
						|
    last_pos = 0;
 | 
						|
    while (s_index <= 572) {
 | 
						|
        int pos, code;
 | 
						|
        pos = get_bits_count(&s->gb);
 | 
						|
        if (pos >= end_pos) {
 | 
						|
            if (pos > end_pos2 && last_pos) {
 | 
						|
                /* some encoders generate an incorrect size for this
 | 
						|
                   part. We must go back into the data */
 | 
						|
                s_index -= 4;
 | 
						|
                skip_bits_long(&s->gb, last_pos - pos);
 | 
						|
                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
 | 
						|
                if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
 | 
						|
                    s_index=0;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
//                av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
 | 
						|
            switch_buffer(s, &pos, &end_pos, &end_pos2);
 | 
						|
//                av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
 | 
						|
            if (pos >= end_pos)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        last_pos = pos;
 | 
						|
 | 
						|
        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
 | 
						|
        av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
 | 
						|
        g->sb_hybrid[s_index+0] =
 | 
						|
        g->sb_hybrid[s_index+1] =
 | 
						|
        g->sb_hybrid[s_index+2] =
 | 
						|
        g->sb_hybrid[s_index+3] = 0;
 | 
						|
        while (code) {
 | 
						|
            static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
 | 
						|
            int v;
 | 
						|
            int pos = s_index + idxtab[code];
 | 
						|
            code   ^= 8 >> idxtab[code];
 | 
						|
            READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
 | 
						|
        }
 | 
						|
        s_index += 4;
 | 
						|
    }
 | 
						|
    /* skip extension bits */
 | 
						|
    bits_left = end_pos2 - get_bits_count(&s->gb);
 | 
						|
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
 | 
						|
    if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | 
						|
        s_index=0;
 | 
						|
    } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
 | 
						|
        s_index = 0;
 | 
						|
    }
 | 
						|
    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
 | 
						|
    skip_bits_long(&s->gb, bits_left);
 | 
						|
 | 
						|
    i = get_bits_count(&s->gb);
 | 
						|
    switch_buffer(s, &i, &end_pos, &end_pos2);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Reorder short blocks from bitstream order to interleaved order. It
 | 
						|
   would be faster to do it in parsing, but the code would be far more
 | 
						|
   complicated */
 | 
						|
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
 | 
						|
{
 | 
						|
    int i, j, len;
 | 
						|
    INTFLOAT *ptr, *dst, *ptr1;
 | 
						|
    INTFLOAT tmp[576];
 | 
						|
 | 
						|
    if (g->block_type != 2)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (g->switch_point) {
 | 
						|
        if (s->sample_rate_index != 8)
 | 
						|
            ptr = g->sb_hybrid + 36;
 | 
						|
        else
 | 
						|
            ptr = g->sb_hybrid + 72;
 | 
						|
    } else {
 | 
						|
        ptr = g->sb_hybrid;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = g->short_start; i < 13; i++) {
 | 
						|
        len  = band_size_short[s->sample_rate_index][i];
 | 
						|
        ptr1 = ptr;
 | 
						|
        dst  = tmp;
 | 
						|
        for (j = len; j > 0; j--) {
 | 
						|
            *dst++ = ptr[0*len];
 | 
						|
            *dst++ = ptr[1*len];
 | 
						|
            *dst++ = ptr[2*len];
 | 
						|
            ptr++;
 | 
						|
        }
 | 
						|
        ptr += 2 * len;
 | 
						|
        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define ISQRT2 FIXR(0.70710678118654752440)
 | 
						|
 | 
						|
static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
 | 
						|
{
 | 
						|
    int i, j, k, l;
 | 
						|
    int sf_max, sf, len, non_zero_found;
 | 
						|
    INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
 | 
						|
    int non_zero_found_short[3];
 | 
						|
 | 
						|
    /* intensity stereo */
 | 
						|
    if (s->mode_ext & MODE_EXT_I_STEREO) {
 | 
						|
        if (!s->lsf) {
 | 
						|
            is_tab = is_table;
 | 
						|
            sf_max = 7;
 | 
						|
        } else {
 | 
						|
            is_tab = is_table_lsf[g1->scalefac_compress & 1];
 | 
						|
            sf_max = 16;
 | 
						|
        }
 | 
						|
 | 
						|
        tab0 = g0->sb_hybrid + 576;
 | 
						|
        tab1 = g1->sb_hybrid + 576;
 | 
						|
 | 
						|
        non_zero_found_short[0] = 0;
 | 
						|
        non_zero_found_short[1] = 0;
 | 
						|
        non_zero_found_short[2] = 0;
 | 
						|
        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
 | 
						|
        for (i = 12; i >= g1->short_start; i--) {
 | 
						|
            /* for last band, use previous scale factor */
 | 
						|
            if (i != 11)
 | 
						|
                k -= 3;
 | 
						|
            len = band_size_short[s->sample_rate_index][i];
 | 
						|
            for (l = 2; l >= 0; l--) {
 | 
						|
                tab0 -= len;
 | 
						|
                tab1 -= len;
 | 
						|
                if (!non_zero_found_short[l]) {
 | 
						|
                    /* test if non zero band. if so, stop doing i-stereo */
 | 
						|
                    for (j = 0; j < len; j++) {
 | 
						|
