* commit 'f929ab0569ff31ed5a59b0b0adb7ce09df3fca39': cosmetics: Write NULL pointer equality checks more compactly Conflicts: cmdutils.c ffmpeg_opt.c ffplay.c libavcodec/dvbsub.c libavcodec/dvdsubdec.c libavcodec/dvdsubenc.c libavcodec/dxa.c libavcodec/libxvid_rc.c libavcodec/mpegvideo.c libavcodec/mpegvideo_enc.c libavcodec/rv10.c libavcodec/tiffenc.c libavcodec/utils.c libavcodec/vc1dec.c libavcodec/zmbv.c libavdevice/v4l2.c libavformat/matroskadec.c libavformat/movenc.c libavformat/sdp.c Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			2222 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2222 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2012 Andrew D'Addesio
 | |
|  * Copyright (c) 2013-2014 Mozilla Corporation
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Opus CELT decoder
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "libavutil/float_dsp.h"
 | |
| 
 | |
| #include "opus.h"
 | |
| #include "opus_imdct.h"
 | |
| 
 | |
| enum CeltSpread {
 | |
|     CELT_SPREAD_NONE,
 | |
|     CELT_SPREAD_LIGHT,
 | |
|     CELT_SPREAD_NORMAL,
 | |
|     CELT_SPREAD_AGGRESSIVE
 | |
| };
 | |
| 
 | |
| typedef struct CeltFrame {
 | |
|     float energy[CELT_MAX_BANDS];
 | |
|     float prev_energy[2][CELT_MAX_BANDS];
 | |
| 
 | |
|     uint8_t collapse_masks[CELT_MAX_BANDS];
 | |
| 
 | |
|     /* buffer for mdct output + postfilter */
 | |
|     DECLARE_ALIGNED(32, float, buf)[2048];
 | |
| 
 | |
|     /* postfilter parameters */
 | |
|     int pf_period_new;
 | |
|     float pf_gains_new[3];
 | |
|     int pf_period;
 | |
|     float pf_gains[3];
 | |
|     int pf_period_old;
 | |
|     float pf_gains_old[3];
 | |
| 
 | |
|     float deemph_coeff;
 | |
| } CeltFrame;
 | |
| 
 | |
| struct CeltContext {
 | |
|     // constant values that do not change during context lifetime
 | |
|     AVCodecContext    *avctx;
 | |
|     CeltIMDCTContext  *imdct[4];
 | |
|     AVFloatDSPContext  dsp;
 | |
|     int output_channels;
 | |
| 
 | |
|     // values that have inter-frame effect and must be reset on flush
 | |
|     CeltFrame frame[2];
 | |
|     uint32_t seed;
 | |
|     int flushed;
 | |
| 
 | |
|     // values that only affect a single frame
 | |
|     int coded_channels;
 | |
|     int framebits;
 | |
|     int duration;
 | |
| 
 | |
|     /* number of iMDCT blocks in the frame */
 | |
|     int blocks;
 | |
|     /* size of each block */
 | |
|     int blocksize;
 | |
| 
 | |
|     int startband;
 | |
|     int endband;
 | |
|     int codedbands;
 | |
| 
 | |
|     int anticollapse_bit;
 | |
| 
 | |
|     int intensitystereo;
 | |
|     int dualstereo;
 | |
|     enum CeltSpread spread;
 | |
| 
 | |
|     int remaining;
 | |
|     int remaining2;
 | |
|     int fine_bits    [CELT_MAX_BANDS];
 | |
|     int fine_priority[CELT_MAX_BANDS];
 | |
|     int pulses       [CELT_MAX_BANDS];
 | |
|     int tf_change    [CELT_MAX_BANDS];
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
 | |
|     DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
 | |
| };
 | |
| 
 | |
| static const uint16_t celt_model_tapset[] = { 4, 2, 3, 4 };
 | |
| 
 | |
| static const uint16_t celt_model_spread[] = { 32, 7, 9, 30, 32 };
 | |
| 
 | |
| static const uint16_t celt_model_alloc_trim[] = {
 | |
|     128,   2,   4,   9,  19,  41,  87, 109, 119, 124, 126, 128
 | |
| };
 | |
| 
 | |
| static const uint16_t celt_model_energy_small[] = { 4, 2, 3, 4 };
 | |
| 
 | |
| static const uint8_t celt_freq_bands[] = { /* in steps of 200Hz */
 | |
|     0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_freq_range[] = {
 | |
|     1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  2,  2,  4,  4,  4,  6,  6,  8, 12, 18, 22
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_log_freq_range[] = {
 | |
|     0,  0,  0,  0,  0,  0,  0,  0,  8,  8,  8,  8, 16, 16, 16, 21, 21, 24, 29, 34, 36
 | |
| };
 | |
| 
 | |
| static const int8_t celt_tf_select[4][2][2][2] = {
 | |
|     { { { 0, -1 }, { 0, -1 } }, { { 0, -1 }, { 0, -1 } } },
 | |
|     { { { 0, -1 }, { 0, -2 } }, { { 1,  0 }, { 1, -1 } } },
 | |
|     { { { 0, -2 }, { 0, -3 } }, { { 2,  0 }, { 1, -1 } } },
 | |
|     { { { 0, -2 }, { 0, -3 } }, { { 3,  0 }, { 1, -1 } } }
 | |
| };
 | |
| 
 | |
| static const float celt_mean_energy[] = {
 | |
|     6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f,
 | |
|     4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f,
 | |
|     4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f,
 | |
|     4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f,
 | |
|     3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f
 | |
| };
 | |
| 
 | |
| static const float celt_alpha_coef[] = {
 | |
|     29440.0f/32768.0f,    26112.0f/32768.0f,    21248.0f/32768.0f,    16384.0f/32768.0f
 | |
| };
 | |
| 
 | |
| static const float celt_beta_coef[] = { /* TODO: precompute 1 minus this if the code ends up neater */
 | |
|     30147.0f/32768.0f,    22282.0f/32768.0f,    12124.0f/32768.0f,     6554.0f/32768.0f
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_coarse_energy_dist[4][2][42] = {
 | |
|     {
 | |
|         {       // 120-sample inter
 | |
|              72, 127,  65, 129,  66, 128,  65, 128,  64, 128,  62, 128,  64, 128,
 | |
|              64, 128,  92,  78,  92,  79,  92,  78,  90,  79, 116,  41, 115,  40,
 | |
|             114,  40, 132,  26, 132,  26, 145,  17, 161,  12, 176,  10, 177,  11
 | |
|         }, {    // 120-sample intra
 | |
|              24, 179,  48, 138,  54, 135,  54, 132,  53, 134,  56, 133,  55, 132,
 | |
|              55, 132,  61, 114,  70,  96,  74,  88,  75,  88,  87,  74,  89,  66,
 | |
|              91,  67, 100,  59, 108,  50, 120,  40, 122,  37,  97,  43,  78,  50
 | |
|         }
 | |
|     }, {
 | |
|         {       // 240-sample inter
 | |
|              83,  78,  84,  81,  88,  75,  86,  74,  87,  71,  90,  73,  93,  74,
 | |
|              93,  74, 109,  40, 114,  36, 117,  34, 117,  34, 143,  17, 145,  18,
 | |
|             146,  19, 162,  12, 165,  10, 178,   7, 189,   6, 190,   8, 177,   9
 | |
|         }, {    // 240-sample intra
 | |
|              23, 178,  54, 115,  63, 102,  66,  98,  69,  99,  74,  89,  71,  91,
 | |
|              73,  91,  78,  89,  86,  80,  92,  66,  93,  64, 102,  59, 103,  60,
 | |
|             104,  60, 117,  52, 123,  44, 138,  35, 133,  31,  97,  38,  77,  45
 | |
|         }
 | |
|     }, {
 | |
|         {       // 480-sample inter
 | |
|              61,  90,  93,  60, 105,  42, 107,  41, 110,  45, 116,  38, 113,  38,
 | |
|             112,  38, 124,  26, 132,  27, 136,  19, 140,  20, 155,  14, 159,  16,
 | |
|             158,  18, 170,  13, 177,  10, 187,   8, 192,   6, 175,   9, 159,  10
 | |
|         }, {    // 480-sample intra
 | |
|              21, 178,  59, 110,  71,  86,  75,  85,  84,  83,  91,  66,  88,  73,
 | |
|              87,  72,  92,  75,  98,  72, 105,  58, 107,  54, 115,  52, 114,  55,
 | |
|             112,  56, 129,  51, 132,  40, 150,  33, 140,  29,  98,  35,  77,  42
 | |
|         }
 | |
|     }, {
 | |
|         {       // 960-sample inter
 | |
|              42, 121,  96,  66, 108,  43, 111,  40, 117,  44, 123,  32, 120,  36,
 | |
|             119,  33, 127,  33, 134,  34, 139,  21, 147,  23, 152,  20, 158,  25,
 | |
|             154,  26, 166,  21, 173,  16, 184,  13, 184,  10, 150,  13, 139,  15
 | |
|         }, {    // 960-sample intra
 | |
|              22, 178,  63, 114,  74,  82,  84,  83,  92,  82, 103,  62,  96,  72,
 | |
|              96,  67, 101,  73, 107,  72, 113,  55, 118,  52, 125,  52, 118,  52,
 | |
|             117,  55, 135,  49, 137,  39, 157,  32, 145,  29,  97,  33,  77,  40
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_static_alloc[11][21] = {  /* 1/32 bit/sample */
 | |
|     {   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0 },
 | |
|     {  90,  80,  75,  69,  63,  56,  49,  40,  34,  29,  20,  18,  10,   0,   0,   0,   0,   0,   0,   0,   0 },
 | |
|     { 110, 100,  90,  84,  78,  71,  65,  58,  51,  45,  39,  32,  26,  20,  12,   0,   0,   0,   0,   0,   0 },
 | |
|     { 118, 110, 103,  93,  86,  80,  75,  70,  65,  59,  53,  47,  40,  31,  23,  15,   4,   0,   0,   0,   0 },
 | |
|     { 126, 119, 112, 104,  95,  89,  83,  78,  72,  66,  60,  54,  47,  39,  32,  25,  17,  12,   1,   0,   0 },
 | |
|     { 134, 127, 120, 114, 103,  97,  91,  85,  78,  72,  66,  60,  54,  47,  41,  35,  29,  23,  16,  10,   1 },
 | |
|     { 144, 137, 130, 124, 113, 107, 101,  95,  88,  82,  76,  70,  64,  57,  51,  45,  39,  33,  26,  15,   1 },
 | |
|     { 152, 145, 138, 132, 123, 117, 111, 105,  98,  92,  86,  80,  74,  67,  61,  55,  49,  43,  36,  20,   1 },
 | |
|     { 162, 155, 148, 142, 133, 127, 121, 115, 108, 102,  96,  90,  84,  77,  71,  65,  59,  53,  46,  30,   1 },
 | |
|     { 172, 165, 158, 152, 143, 137, 131, 125, 118, 112, 106, 100,  94,  87,  81,  75,  69,  63,  56,  45,  20 },
 | |
|     { 200, 200, 200, 200, 200, 200, 200, 200, 198, 193, 188, 183, 178, 173, 168, 163, 158, 153, 148, 129, 104 }
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_static_caps[4][2][21] = {
 | |
|     {       // 120-sample
 | |
|         {224, 224, 224, 224, 224, 224, 224, 224, 160, 160,
 | |
|          160, 160, 185, 185, 185, 178, 178, 168, 134,  61,  37},
 | |
|         {224, 224, 224, 224, 224, 224, 224, 224, 240, 240,
 | |
|          240, 240, 207, 207, 207, 198, 198, 183, 144,  66,  40},
 | |
|     }, {    // 240-sample
 | |
|         {160, 160, 160, 160, 160, 160, 160, 160, 185, 185,
 | |
|          185, 185, 193, 193, 193, 183, 183, 172, 138,  64,  38},
 | |
|         {240, 240, 240, 240, 240, 240, 240, 240, 207, 207,
 | |
|          207, 207, 204, 204, 204, 193, 193, 180, 143,  66,  40},
 | |
|     }, {    // 480-sample
 | |
|         {185, 185, 185, 185, 185, 185, 185, 185, 193, 193,
 | |
|          193, 193, 193, 193, 193, 183, 183, 172, 138,  65,  39},
 | |
|         {207, 207, 207, 207, 207, 207, 207, 207, 204, 204,
 | |
|          204, 204, 201, 201, 201, 188, 188, 176, 141,  66,  40},
 | |
|     }, {    // 960-sample
 | |
|         {193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
 | |
|          193, 193, 194, 194, 194, 184, 184, 173, 139,  65,  39},
 | |
|         {204, 204, 204, 204, 204, 204, 204, 204, 201, 201,
 | |
|          201, 201, 198, 198, 198, 187, 187, 175, 140,  66,  40}
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_cache_bits[392] = {
 | |
|     40, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 40, 15, 23, 28,
 | |
|     31, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 47, 49, 50,
 | |
|     51, 52, 53, 54, 55, 55, 57, 58, 59, 60, 61, 62, 63, 63, 65,
 | |
|     66, 67, 68, 69, 70, 71, 71, 40, 20, 33, 41, 48, 53, 57, 61,
 | |
|     64, 66, 69, 71, 73, 75, 76, 78, 80, 82, 85, 87, 89, 91, 92,
 | |
|     94, 96, 98, 101, 103, 105, 107, 108, 110, 112, 114, 117, 119, 121, 123,
 | |
|     124, 126, 128, 40, 23, 39, 51, 60, 67, 73, 79, 83, 87, 91, 94,
 | |
|     97, 100, 102, 105, 107, 111, 115, 118, 121, 124, 126, 129, 131, 135, 139,
 | |
|     142, 145, 148, 150, 153, 155, 159, 163, 166, 169, 172, 174, 177, 179, 35,
 | |
|     28, 49, 65, 78, 89, 99, 107, 114, 120, 126, 132, 136, 141, 145, 149,
 | |
|     153, 159, 165, 171, 176, 180, 185, 189, 192, 199, 205, 211, 216, 220, 225,
 | |
|     229, 232, 239, 245, 251, 21, 33, 58, 79, 97, 112, 125, 137, 148, 157,
 | |
|     166, 174, 182, 189, 195, 201, 207, 217, 227, 235, 243, 251, 17, 35, 63,
 | |
|     86, 106, 123, 139, 152, 165, 177, 187, 197, 206, 214, 222, 230, 237, 250,
 | |
|     25, 31, 55, 75, 91, 105, 117, 128, 138, 146, 154, 161, 168, 174, 180,
 | |
|     185, 190, 200, 208, 215, 222, 229, 235, 240, 245, 255, 16, 36, 65, 89,
 | |
|     110, 128, 144, 159, 173, 185, 196, 207, 217, 226, 234, 242, 250, 11, 41,
 | |
|     74, 103, 128, 151, 172, 191, 209, 225, 241, 255, 9, 43, 79, 110, 138,
 | |
|     163, 186, 207, 227, 246, 12, 39, 71, 99, 123, 144, 164, 182, 198, 214,
 | |
|     228, 241, 253, 9, 44, 81, 113, 142, 168, 192, 214, 235, 255, 7, 49,
 | |
|     90, 127, 160, 191, 220, 247, 6, 51, 95, 134, 170, 203, 234, 7, 47,
 | |
|     87, 123, 155, 184, 212, 237, 6, 52, 97, 137, 174, 208, 240, 5, 57,
 | |
|     106, 151, 192, 231, 5, 59, 111, 158, 202, 243, 5, 55, 103, 147, 187,
 | |
|     224, 5, 60, 113, 161, 206, 248, 4, 65, 122, 175, 224, 4, 67, 127,
 | |
|     182, 234
 | |
| };
 | |
| 
 | |
| static const int16_t celt_cache_index[105] = {
 | |
|     -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 41, 41, 41,
 | |
|     82, 82, 123, 164, 200, 222, 0, 0, 0, 0, 0, 0, 0, 0, 41,
 | |
|     41, 41, 41, 123, 123, 123, 164, 164, 240, 266, 283, 295, 41, 41, 41,
 | |
|     41, 41, 41, 41, 41, 123, 123, 123, 123, 240, 240, 240, 266, 266, 305,