                        if (tab1[j] != 0) {
 | 
						|
                            non_zero_found_short[l] = 1;
 | 
						|
                            goto found1;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    sf = g1->scale_factors[k + l];
 | 
						|
                    if (sf >= sf_max)
 | 
						|
                        goto found1;
 | 
						|
 | 
						|
                    v1 = is_tab[0][sf];
 | 
						|
                    v2 = is_tab[1][sf];
 | 
						|
                    for (j = 0; j < len; j++) {
 | 
						|
                        tmp0    = tab0[j];
 | 
						|
                        tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
 | 
						|
                        tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
found1:
 | 
						|
                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | 
						|
                        /* lower part of the spectrum : do ms stereo
 | 
						|
                           if enabled */
 | 
						|
                        for (j = 0; j < len; j++) {
 | 
						|
                            tmp0    = tab0[j];
 | 
						|
                            tmp1    = tab1[j];
 | 
						|
                            tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | 
						|
                            tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        non_zero_found = non_zero_found_short[0] |
 | 
						|
                         non_zero_found_short[1] |
 | 
						|
                         non_zero_found_short[2];
 | 
						|
 | 
						|
        for (i = g1->long_end - 1;i >= 0;i--) {
 | 
						|
            len   = band_size_long[s->sample_rate_index][i];
 | 
						|
            tab0 -= len;
 | 
						|
            tab1 -= len;
 | 
						|
            /* test if non zero band. if so, stop doing i-stereo */
 | 
						|
            if (!non_zero_found) {
 | 
						|
                for (j = 0; j < len; j++) {
 | 
						|
                    if (tab1[j] != 0) {
 | 
						|
                        non_zero_found = 1;
 | 
						|
                        goto found2;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                /* for last band, use previous scale factor */
 | 
						|
                k  = (i == 21) ? 20 : i;
 | 
						|
                sf = g1->scale_factors[k];
 | 
						|
                if (sf >= sf_max)
 | 
						|
                    goto found2;
 | 
						|
                v1 = is_tab[0][sf];
 | 
						|
                v2 = is_tab[1][sf];
 | 
						|
                for (j = 0; j < len; j++) {
 | 
						|
                    tmp0    = tab0[j];
 | 
						|
                    tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
 | 
						|
                    tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
found2:
 | 
						|
                if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | 
						|
                    /* lower part of the spectrum : do ms stereo
 | 
						|
                       if enabled */
 | 
						|
                    for (j = 0; j < len; j++) {
 | 
						|
                        tmp0    = tab0[j];
 | 
						|
                        tmp1    = tab1[j];
 | 
						|
                        tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
 | 
						|
                        tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
 | 
						|
        /* ms stereo ONLY */
 | 
						|
        /* NOTE: the 1/sqrt(2) normalization factor is included in the
 | 
						|
           global gain */
 | 
						|
#if CONFIG_FLOAT
 | 
						|
       s-> dsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
 | 
						|
#else
 | 
						|
        tab0 = g0->sb_hybrid;
 | 
						|
        tab1 = g1->sb_hybrid;
 | 
						|
        for (i = 0; i < 576; i++) {
 | 
						|
            tmp0    = tab0[i];
 | 
						|
            tmp1    = tab1[i];
 | 
						|
            tab0[i] = tmp0 + tmp1;
 | 
						|
            tab1[i] = tmp0 - tmp1;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_FLOAT
 | 
						|
#if HAVE_MIPSFPU
 | 
						|
#   include "mips/compute_antialias_float.h"
 | 
						|
#endif /* HAVE_MIPSFPU */
 | 
						|
#else
 | 
						|
#if HAVE_MIPSDSPR1
 | 
						|
#   include "mips/compute_antialias_fixed.h"
 | 
						|
#endif /* HAVE_MIPSDSPR1 */
 | 
						|
#endif /* CONFIG_FLOAT */
 | 
						|
 | 
						|
#ifndef compute_antialias
 | 
						|
#if CONFIG_FLOAT
 | 
						|
#define AA(j) do {                                                      \
 | 
						|
        float tmp0 = ptr[-1-j];                                         \
 | 
						|
        float tmp1 = ptr[   j];                                         \
 | 
						|
        ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
 | 
						|
        ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
#define AA(j) do {                                              \
 | 
						|
        int tmp0 = ptr[-1-j];                                   \
 | 
						|
        int tmp1 = ptr[   j];                                   \
 | 
						|
        int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
 | 
						|
        ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
 | 
						|
        ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
 | 
						|
    } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
 | 
						|
{
 | 
						|
    INTFLOAT *ptr;
 | 
						|
    int n, i;
 | 
						|
 | 
						|
    /* we antialias only "long" bands */
 | 
						|
    if (g->block_type == 2) {
 | 
						|
        if (!g->switch_point)
 | 
						|
            return;
 | 