 | |
|     318, 328, 336, 123, 123, 123, 123, 123, 123, 123, 123, 240, 240, 240, 240,
 | |
|     305, 305, 305, 318, 318, 343, 351, 358, 364, 240, 240, 240, 240, 240, 240,
 | |
|     240, 240, 305, 305, 305, 305, 343, 343, 343, 351, 351, 370, 376, 382, 387,
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_log2_frac[] = {
 | |
|     0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_bit_interleave[] = {
 | |
|     0, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_bit_deinterleave[] = {
 | |
|     0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F,
 | |
|     0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF
 | |
| };
 | |
| 
 | |
| static const uint8_t celt_hadamard_ordery[] = {
 | |
|     1,   0,
 | |
|     3,   0,  2,  1,
 | |
|     7,   0,  4,  3,  6,  1,  5,  2,
 | |
|     15,  0,  8,  7, 12,  3, 11,  4, 14,  1,  9,  6, 13,  2, 10,  5
 | |
| };
 | |
| 
 | |
| static const uint16_t celt_qn_exp2[] = {
 | |
|     16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048
 | |
| };
 | |
| 
 | |
| static const uint32_t celt_pvq_u[1272] = {
 | |
|     /* N = 0, K = 0...176 */
 | |
|     1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     /* N = 1, K = 1...176 */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|     /* N = 2, K = 2...176 */
 | |
|     3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
 | |
|     43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
 | |
|     81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
 | |
|     115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
 | |
|     145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
 | |
|     175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
 | |
|     205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
 | |
|     235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
 | |
|     265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
 | |
|     295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
 | |
|     325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
 | |
|     /* N = 3, K = 3...176 */
 | |
|     13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
 | |
|     685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
 | |
|     1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
 | |
|     3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
 | |
|     6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
 | |
|     9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
 | |
|     13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
 | |
|     17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
 | |
|     21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
 | |
|     26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
 | |
|     31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
 | |
|     37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
 | |
|     43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
 | |
|     50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
 | |
|     57461, 58141, 58825, 59513, 60205, 60901, 61601,
 | |
|     /* N = 4, K = 4...176 */
 | |
|     63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
 | |
|     7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
 | |
|     30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
 | |
|     82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
 | |
|     161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
 | |
|     267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
 | |
|     410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
 | |
|     597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
 | |
|     833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
 | |
|     1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
 | |
|     1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
 | |
|     1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
 | |
|     2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
 | |
|     2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
 | |
|     3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
 | |
|     3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
 | |
|     4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
 | |
|     5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
 | |
|     6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
 | |
|     7085049, 7207551,
 | |
|     /* N = 5, K = 5...176 */
 | |
|     321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
 | |
|     50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
 | |
|     330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
 | |
|     1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
 | |
|     2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
 | |
|     4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
 | |
|     8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
 | |
|     13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
 | |
|     20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
 | |
|     29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
 | |
|     40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
 | |
|     55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
 | |
|     73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
 | |
|     95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
 | |
|     122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
 | |
|     155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
 | |
|     193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
 | |
|     238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
 | |
|     290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
 | |
|     351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
 | |
|     420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
 | |
|     500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
 | |
|     590359041, 604167209, 618216201, 632508801,
 | |
|     /* N = 6, K = 6...96 (technically V(109,5) fits in 32 bits, but that can't be
 | |
|      achieved by splitting an Opus band) */
 | |
|     1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
 | |
|     335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
 | |
|     2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
 | |
|     11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