						|
        /* XXX: check this for 8000Hz case */
 | 
						|
        n = 1;
 | 
						|
    } else {
 | 
						|
        n = SBLIMIT - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    ptr = g->sb_hybrid + 18;
 | 
						|
    for (i = n; i > 0; i--) {
 | 
						|
        AA(0);
 | 
						|
        AA(1);
 | 
						|
        AA(2);
 | 
						|
        AA(3);
 | 
						|
        AA(4);
 | 
						|
        AA(5);
 | 
						|
        AA(6);
 | 
						|
        AA(7);
 | 
						|
 | 
						|
        ptr += 18;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* compute_antialias */
 | 
						|
 | 
						|
static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
 | 
						|
                          INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
 | 
						|
{
 | 
						|
    INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
 | 
						|
    INTFLOAT out2[12];
 | 
						|
    int i, j, mdct_long_end, sblimit;
 | 
						|
 | 
						|
    /* find last non zero block */
 | 
						|
    ptr  = g->sb_hybrid + 576;
 | 
						|
    ptr1 = g->sb_hybrid + 2 * 18;
 | 
						|
    while (ptr >= ptr1) {
 | 
						|
        int32_t *p;
 | 
						|
        ptr -= 6;
 | 
						|
        p    = (int32_t*)ptr;
 | 
						|
        if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
 | 
						|
 | 
						|
    if (g->block_type == 2) {
 | 
						|
        /* XXX: check for 8000 Hz */
 | 
						|
        if (g->switch_point)
 | 
						|
            mdct_long_end = 2;
 | 
						|
        else
 | 
						|
            mdct_long_end = 0;
 | 
						|
    } else {
 | 
						|
        mdct_long_end = sblimit;
 | 
						|
    }
 | 
						|
 | 
						|
    s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
 | 
						|
                                     mdct_long_end, g->switch_point,
 | 
						|
                                     g->block_type);
 | 
						|
 | 
						|
    buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
 | 
						|
    ptr = g->sb_hybrid + 18 * mdct_long_end;
 | 
						|
 | 
						|
    for (j = mdct_long_end; j < sblimit; j++) {
 | 
						|
        /* select frequency inversion */
 | 
						|
        win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
 | 
						|
        out_ptr = sb_samples + j;
 | 
						|
 | 
						|
        for (i = 0; i < 6; i++) {
 | 
						|
            *out_ptr = buf[4*i];
 | 
						|
            out_ptr += SBLIMIT;
 | 
						|
        }
 | 
						|
        imdct12(out2, ptr + 0);
 | 
						|
        for (i = 0; i < 6; i++) {
 | 
						|
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
 | 
						|
            buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
 | 
						|
            out_ptr += SBLIMIT;
 | 
						|
        }
 | 
						|
        imdct12(out2, ptr + 1);
 | 
						|
        for (i = 0; i < 6; i++) {
 | 
						|
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
 | 
						|
            buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
 | 
						|
            out_ptr += SBLIMIT;
 | 
						|
        }
 | 
						|
        imdct12(out2, ptr + 2);
 | 
						|
        for (i = 0; i < 6; i++) {
 | 
						|
            buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
 | 
						|
            buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
 | 
						|
            buf[4*(i + 6*2)] = 0;
 | 
						|
        }
 | 
						|
        ptr += 18;
 | 
						|
        buf += (j&3) != 3 ? 1 : (4*18-3);
 | 
						|
    }
 | 
						|
    /* zero bands */
 | 
						|
    for (j = sblimit; j < SBLIMIT; j++) {
 | 
						|
        /* overlap */
 | 
						|
        out_ptr = sb_samples + j;
 | 
						|
        for (i = 0; i < 18; i++) {
 | 
						|
            *out_ptr = buf[4*i];
 | 
						|
            buf[4*i]   = 0;
 | 
						|
            out_ptr += SBLIMIT;
 | 
						|
        }
 | 
						|
        buf += (j&3) != 3 ? 1 : (4*18-3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* main layer3 decoding function */
 | 
						|
static int mp_decode_layer3(MPADecodeContext *s)
 | 
						|
{
 | 
						|
    int nb_granules, main_data_begin;
 | 
						|
    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
 | 
						|
    GranuleDef *g;
 | 
						|
    int16_t exponents[576]; //FIXME try INTFLOAT
 | 
						|
 | 
						|
    /* read side info */
 | 
						|
    if (s->lsf) {
 | 
						|
        main_data_begin = get_bits(&s->gb, 8);
 | 
						|
        skip_bits(&s->gb, s->nb_channels);
 | 
						|
        nb_granules = 1;
 | 
						|
    } else {
 | 
						|
        main_data_begin = get_bits(&s->gb, 9);
 | 
						|
        if (s->nb_channels == 2)
 | 
						|
            skip_bits(&s->gb, 3);
 | 
						|
        else
 | 
						|
            skip_bits(&s->gb, 5);
 | 
						|
        nb_granules = 2;
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
 | 
						|
            s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (gr = 0; gr < nb_granules; gr++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
 | 
						|
            g = &s->granules[ch][gr];
 | 
						|
            g->part2_3_length = get_bits(&s->gb, 12);
 | 
						|
            g->big_values     = get_bits(&s->gb,  9);
 | 
						|
            if (g->big_values > 288) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
 | 
						|
            g->global_gain = get_bits(&s->gb, 8);
 | 
						|
            /* if MS stereo only is selected, we precompute the
 | 
						|
               1/sqrt(2) renormalization factor */
 | 
						|
            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
 | 
						|
                MODE_EXT_MS_STEREO)
 | 
						|
                g->global_gain -= 2;
 | 
						|
            if (s->lsf)
 | 
						|
                g->scalefac_compress = get_bits(&s->gb, 9);
 | 
						|
            else
 | 
						|
                g->scalefac_compress = get_bits(&s->gb, 4);
 | 
						|
            blocksplit_flag = get_bits1(&s->gb);
 | 
						|
            if (blocksplit_flag) {
 | 
						|
                g->block_type = get_bits(&s->gb, 2);
 | 
						|
                if (g->block_type == 0) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
                g->switch_point = get_bits1(&s->gb);
 | 
						|
                for (i = 0; i < 2; i++)
 | 
						|
                    g->table_select[i] = get_bits(&s->gb, 5);
 | 
						|
                for (i = 0; i < 3; i++)
 | 
						|
                    g->subblock_gain[i] = get_bits(&s->gb, 3);
 | 
						|
                ff_init_short_region(s, g);
 | 
						|
            } else {
 | 
						|
                int region_address1, region_address2;
 | 
						|
                g->block_type = 0;
 | 
						|
                g->switch_point = 0;
 | 
						|
                for (i = 0; i < 3; i++)
 | 
						|
                    g->table_select[i] = get_bits(&s->gb, 5);
 | 
						|
                /* compute huffman coded region sizes */
 | 
						|
                region_address1 = get_bits(&s->gb, 4);
 | 
						|
                region_address2 = get_bits(&s->gb, 3);
 | 
						|
                av_dlog(s->avctx, "region1=%d region2=%d\n",
 | 
						|
                        region_address1, region_address2);
 | 
						|
                ff_init_long_region(s, g, region_address1, region_address2);
 | 
						|
            }
 | 
						|
            ff_region_offset2size(g);
 | 
						|
            ff_compute_band_indexes(s, g);
 | 
						|
 | 
						|
            g->preflag = 0;
 | 
						|
            if (!s->lsf)
 | 
						|
                g->preflag = get_bits1(&s->gb);
 | 
						|
            g->scalefac_scale     = get_bits1(&s->gb);
 | 
						|
            g->count1table_select = get_bits1(&s->gb);
 | 
						|
            av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
 | 
						|
                    g->block_type, g->switch_point);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->adu_mode) {
 | 
						|
        int skip;
 | 
						|
        const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
 | 
						|
        int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
 | 
						|
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
 | 
						|
        /* now we get bits from the main_data_begin offset */
 | 
						|
        av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
 | 
						|
    //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
 | 
						|
 | 
						|
        memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
 | 
						|
        s->in_gb = s->gb;
 | 
						|
        init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
 | 
						|
#if !UNCHECKED_BITSTREAM_READER
 | 
						|
        s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
 | 
						|
#endif
 | 
						|
        s->last_buf_size <<= 3;
 | 
						|
        for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
 | 
						|
            for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
                g = &s->granules[ch][gr];
 | 
						|
                s->last_buf_size += g->part2_3_length;
 | 
						|
                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        skip = s->last_buf_size - 8 * main_data_begin;
 | 
						|
        if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
 | 
						|
            skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
 | 
						|
            s->gb           = s->in_gb;
 | 
						|
            s->in_gb.buffer = NULL;
 | 
						|
        } else {
 | 
						|
            skip_bits_long(&s->gb, skip);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        gr = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (; gr < nb_granules; gr++) {
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            g = &s->granules[ch][gr];
 | 
						|
            bits_pos = get_bits_count(&s->gb);
 | 
						|
 | 
						|
            if (!s->lsf) {
 | 
						|
                uint8_t *sc;
 | 
						|
                int slen, slen1, slen2;
 | 
						|
 | 
						|
                /* MPEG1 scale factors */
 | 
						|
                slen1 = slen_table[0][g->scalefac_compress];
 | 
						|
                slen2 = slen_table[1][g->scalefac_compress];
 | 
						|
                av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
 | 
						|
                if (g->block_type == 2) {
 | 
						|
                    n = g->switch_point ? 17 : 18;
 | 
						|
                    j = 0;
 | 
						|
                    if (slen1) {
 | 
						|
                        for (i = 0; i < n; i++)
 | 
						|
                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
 | 
						|
                    } else {
 | 
						|
                        for (i = 0; i < n; i++)
 | 
						|
                            g->scale_factors[j++] = 0;
 | 
						|
                    }
 | 
						|
                    if (slen2) {
 | 
						|
                        for (i = 0; i < 18; i++)
 | 
						|
                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
 | 
						|
                        for (i = 0; i < 3; i++)
 | 
						|
                            g->scale_factors[j++] = 0;
 | 
						|
                    } else {
 | 
						|