 | |
|     29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
 | |
|     64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
 | |
|     128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
 | |
|     235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
 | |
|     402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
 | |
|     655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
 | |
|     1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
 | |
|     1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
 | |
|     2011371957, 2120032959,
 | |
|     /* N = 7, K = 7...54 (technically V(60,6) fits in 32 bits, but that can't be
 | |
|      achieved by splitting an Opus band) */
 | |
|     8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
 | |
|     1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
 | |
|     19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
 | |
|     88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
 | |
|     292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
 | |
|     793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
 | |
|     1667010073, 1870535785, 2094367717,
 | |
|     /* N = 8, K = 8...37 (technically V(40,7) fits in 32 bits, but that can't be
 | |
|      achieved by splitting an Opus band) */
 | |
|     48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
 | |
|     9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
 | |
|     104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
 | |
|     638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
 | |
|     2229491905,
 | |
|     /* N = 9, K = 9...28 (technically V(29,8) fits in 32 bits, but that can't be
 | |
|      achieved by splitting an Opus band) */
 | |
|     265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
 | |
|     39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
 | |
|     628496897, 872893441, 1196924561, 1621925137, 2173806145,
 | |
|     /* N = 10, K = 10...24 */
 | |
|     1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
 | |
|     254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629,
 | |
|     3375210671,
 | |
|     /* N = 11, K = 11...19 (technically V(20,10) fits in 32 bits, but that can't be
 | |
|      achieved by splitting an Opus band) */
 | |
|     8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
 | |
|     948062325, 1616336765,
 | |
|     /* N = 12, K = 12...18 */
 | |
|     45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
 | |
|     3248227095,
 | |
|     /* N = 13, K = 13...16 */
 | |
|     251595969, 579168825, 1267854873, 2653649025,
 | |
|     /* N = 14, K = 14 */
 | |
|     1409933619
 | |
| };
 | |
| 
 | |
| DECLARE_ALIGNED(32, static const float, celt_window)[120] = {
 | |
|     6.7286966e-05f, 0.00060551348f, 0.0016815970f, 0.0032947962f, 0.0054439943f,
 | |
|     0.0081276923f, 0.011344001f, 0.015090633f, 0.019364886f, 0.024163635f,
 | |
|     0.029483315f, 0.035319905f, 0.041668911f, 0.048525347f, 0.055883718f,
 | |
|     0.063737999f, 0.072081616f, 0.080907428f, 0.090207705f, 0.099974111f,
 | |
|     0.11019769f, 0.12086883f, 0.13197729f, 0.14351214f, 0.15546177f,
 | |
|     0.16781389f, 0.18055550f, 0.19367290f, 0.20715171f, 0.22097682f,
 | |
|     0.23513243f, 0.24960208f, 0.26436860f, 0.27941419f, 0.29472040f,
 | |
|     0.31026818f, 0.32603788f, 0.34200931f, 0.35816177f, 0.37447407f,
 | |
|     0.39092462f, 0.40749142f, 0.42415215f, 0.44088423f, 0.45766484f,
 | |
|     0.47447104f, 0.49127978f, 0.50806798f, 0.52481261f, 0.54149077f,
 | |
|     0.55807973f, 0.57455701f, 0.59090049f, 0.60708841f, 0.62309951f,
 | |
|     0.63891306f, 0.65450896f, 0.66986776f, 0.68497077f, 0.69980010f,
 | |
|     0.71433873f, 0.72857055f, 0.74248043f, 0.75605424f, 0.76927895f,
 | |
|     0.78214257f, 0.79463430f, 0.80674445f, 0.81846456f, 0.82978733f,
 | |
|     0.84070669f, 0.85121779f, 0.86131698f, 0.87100183f, 0.88027111f,
 | |
|     0.88912479f, 0.89756398f, 0.90559094f, 0.91320904f, 0.92042270f,
 | |
|     0.92723738f, 0.93365955f, 0.93969656f, 0.94535671f, 0.95064907f,
 | |
|     0.95558353f, 0.96017067f, 0.96442171f, 0.96834849f, 0.97196334f,
 | |
|     0.97527906f, 0.97830883f, 0.98106616f, 0.98356480f, 0.98581869f,
 | |
|     0.98784191f, 0.98964856f, 0.99125274f, 0.99266849f, 0.99390969f,
 | |
|     0.99499004f, 0.99592297f, 0.99672162f, 0.99739874f, 0.99796667f,
 | |
|     0.99843728f, 0.99882195f, 0.99913147f, 0.99937606f, 0.99956527f,
 | |
|     0.99970802f, 0.99981248f, 0.99988613f, 0.99993565f, 0.99996697f,
 | |
|     0.99998518f, 0.99999457f, 0.99999859f, 0.99999982f, 1.0000000f,
 | |
| };
 | |
| 
 | |
| /* square of the window, used for the postfilter */
 | |
| const float ff_celt_window2[120] = {
 | |
|     4.5275357e-09f, 3.66647e-07f, 2.82777e-06f, 1.08557e-05f, 2.96371e-05f, 6.60594e-05f,
 | |
|     0.000128686f, 0.000227727f, 0.000374999f, 0.000583881f, 0.000869266f, 0.0012475f,
 | |
|     0.0017363f, 0.00235471f, 0.00312299f, 0.00406253f, 0.00519576f, 0.00654601f,
 | |
|     0.00813743f, 0.00999482f, 0.0121435f, 0.0146093f, 0.017418f, 0.0205957f, 0.0241684f,
 | |
|     0.0281615f, 0.0326003f, 0.0375092f, 0.0429118f, 0.0488308f, 0.0552873f, 0.0623012f,
 | |
|     0.0698908f, 0.0780723f, 0.0868601f, 0.0962664f, 0.106301f, 0.11697f, 0.12828f,
 | |
|     0.140231f, 0.152822f, 0.166049f, 0.179905f, 0.194379f, 0.209457f, 0.225123f, 0.241356f,
 | |
|     0.258133f, 0.275428f, 0.293212f, 0.311453f, 0.330116f, 0.349163f, 0.368556f, 0.388253f,
 | |
|     0.40821f, 0.428382f, 0.448723f, 0.469185f, 0.48972f, 0.51028f, 0.530815f, 0.551277f,
 | |
|     0.571618f, 0.59179f, 0.611747f, 0.631444f, 0.650837f, 0.669884f, 0.688547f, 0.706788f,
 | |
|     0.724572f, 0.741867f, 0.758644f, 0.774877f, 0.790543f, 0.805621f, 0.820095f, 0.833951f,
 | |
|     0.847178f, 0.859769f, 0.87172f, 0.88303f, 0.893699f, 0.903734f, 0.91314f, 0.921928f,
 | |
|     0.930109f, 0.937699f, 0.944713f, 0.951169f, 0.957088f, 0.962491f, 0.9674f, 0.971838f,
 | |
|     0.975832f, 0.979404f, 0.982582f, 0.985391f, 0.987857f, 0.990005f, 0.991863f, 0.993454f,
 | |
|     0.994804f, 0.995937f, 0.996877f, 0.997645f, 0.998264f, 0.998753f, 0.999131f, 0.999416f,
 | |
|     0.999625f, 0.999772f, 0.999871f, 0.999934f, 0.99997f, 0.999989f, 0.999997f, 0.99999964f, 1.0f,
 | |
| };
 | |
| 
 | |
| static const uint32_t * const celt_pvq_u_row[15] = {
 | |