                        for (i = 0; i < 21; i++)
 | 
						|
                            g->scale_factors[j++] = 0;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    sc = s->granules[ch][0].scale_factors;
 | 
						|
                    j = 0;
 | 
						|
                    for (k = 0; k < 4; k++) {
 | 
						|
                        n = k == 0 ? 6 : 5;
 | 
						|
                        if ((g->scfsi & (0x8 >> k)) == 0) {
 | 
						|
                            slen = (k < 2) ? slen1 : slen2;
 | 
						|
                            if (slen) {
 | 
						|
                                for (i = 0; i < n; i++)
 | 
						|
                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
 | 
						|
                            } else {
 | 
						|
                                for (i = 0; i < n; i++)
 | 
						|
                                    g->scale_factors[j++] = 0;
 | 
						|
                            }
 | 
						|
                        } else {
 | 
						|
                            /* simply copy from last granule */
 | 
						|
                            for (i = 0; i < n; i++) {
 | 
						|
                                g->scale_factors[j] = sc[j];
 | 
						|
                                j++;
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    g->scale_factors[j++] = 0;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                int tindex, tindex2, slen[4], sl, sf;
 | 
						|
 | 
						|
                /* LSF scale factors */
 | 
						|
                if (g->block_type == 2)
 | 
						|
                    tindex = g->switch_point ? 2 : 1;
 | 
						|
                else
 | 
						|
                    tindex = 0;
 | 
						|
 | 
						|
                sf = g->scalefac_compress;
 | 
						|
                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
 | 
						|
                    /* intensity stereo case */
 | 
						|
                    sf >>= 1;
 | 
						|
                    if (sf < 180) {
 | 
						|
                        lsf_sf_expand(slen, sf, 6, 6, 0);
 | 
						|
                        tindex2 = 3;
 | 
						|
                    } else if (sf < 244) {
 | 
						|
                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
 | 
						|
                        tindex2 = 4;
 | 
						|
                    } else {
 | 
						|
                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
 | 
						|
                        tindex2 = 5;
 | 
						|
                    }
 | 
						|
                } else {
 | 
						|
                    /* normal case */
 | 
						|
                    if (sf < 400) {
 | 
						|
                        lsf_sf_expand(slen, sf, 5, 4, 4);
 | 
						|
                        tindex2 = 0;
 | 
						|
                    } else if (sf < 500) {
 | 
						|
                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
 | 
						|
                        tindex2 = 1;
 | 
						|
                    } else {
 | 
						|
                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
 | 
						|
                        tindex2 = 2;
 | 
						|
                        g->preflag = 1;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                j = 0;
 | 
						|
                for (k = 0; k < 4; k++) {
 | 
						|
                    n  = lsf_nsf_table[tindex2][tindex][k];
 | 
						|
                    sl = slen[k];
 | 
						|
                    if (sl) {
 | 
						|
                        for (i = 0; i < n; i++)
 | 
						|
                            g->scale_factors[j++] = get_bits(&s->gb, sl);
 | 
						|
                    } else {
 | 
						|
                        for (i = 0; i < n; i++)
 | 
						|
                            g->scale_factors[j++] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                /* XXX: should compute exact size */
 | 
						|
                for (; j < 40; j++)
 | 
						|
                    g->scale_factors[j] = 0;
 | 
						|
            }
 | 
						|
 | 
						|
            exponents_from_scale_factors(s, g, exponents);
 | 
						|
 | 
						|
            /* read Huffman coded residue */
 | 
						|
            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
 | 
						|
        } /* ch */
 | 
						|
 | 
						|
        if (s->mode == MPA_JSTEREO)
 | 
						|
            compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
 | 
						|
 | 
						|
        for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
            g = &s->granules[ch][gr];
 | 
						|
 | 
						|
            reorder_block(s, g);
 | 
						|
            compute_antialias(s, g);
 | 
						|
            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
 | 
						|
        }
 | 
						|
    } /* gr */
 | 
						|
    if (get_bits_count(&s->gb) < 0)
 | 
						|
        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
 | 
						|
    return nb_granules * 18;
 | 
						|
}
 | 
						|
 | 
						|
static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
 | 
						|
                           const uint8_t *buf, int buf_size)
 | 
						|
{
 | 
						|
    int i, nb_frames, ch, ret;
 | 
						|
    OUT_INT *samples_ptr;
 | 
						|
 | 
						|
    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
 | 
						|
 | 
						|
    /* skip error protection field */
 | 
						|
    if (s->error_protection)
 | 
						|
        skip_bits(&s->gb, 16);
 | 
						|
 | 
						|
    switch(s->layer) {
 | 
						|
    case 1:
 | 
						|
        s->avctx->frame_size = 384;
 | 
						|