|     celt_pvq_u +    0, celt_pvq_u +  176, celt_pvq_u +  351,
 | |
|     celt_pvq_u +  525, celt_pvq_u +  698, celt_pvq_u +  870,
 | |
|     celt_pvq_u + 1041, celt_pvq_u + 1131, celt_pvq_u + 1178,
 | |
|     celt_pvq_u + 1207, celt_pvq_u + 1226, celt_pvq_u + 1240,
 | |
|     celt_pvq_u + 1248, celt_pvq_u + 1254, celt_pvq_u + 1257
 | |
| };
 | |
| 
 | |
| static inline int16_t celt_cos(int16_t x)
 | |
| {
 | |
|     x = (MUL16(x, x) + 4096) >> 13;
 | |
|     x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
 | |
|     return 1+x;
 | |
| }
 | |
| 
 | |
| static inline int celt_log2tan(int isin, int icos)
 | |
| {
 | |
|     int lc, ls;
 | |
|     lc = opus_ilog(icos);
 | |
|     ls = opus_ilog(isin);
 | |
|     icos <<= 15 - lc;
 | |
|     isin <<= 15 - ls;
 | |
|     return (ls << 11) - (lc << 11) +
 | |
|            ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
 | |
|            ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
 | |
| }
 | |
| 
 | |
| static inline uint32_t celt_rng(CeltContext *s)
 | |
| {
 | |
|     s->seed = 1664525 * s->seed + 1013904223;
 | |
|     return s->seed;
 | |
| }
 | |
| 
 | |
| static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i, j;
 | |
|     float prev[2] = {0};
 | |
|     float alpha, beta;
 | |
|     const uint8_t *model;
 | |
| 
 | |
|     /* use the 2D z-transform to apply prediction in both */
 | |
|     /* the time domain (alpha) and the frequency domain (beta) */
 | |
| 
 | |
|     if (opus_rc_tell(rc)+3 <= s->framebits && opus_rc_p2model(rc, 3)) {
 | |
|         /* intra frame */
 | |
|         alpha = 0;
 | |
|         beta  = 1.0f - 4915.0f/32768.0f;
 | |
|         model = celt_coarse_energy_dist[s->duration][1];
 | |
|     } else {
 | |
|         alpha = celt_alpha_coef[s->duration];
 | |
|         beta  = 1.0f - celt_beta_coef[s->duration];
 | |
|         model = celt_coarse_energy_dist[s->duration][0];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++) {
 | |
|         for (j = 0; j < s->coded_channels; j++) {
 | |
|             CeltFrame *frame = &s->frame[j];
 | |
|             float value;
 | |
|             int available;
 | |
| 
 | |
|             if (i < s->startband || i >= s->endband) {
 | |
|                 frame->energy[i] = 0.0;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             available = s->framebits - opus_rc_tell(rc);
 | |
|             if (available >= 15) {
 | |
|                 /* decode using a Laplace distribution */
 | |
|                 int k = FFMIN(i, 20) << 1;
 | |
|                 value = opus_rc_laplace(rc, model[k] << 7, model[k+1] << 6);
 | |
|             } else if (available >= 2) {
 | |
|                 int x = opus_rc_getsymbol(rc, celt_model_energy_small);
 | |
|                 value = (x>>1) ^ -(x&1);
 | |
|             } else if (available >= 1) {
 | |
|                 value = -(float)opus_rc_p2model(rc, 1);
 | |
|             } else value = -1;
 | |
| 
 | |
|             frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
 | |
|             prev[j] += beta * value;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
 | |
| {
 | |
|     int i;
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         int j;
 | |
|         if (!s->fine_bits[i])
 | |
|             continue;
 | |
| 
 | |
|         for (j = 0; j < s->coded_channels; j++) {
 | |
|             CeltFrame *frame = &s->frame[j];
 | |
|             int q2;
 | |
|             float offset;
 | |
|             q2 = opus_getrawbits(rc, s->fine_bits[i]);
 | |
|             offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
 | |
|             frame->energy[i] += offset;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
 | |
|                                      int bits_left)
 | |
| {
 | |
|     int priority, i, j;
 | |
| 
 | |
|     for (priority = 0; priority < 2; priority++) {
 | |
|         for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
 | |
|             if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
 | |
|                 continue;
 | |
| 
 | |
|             for (j = 0; j < s->coded_channels; j++) {
 | |
|                 int q2;
 | |
|                 float offset;
 | |
|                 q2 = opus_getrawbits(rc, 1);
 | |
|                 offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
 | |
|                 s->frame[j].energy[i] += offset;
 | |
|                 bits_left--;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
 | |
|                                    int transient)
 | |
| {
 | |
|     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
 | |
|     int consumed, bits = transient ? 2 : 4;
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
|     tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         if (consumed+bits+tf_select_bit <= s->framebits) {
 | |
|             diff ^= opus_rc_p2model(rc, bits);
 | |
|             consumed = opus_rc_tell(rc);
 | |
|             tf_changed |= diff;
 | |
|         }
 | |
|         s->tf_change[i] = diff;
 | |
|         bits = transient ? 4 : 5;
 | |
|     }
 | |
| 
 | |
|     if (tf_select_bit && celt_tf_select[s->duration][transient][0][tf_changed] !=
 | |
|                          celt_tf_select[s->duration][transient][1][tf_changed])
 | |
|         tf_select = opus_rc_p2model(rc, 1);
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         s->tf_change[i] = celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
 | |
| {
 | |
|     // approx. maximum bit allocation for each band before boost/trim
 | |
|     int cap[CELT_MAX_BANDS];
 | |
|     int boost[CELT_MAX_BANDS];
 | |
|     int threshold[CELT_MAX_BANDS];
 | |
|     int bits1[CELT_MAX_BANDS];
 | |
|     int bits2[CELT_MAX_BANDS];
 | |
|     int trim_offset[CELT_MAX_BANDS];
 | |
| 
 | |
|     int skip_startband = s->startband;
 | |
|     int dynalloc       = 6;
 | |
|     int alloctrim      = 5;
 | |
|     int extrabits      = 0;
 | |
| 
 | |
|     int skip_bit            = 0;
 | |
|     int intensitystereo_bit = 0;
 | |
|     int dualstereo_bit      = 0;
 | |
| 
 | |
|     int remaining, bandbits;
 | |
|     int low, high, total, done;
 | |
|     int totalbits;
 | |
|     int consumed;
 | |
|     int i, j;
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
| 
 | |
|     /* obtain spread flag */
 | |
|     s->spread = CELT_SPREAD_NORMAL;
 | |
|     if (consumed + 4 <= s->framebits)
 | |
|         s->spread = opus_rc_getsymbol(rc, celt_model_spread);
 | |
| 
 | |
|     /* generate static allocation caps */
 | |
|     for (i = 0; i < CELT_MAX_BANDS; i++) {
 | |
|         cap[i] = (celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
 | |
|                  * celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
 | |
|     }
 | |
| 
 | |
|     /* obtain band boost */
 | |
|     totalbits = s->framebits << 3; // convert to 1/8 bits
 | |
|     consumed = opus_rc_tell_frac(rc);
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         int quanta, band_dynalloc;
 | |
| 
 | |
|         boost[i] = 0;
 | |
| 
 | |
|         quanta = celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
 | |
|         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | |
|         band_dynalloc = dynalloc;
 | |
|         while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
 | |
|             int add = opus_rc_p2model(rc, band_dynalloc);
 | |
|             consumed = opus_rc_tell_frac(rc);
 | |
|             if (!add)
 | |
|                 break;
 | |
| 
 | |
|             boost[i]     += quanta;
 | |
|             totalbits    -= quanta;
 | |
|             band_dynalloc = 1;
 | |
|         }
 | |
|         /* dynalloc is more likely to occur if it's already been used for earlier bands */
 | |
|         if (boost[i])
 | |
|             dynalloc = FFMAX(2, dynalloc - 1);
 | |
|     }
 | |
| 
 | |
|     /* obtain allocation trim */
 | |
|     if (consumed + (6 << 3) <= totalbits)
 | |
|         alloctrim = opus_rc_getsymbol(rc, celt_model_alloc_trim);
 | |
| 
 | |
|     /* anti-collapse bit reservation */
 | |
|     totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | |
|     s->anticollapse_bit = 0;
 | |
|     if (s->blocks > 1 && s->duration >= 2 &&
 | |
|         totalbits >= ((s->duration + 2) << 3))
 | |
|         s->anticollapse_bit = 1 << 3;
 | |
|     totalbits -= s->anticollapse_bit;
 | |
| 
 | |
|     /* band skip bit reservation */
 | |
|     if (totalbits >= 1 << 3)
 | |
|         skip_bit = 1 << 3;
 | |
|     totalbits -= skip_bit;
 | |
| 
 | |
|     /* intensity/dual stereo bit reservation */
 | |
|     if (s->coded_channels == 2) {
 | |
|         intensitystereo_bit = celt_log2_frac[s->endband - s->startband];
 | |
|         if (intensitystereo_bit <= totalbits) {
 | |
|             totalbits -= intensitystereo_bit;
 | |
|             if (totalbits >= 1 << 3) {
 | |
|                 dualstereo_bit = 1 << 3;
 | |
|                 totalbits -= 1 << 3;
 | |
|             }
 | |
|         } else
 | |
|             intensitystereo_bit = 0;
 | |
|     }
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         int trim     = alloctrim - 5 - s->duration;
 | |
|         int band     = celt_freq_range[i] * (s->endband - i - 1);
 | |
|         int duration = s->duration + 3;
 | |
|         int scale    = duration + s->coded_channels - 1;
 | |
| 
 | |
|         /* PVQ minimum allocation threshold, below this value the band is
 | |
|          * skipped */
 | |
|         threshold[i] = FFMAX(3 * celt_freq_range[i] << duration >> 4,
 | |
|                              s->coded_channels << 3);
 | |
| 
 | |
|         trim_offset[i] = trim * (band << scale) >> 6;
 | |
| 
 | |
|         if (celt_freq_range[i] << s->duration == 1)
 | |
|             trim_offset[i] -= s->coded_channels << 3;
 | |
|     }
 | |
| 
 | |
|     /* bisection */
 | |
|     low  = 1;
 | |
|     high = CELT_VECTORS - 1;
 | |
|     while (low <= high) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (i = s->endband - 1; i >= s->startband; i--) {
 | |
|             bandbits = celt_freq_range[i] * celt_static_alloc[center][i]
 | |
|                        << (s->coded_channels - 1) << s->duration >> 2;
 | |
| 
 | |
|             if (bandbits)
 | |
|                 bandbits = FFMAX(0, bandbits + trim_offset[i]);
 | |
|             bandbits += boost[i];
 | |
| 
 | |
|             if (bandbits >= threshold[i] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, cap[i]);
 | |
|             } else if (bandbits >= s->coded_channels << 3)
 | |
|                 total += s->coded_channels << 3;
 | |
|         }
 | |
| 
 | |
|         if (total > totalbits)
 | |
|             high = center - 1;
 | |
|         else
 | |
|             low = center + 1;
 | |
|     }
 | |
|     high = low--;
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         bits1[i] = celt_freq_range[i] * celt_static_alloc[low][i]
 | |
|                    << (s->coded_channels - 1) << s->duration >> 2;
 | |
|         bits2[i] = high >= CELT_VECTORS ? cap[i] :
 | |
|                    celt_freq_range[i] * celt_static_alloc[high][i]
 | |
|                    << (s->coded_channels - 1) << s->duration >> 2;
 | |
| 
 | |
|         if (bits1[i])
 | |
|             bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
 | |
|         if (bits2[i])
 | |
|             bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
 | |
|         if (low)
 | |
|             bits1[i] += boost[i];
 | |
|         bits2[i] += boost[i];
 | |
| 
 | |
|         if (boost[i])
 | |
|             skip_startband = i;
 | |
|         bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
 | |
|     }
 | |
| 
 | |
|     /* bisection */
 | |
|     low  = 0;
 | |
|     high = 1 << CELT_ALLOC_STEPS;
 | |
|     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | |
|         int center = (low + high) >> 1;
 | |
|         done = total = 0;
 | |
| 
 | |
|         for (j = s->endband - 1; j >= s->startband; j--) {
 | |
|             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|             if (bandbits >= threshold[j] || done) {
 | |
|                 done = 1;
 | |
|                 total += FFMIN(bandbits, cap[j]);
 | |
|             } else if (bandbits >= s->coded_channels << 3)
 | |
|                 total += s->coded_channels << 3;
 | |
|         }
 | |
|         if (total > totalbits)
 | |
|             high = center;
 | |
|         else
 | |
|             low = center;
 | |
|     }
 | |
| 
 | |
|     done = total = 0;
 | |
|     for (i = s->endband - 1; i >= s->startband; i--) {
 | |
|         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | |
| 
 | |
|         if (bandbits >= threshold[i] || done)
 | |
|             done = 1;
 | |
|         else
 | |
|             bandbits = (bandbits >= s->coded_channels << 3) ?