        nb_frames = mp_decode_layer1(s);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        s->avctx->frame_size = 1152;
 | 
						|
        nb_frames = mp_decode_layer2(s);
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        s->avctx->frame_size = s->lsf ? 576 : 1152;
 | 
						|
    default:
 | 
						|
        nb_frames = mp_decode_layer3(s);
 | 
						|
 | 
						|
        s->last_buf_size=0;
 | 
						|
        if (s->in_gb.buffer) {
 | 
						|
            align_get_bits(&s->gb);
 | 
						|
            i = get_bits_left(&s->gb)>>3;
 | 
						|
            if (i >= 0 && i <= BACKSTEP_SIZE) {
 | 
						|
                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
 | 
						|
                s->last_buf_size=i;
 | 
						|
            } else
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
 | 
						|
            s->gb           = s->in_gb;
 | 
						|
            s->in_gb.buffer = NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        align_get_bits(&s->gb);
 | 
						|
        av_assert1((get_bits_count(&s->gb) & 7) == 0);
 | 
						|
        i = get_bits_left(&s->gb) >> 3;
 | 
						|
 | 
						|
        if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
 | 
						|
            if (i < 0)
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
 | 
						|
            i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
 | 
						|
        }
 | 
						|
        av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
 | 
						|
        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
 | 
						|
        s->last_buf_size += i;
 | 
						|
    }
 | 
						|
 | 
						|
    /* get output buffer */
 | 
						|
    if (!samples) {
 | 
						|
        s->frame.nb_samples = s->avctx->frame_size;
 | 
						|
        if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
        samples = (OUT_INT *)s->frame.data[0];
 | 
						|
    }
 | 
						|
 | 
						|
    /* apply the synthesis filter */
 | 
						|
    for (ch = 0; ch < s->nb_channels; ch++) {
 | 
						|
        samples_ptr = samples + ch;
 | 
						|
        for (i = 0; i < nb_frames; i++) {
 | 
						|
            RENAME(ff_mpa_synth_filter)(
 | 
						|
                         &s->mpadsp,
 | 
						|
                         s->synth_buf[ch], &(s->synth_buf_offset[ch]),
 | 
						|
                         RENAME(ff_mpa_synth_window), &s->dither_state,
 | 
						|
                         samples_ptr, s->nb_channels,
 | 
						|
                         s->sb_samples[ch][i]);
 | 
						|
            samples_ptr += 32 * s->nb_channels;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
 | 
						|
}
 | 
						|
 | 
						|
static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
 | 
						|
                        AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf  = avpkt->data;
 | 
						|
    int buf_size        = avpkt->size;
 | 
						|
    MPADecodeContext *s = avctx->priv_data;
 | 
						|
    uint32_t header;
 | 
						|
    int out_size;
 | 
						|
 | 
						|
    while(buf_size && !*buf){
 | 
						|
        buf++;
 | 
						|
        buf_size--;
 | 
						|
    }
 | 
						|
 | 
						|
    if (buf_size < HEADER_SIZE)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    header = AV_RB32(buf);
 | 
						|
    if (header>>8 == AV_RB32("TAG")>>8) {
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
 | 
						|
        return buf_size;
 | 
						|
    }
 | 
						|
    if (ff_mpa_check_header(header) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Header missing\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
 | 
						|
        /* free format: prepare to compute frame size */
 | 
						|
        s->frame_size = -1;
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    /* update codec info */
 | 
						|
    avctx->channels       = s->nb_channels;
 | 
						|
    avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
 | 
						|
    if (!avctx->bit_rate)
 | 
						|
        avctx->bit_rate = s->bit_rate;
 | 
						|
 | 
						|
    if (s->frame_size <= 0 || s->frame_size > buf_size) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    } else if (s->frame_size < buf_size) {
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
 | 
						|
        buf_size= s->frame_size;
 | 
						|
    }
 | 
						|
 | 
						|
    out_size = mp_decode_frame(s, NULL, buf, buf_size);
 | 
						|
    if (out_size >= 0) {
 | 
						|
        *got_frame_ptr   = 1;
 | 
						|
        *(AVFrame *)data = s->frame;
 | 
						|
        avctx->sample_rate = s->sample_rate;
 | 
						|
        //FIXME maybe move the other codec info stuff from above here too
 | 
						|
    } else {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
 | 
						|
        /* Only return an error if the bad frame makes up the whole packet.
 | 
						|
           If there is more data in the packet, just consume the bad frame
 | 
						|
           instead of returning an error, which would discard the whole
 | 
						|
           packet. */
 | 
						|
        *got_frame_ptr = 0;
 | 
						|
        if (buf_size == avpkt->size)
 | 
						|
            return out_size;
 | 
						|
    }
 | 
						|
    s->frame_size = 0;
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
 | 
						|
static void flush(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    MPADecodeContext *s = avctx->priv_data;
 | 
						|
    memset(s->synth_buf, 0, sizeof(s->synth_buf));
 | 
						|
    s->last_buf_size = 0;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
 | 
						|