 | |
|                        s->coded_channels << 3 : 0;
 | |
| 
 | |
|         bandbits     = FFMIN(bandbits, cap[i]);
 | |
|         s->pulses[i] = bandbits;
 | |
|         total      += bandbits;
 | |
|     }
 | |
| 
 | |
|     /* band skipping */
 | |
|     for (s->codedbands = s->endband; ; s->codedbands--) {
 | |
|         int allocation;
 | |
|         j = s->codedbands - 1;
 | |
| 
 | |
|         if (j == skip_startband) {
 | |
|             /* all remaining bands are not skipped */
 | |
|             totalbits += skip_bit;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* determine the number of bits available for coding "do not skip" markers */
 | |
|         remaining   = totalbits - total;
 | |
|         bandbits    = remaining / (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
 | |
|         remaining  -= bandbits  * (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
 | |
|         allocation  = s->pulses[j] + bandbits * celt_freq_range[j]
 | |
|                       + FFMAX(0, remaining - (celt_freq_bands[j] - celt_freq_bands[s->startband]));
 | |
| 
 | |
|         /* a "do not skip" marker is only coded if the allocation is
 | |
|            above the chosen threshold */
 | |
|         if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
 | |
|             if (opus_rc_p2model(rc, 1))
 | |
|                 break;
 | |
| 
 | |
|             total      += 1 << 3;
 | |
|             allocation -= 1 << 3;
 | |
|         }
 | |
| 
 | |
|         /* the band is skipped, so reclaim its bits */
 | |
|         total -= s->pulses[j];
 | |
|         if (intensitystereo_bit) {
 | |
|             total -= intensitystereo_bit;
 | |
|             intensitystereo_bit = celt_log2_frac[j - s->startband];
 | |
|             total += intensitystereo_bit;
 | |
|         }
 | |
| 
 | |
|         total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
 | |
|                               s->coded_channels << 3 : 0;
 | |
|     }
 | |
| 
 | |
|     /* obtain stereo flags */
 | |
|     s->intensitystereo = 0;
 | |
|     s->dualstereo      = 0;
 | |
|     if (intensitystereo_bit)
 | |
|         s->intensitystereo = s->startband +
 | |
|                           opus_rc_unimodel(rc, s->codedbands + 1 - s->startband);
 | |
|     if (s->intensitystereo <= s->startband)
 | |
|         totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
 | |
|     else if (dualstereo_bit)
 | |
|         s->dualstereo = opus_rc_p2model(rc, 1);
 | |
| 
 | |
|     /* supply the remaining bits in this frame to lower bands */
 | |
|     remaining = totalbits - total;
 | |
|     bandbits  = remaining / (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
 | |
|     remaining -= bandbits * (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
 | |
|     for (i = s->startband; i < s->codedbands; i++) {
 | |
|         int bits = FFMIN(remaining, celt_freq_range[i]);
 | |
| 
 | |
|         s->pulses[i] += bits + bandbits * celt_freq_range[i];
 | |
|         remaining    -= bits;
 | |
|     }
 | |
| 
 | |
|     for (i = s->startband; i < s->codedbands; i++) {
 | |
|         int N = celt_freq_range[i] << s->duration;
 | |
|         int prev_extra = extrabits;
 | |
|         s->pulses[i] += extrabits;
 | |
| 
 | |
|         if (N > 1) {
 | |
|             int dof;        // degrees of freedom
 | |
|             int temp;       // dof * channels * log(dof)
 | |
|             int offset;     // fine energy quantization offset, i.e.
 | |
|                             // extra bits assigned over the standard
 | |
|                             // totalbits/dof
 | |
|             int fine_bits, max_bits;
 | |
| 
 | |
|             extrabits = FFMAX(0, s->pulses[i] - cap[i]);
 | |
|             s->pulses[i] -= extrabits;
 | |
| 
 | |
|             /* intensity stereo makes use of an extra degree of freedom */
 | |
|             dof = N * s->coded_channels
 | |
|                   + (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
 | |
|             temp = dof * (celt_log_freq_range[i] + (s->duration<<3));
 | |
|             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | |
|             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | |
|                 offset += dof<<1;
 | |
| 
 | |
|             /* grant an additional bias for the first and second pulses */
 | |
|             if (s->pulses[i] + offset < 2 * (dof << 3))
 | |
|                 offset += temp >> 2;
 | |
|             else if (s->pulses[i] + offset < 3 * (dof << 3))
 | |
|                 offset += temp >> 3;
 | |
| 
 | |
|             fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | |
|             max_bits  = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
 | |
|                               CELT_MAX_FINE_BITS);
 | |
| 
 | |
|             max_bits  = FFMAX(max_bits, 0);
 | |
| 
 | |
|             s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | |
| 
 | |
|             /* if fine_bits was rounded down or capped,
 | |
|                give priority for the final fine energy pass */
 | |
|             s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
 | |
| 
 | |
|             /* the remaining bits are assigned to PVQ */
 | |
|             s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
 | |
|         } else {
 | |
|             /* all bits go to fine energy except for the sign bit */
 | |
|             extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
 | |
|             s->pulses[i] -= extrabits;
 | |
|             s->fine_bits[i] = 0;
 | |
|             s->fine_priority[i] = 1;
 | |
|         }
 | |
| 
 | |
|         /* hand back a limited number of extra fine energy bits to this band */
 | |
|         if (extrabits > 0) {
 | |
|             int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
 | |
|                                   CELT_MAX_FINE_BITS - s->fine_bits[i]);
 | |
|             s->fine_bits[i] += fineextra;
 | |
| 
 | |
|             fineextra <<= s->coded_channels + 2;
 | |
|             s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | |
|             extrabits -= fineextra;
 | |
|         }
 | |
|     }
 | |
|     s->remaining = extrabits;
 | |
| 
 | |
|     /* skipped bands dedicate all of their bits for fine energy */