static int decode_frame_adu(AVCodecContext *avctx, void *data,
 | 
						|
                            int *got_frame_ptr, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf  = avpkt->data;
 | 
						|
    int buf_size        = avpkt->size;
 | 
						|
    MPADecodeContext *s = avctx->priv_data;
 | 
						|
    uint32_t header;
 | 
						|
    int len;
 | 
						|
    int av_unused out_size;
 | 
						|
 | 
						|
    len = buf_size;
 | 
						|
 | 
						|
    // Discard too short frames
 | 
						|
    if (buf_size < HEADER_SIZE) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if (len > MPA_MAX_CODED_FRAME_SIZE)
 | 
						|
        len = MPA_MAX_CODED_FRAME_SIZE;
 | 
						|
 | 
						|
    // Get header and restore sync word
 | 
						|
    header = AV_RB32(buf) | 0xffe00000;
 | 
						|
 | 
						|
    if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
 | 
						|
    /* update codec info */
 | 
						|
    avctx->sample_rate = s->sample_rate;
 | 
						|
    avctx->channels    = s->nb_channels;
 | 
						|
    if (!avctx->bit_rate)
 | 
						|
        avctx->bit_rate = s->bit_rate;
 | 
						|
 | 
						|
    s->frame_size = len;
 | 
						|
 | 
						|
    out_size = mp_decode_frame(s, NULL, buf, buf_size);
 | 
						|
    if (out_size < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    *got_frame_ptr   = 1;
 | 
						|
    *(AVFrame *)data = s->frame;
 | 
						|
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
 | 
						|
 | 
						|
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
 | 
						|
 | 
						|
/**
 | 
						|
 * Context for MP3On4 decoder
 | 
						|
 */
 | 
						|
typedef struct MP3On4DecodeContext {
 | 
						|
    AVFrame *frame;
 | 
						|
    int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
 | 
						|
    int syncword;                   ///< syncword patch
 | 
						|
    const uint8_t *coff;            ///< channel offsets in output buffer
 | 
						|
    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
 | 
						|
    OUT_INT *decoded_buf;           ///< output buffer for decoded samples
 | 
						|
} MP3On4DecodeContext;
 | 
						|
 | 
						|
#include "mpeg4audio.h"
 | 
						|
 | 
						|
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
 | 
						|
 | 
						|
/* number of mp3 decoder instances */
 | 
						|
static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
 | 
						|
 | 
						|
/* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
 | 
						|
static const uint8_t chan_offset[8][5] = {
 | 
						|
    { 0             },
 | 
						|
    { 0             },  // C
 | 
						|
    { 0             },  // FLR
 | 
						|
    { 2, 0          },  // C FLR
 | 
						|
    { 2, 0, 3       },  // C FLR BS
 | 
						|
    { 2, 0, 3       },  // C FLR BLRS
 | 
						|
    { 2, 0, 4, 3    },  // C FLR BLRS LFE
 | 
						|
    { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
 | 
						|
};
 | 
						|
 | 
						|
/* mp3on4 channel layouts */
 | 
						|
static const int16_t chan_layout[8] = {
 | 
						|
    0,
 | 
						|
    AV_CH_LAYOUT_MONO,
 | 
						|
    AV_CH_LAYOUT_STEREO,
 | 
						|
    AV_CH_LAYOUT_SURROUND,
 | 
						|
    AV_CH_LAYOUT_4POINT0,
 | 
						|
    AV_CH_LAYOUT_5POINT0,
 | 
						|
    AV_CH_LAYOUT_5POINT1,
 | 
						|
    AV_CH_LAYOUT_7POINT1
 | 
						|
};
 | 
						|
 | 
						|
static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
 | 
						|
{
 | 
						|
    MP3On4DecodeContext *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < s->frames; i++)
 | 
						|
        av_free(s->mp3decctx[i]);
 | 
						|
 | 
						|
    av_freep(&s->decoded_buf);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int decode_init_mp3on4(AVCodecContext * avctx)
 | 
						|
{
 | 
						|
    MP3On4DecodeContext *s = avctx->priv_data;
 | 
						|
    MPEG4AudioConfig cfg;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
 | 
						|
                                 avctx->extradata_size * 8, 1);
 | 
						|
    if (!cfg.chan_config || cfg.chan_config > 7) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    s->frames             = mp3Frames[cfg.chan_config];
 | 
						|
    s->coff               = chan_offset[cfg.chan_config];
 | 
						|
    avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
 | 
						|
    avctx->channel_layout = chan_layout[cfg.chan_config];
 | 
						|
 | 
						|
    if (cfg.sample_rate < 16000)
 | 
						|
        s->syncword = 0xffe00000;
 | 
						|
    else
 | 
						|
        s->syncword = 0xfff00000;
 | 
						|
 | 
						|
    /* Init the first mp3 decoder in standard way, so that all tables get builded
 | 
						|
     * We replace avctx->priv_data with the context of the first decoder so that
 | 
						|
     * decode_init() does not have to be changed.
 | 
						|
     * Other decoders will be initialized here copying data from the first context
 | 
						|
     */
 | 
						|
    // Allocate zeroed memory for the first decoder context
 | 
						|
    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
 | 
						|
    if (!s->mp3decctx[0])
 | 
						|
        goto alloc_fail;
 | 
						|
    // Put decoder context in place to make init_decode() happy
 | 
						|
    avctx->priv_data = s->mp3decctx[0];
 | 
						|
    decode_init(avctx);
 | 
						|
    s->frame = avctx->coded_frame;
 | 
						|
    // Restore mp3on4 context pointer
 | 
						|
    avctx->priv_data = s;
 | 
						|
    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
 | 
						|
 | 
						|
    /* Create a separate codec/context for each frame (first is already ok).
 | 
						|
     * Each frame is 1 or 2 channels - up to 5 frames allowed
 | 
						|
     */
 | 
						|
    for (i = 1; i < s->frames; i++) {
 | 
						|
        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
 | 
						|
        if (!s->mp3decctx[i])
 | 
						|
            goto alloc_fail;
 | 
						|
        s->mp3decctx[i]->adu_mode = 1;
 | 
						|
        s->mp3decctx[i]->avctx = avctx;
 | 
						|
        s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Allocate buffer for multi-channel output if needed */
 | 
						|
    if (s->frames > 1) {
 | 
						|
        s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
 | 
						|
                                   sizeof(*s->decoded_buf));
 | 
						|
        if (!s->decoded_buf)
 | 
						|
            goto alloc_fail;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
alloc_fail:
 | 
						|
    decode_close_mp3on4(avctx);
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void flush_mp3on4(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    MP3On4DecodeContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    for (i = 0; i < s->frames; i++) {
 | 
						|
        MPADecodeContext *m = s->mp3decctx[i];
 | 
						|
        memset(m->synth_buf, 0, sizeof(m->synth_buf));
 | 
						|
        m->last_buf_size = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
 | 
						|
                               int *got_frame_ptr, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf     = avpkt->data;
 | 
						|
    int buf_size           = avpkt->size;
 | 
						|
    MP3On4DecodeContext *s = avctx->priv_data;
 | 
						|
    MPADecodeContext *m;
 | 
						|
    int fsize, len = buf_size, out_size = 0;
 | 
						|
    uint32_t header;
 | 
						|
    OUT_INT *out_samples;
 | 
						|
    OUT_INT *outptr, *bp;
 | 
						|
    int fr, j, n, ch, ret;
 | 
						|
 | 
						|
    /* get output buffer */
 | 
						|
    s->frame->nb_samples = s->frames * MPA_FRAME_SIZE;
 | 
						|
    if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    out_samples = (OUT_INT *)s->frame->data[0];
 | 
						|
 | 
						|
    // Discard too short frames
 | 
						|
    if (buf_size < HEADER_SIZE)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    // If only one decoder interleave is not needed
 | 
						|
    outptr = s->frames == 1 ? out_samples : s->decoded_buf;
 | 
						|
 | 
						|
    avctx->bit_rate = 0;
 | 
						|
 | 
						|
    ch = 0;
 | 
						|
    for (fr = 0; fr < s->frames; fr++) {
 | 
						|
        fsize = AV_RB16(buf) >> 4;
 | 
						|
        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
 | 
						|
        m     = s->mp3decctx[fr];
 | 
						|
        av_assert1(m);
 | 
						|
 | 
						|
        if (fsize < HEADER_SIZE) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
 | 
						|
 | 
						|
        if (ff_mpa_check_header(header) < 0) // Bad header, discard block
 | 
						|
            break;
 | 
						|
 | 
						|
        avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
 | 
						|
 | 
						|
        if (ch + m->nb_channels > avctx->channels) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
 | 
						|
                                        "channel count\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        ch += m->nb_channels;
 | 
						|
 | 
						|
        out_size += mp_decode_frame(m, outptr, buf, fsize);
 | 
						|
        buf      += fsize;
 | 
						|
        len      -= fsize;
 | 
						|
 | 
						|
        if (s->frames > 1) {
 | 
						|
            n = m->avctx->frame_size*m->nb_channels;
 | 
						|
            /* interleave output data */
 | 
						|
            bp = out_samples + s->coff[fr];
 | 
						|
            if (m->nb_channels == 1) {
 | 
						|
                for (j = 0; j < n; j++) {
 | 
						|
                    *bp = s->decoded_buf[j];
 | 
						|
                    bp += avctx->channels;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                for (j = 0; j < n; j++) {
 | 
						|
                    bp[0] = s->decoded_buf[j++];
 | 
						|
                    bp[1] = s->decoded_buf[j];
 | 
						|
                    bp   += avctx->channels;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        avctx->bit_rate += m->bit_rate;
 | 
						|
    }
 | 
						|
 | 
						|
    /* update codec info */
 | 
						|
    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
 | 
						|
 | 
						|
    s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
 | 
						|
    *got_frame_ptr   = 1;
 | 
						|
    *(AVFrame *)data = *s->frame;
 | 
						|
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
 | 
						|
 | 
						|
#if !CONFIG_FLOAT
 | 
						|
#if CONFIG_MP1_DECODER
 | 
						|
AVCodec ff_mp1_decoder = {
 | 
						|
    .name           = "mp1",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_MP1,
 | 
						|
    .priv_data_size = sizeof(MPADecodeContext),
 | 
						|
    .init           = decode_init,
 | 
						|
    .decode         = decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .flush          = flush,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
#if CONFIG_MP2_DECODER
 | 
						|
AVCodec ff_mp2_decoder = {
 | 
						|
    .name           = "mp2",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_MP2,
 | 
						|
    .priv_data_size = sizeof(MPADecodeContext),
 | 
						|
    .init           = decode_init,
 | 
						|
    .decode         = decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .flush          = flush,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
#if CONFIG_MP3_DECODER
 | 
						|
AVCodec ff_mp3_decoder = {
 | 
						|
    .name           = "mp3",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_MP3,
 | 
						|
    .priv_data_size = sizeof(MPADecodeContext),
 | 
						|
    .init           = decode_init,
 | 
						|
    .decode         = decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .flush          = flush,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
#if CONFIG_MP3ADU_DECODER
 | 
						|
AVCodec ff_mp3adu_decoder = {
 | 
						|
    .name           = "mp3adu",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_MP3ADU,
 | 
						|
    .priv_data_size = sizeof(MPADecodeContext),
 | 
						|
    .init           = decode_init,
 | 
						|
    .decode         = decode_frame_adu,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .flush          = flush,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
#if CONFIG_MP3ON4_DECODER
 | 
						|
AVCodec ff_mp3on4_decoder = {
 | 
						|
    .name           = "mp3on4",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_MP3ON4,
 | 
						|
    .priv_data_size = sizeof(MP3On4DecodeContext),
 | 
						|
    .init           = decode_init_mp3on4,
 | 
						|
    .close          = decode_close_mp3on4,
 | 
						|
    .decode         = decode_frame_mp3on4,
 | 
						|
    .capabilities   = CODEC_CAP_DR1,
 | 
						|
    .flush          = flush_mp3on4,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("MP3onMP4"),
 | 
						|
};
 | 
						|
#endif
 | 
						|
#endif
 |