 | |
|     for (; i < s->endband; i++) {
 | |
|         s->fine_bits[i]     = s->pulses[i] >> (s->coded_channels - 1) >> 3;
 | |
|         s->pulses[i]        = 0;
 | |
|         s->fine_priority[i] = s->fine_bits[i] < 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int celt_bits2pulses(const uint8_t *cache, int bits)
 | |
| {
 | |
|     // TODO: Find the size of cache and make it into an array in the parameters list
 | |
|     int i, low = 0, high;
 | |
| 
 | |
|     high = cache[0];
 | |
|     bits--;
 | |
| 
 | |
|     for (i = 0; i < 6; i++) {
 | |
|         int center = (low + high + 1) >> 1;
 | |
|         if (cache[center] >= bits)
 | |
|             high = center;
 | |
|         else
 | |
|             low = center;
 | |
|     }
 | |
| 
 | |
|     return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
 | |
| }
 | |
| 
 | |
| static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
 | |
| {
 | |
|     // TODO: Find the size of cache and make it into an array in the parameters list
 | |
|    return (pulses == 0) ? 0 : cache[pulses] + 1;
 | |
| }
 | |
| 
 | |
| static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
 | |
|                                            int N, float g)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < N; i++)
 | |
|         X[i] = g * iy[i];
 | |
| }
 | |
| 
 | |
| static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
 | |
|                                float c, float s)
 | |
| {
 | |
|     float *Xptr;
 | |
|     int i;
 | |
| 
 | |
|     Xptr = X;
 | |
|     for (i = 0; i < len - stride; i++) {
 | |
|         float x1, x2;
 | |
|         x1           = Xptr[0];
 | |
|         x2           = Xptr[stride];
 | |
|         Xptr[stride] = c * x2 + s * x1;
 | |
|         *Xptr++      = c * x1 - s * x2;
 | |
|     }
 | |
| 
 | |
|     Xptr = &X[len - 2 * stride - 1];
 | |
|     for (i = len - 2 * stride - 1; i >= 0; i--) {
 | |
|         float x1, x2;
 | |
|         x1           = Xptr[0];
 | |
|         x2           = Xptr[stride];
 | |
|         Xptr[stride] = c * x2 + s * x1;
 | |
|         *Xptr--      = c * x1 - s * x2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void celt_exp_rotation(float *X, unsigned int len,
 | |
|                                      unsigned int stride, unsigned int K,
 | |
|                                      enum CeltSpread spread)
 | |
| {
 | |
|     unsigned int stride2 = 0;
 | |
|     float c, s;
 | |
|     float gain, theta;
 | |
|     int i;
 | |
| 
 | |
|     if (2*K >= len || spread == CELT_SPREAD_NONE)
 | |
|         return;
 | |
| 
 | |
|     gain = (float)len / (len + (20 - 5*spread) * K);
 | |
|     theta = M_PI * gain * gain / 4;
 | |
| 
 | |
|     c = cos(theta);
 | |
|     s = sin(theta);
 | |
| 
 | |
|     if (len >= stride << 3) {
 | |
|         stride2 = 1;
 | |
|         /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
 | |
|         It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
 | |
|         while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
 | |
|             stride2++;
 | |
|     }
 | |
| 
 | |
|     /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
 | |
|     extract_collapse_mask().*/
 | |
|     len /= stride;
 | |
|     for (i = 0; i < stride; i++) {
 | |
|         if (stride2)
 | |
|             celt_exp_rotation1(X + i * len, len, stride2, s, c);
 | |
|         celt_exp_rotation1(X + i * len, len, 1, c, s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline unsigned int celt_extract_collapse_mask(const int *iy,
 | |
|                                                       unsigned int N,
 | |
|                                                       unsigned int B)
 | |
| {
 | |
|     unsigned int collapse_mask;
 | |
|     int N0;
 | |
|     int i, j;
 | |
| 
 | |
|     if (B <= 1)
 | |
|         return 1;
 | |
| 
 | |
|     /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
 | |
|     exp_rotation().*/
 | |
|     N0 = N/B;
 | |
|     collapse_mask = 0;
 | |
|     for (i = 0; i < B; i++)
 | |
|         for (j = 0; j < N0; j++)
 | |
|             collapse_mask |= (iy[i*N0+j]!=0)<<i;
 | |
|     return collapse_mask;
 | |
| }
 | |
| 
 | |
| static inline void celt_renormalize_vector(float *X, int N, float gain)
 | |
| {
 | |
|     int i;
 | |
|     float g = 1e-15f;
 | |
|     for (i = 0; i < N; i++)
 | |
|         g += X[i] * X[i];
 | |
|     g = gain / sqrtf(g);
 | |
| 
 | |
|     for (i = 0; i < N; i++)
 | |
|         X[i] *= g;
 | |
| }
 | |
| 
 | |
| static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
 | |
| {
 | |
|     int i;
 | |
|     float xp = 0, side = 0;
 | |
|     float E[2];
 | |
|     float mid2;
 | |
|     float t, gain[2];
 | |
| 
 | |
|     /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
 | |
|     for (i = 0; i < N; i++) {
 | |
|         xp   += X[i] * Y[i];
 | |
|         side += Y[i] * Y[i];
 | |
|     }
 | |
| 
 | |
|     /* Compensating for the mid normalization */
 | |
|     xp *= mid;
 | |
|     mid2 = mid;
 | |
|     E[0] = mid2 * mid2 + side - 2 * xp;
 | |
|     E[1] = mid2 * mid2 + side + 2 * xp;
 | |
|     if (E[0] < 6e-4f || E[1] < 6e-4f) {
 | |
|         for (i = 0; i < N; i++)
 | |
|             Y[i] = X[i];
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     t = E[0];
 | |
|     gain[0] = 1.0f / sqrtf(t);
 | |
|     t = E[1];
 | |
|     gain[1] = 1.0f / sqrtf(t);
 | |
| 
 | |
|     for (i = 0; i < N; i++) {
 | |
|         float value[2];
 | |
|         /* Apply mid scaling (side is already scaled) */
 | |
|         value[0] = mid * X[i];
 | |
|         value[1] = Y[i];
 | |
|         X[i] = gain[0] * (value[0] - value[1]);
 | |
|         Y[i] = gain[1] * (value[0] + value[1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_interleave_hadamard(float *tmp, float *X, int N0,
 | |
|                                      int stride, int hadamard)
 | |
| {
 | |
|     int i, j;
 | |
|     int N = N0*stride;
 | |
| 
 | |
|     if (hadamard) {
 | |
|         const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
 | |
|         for (i = 0; i < stride; i++)
 | |
|             for (j = 0; j < N0; j++)
 | |
|                 tmp[j*stride+i] = X[ordery[i]*N0+j];
 | |
|     } else {
 | |
|         for (i = 0; i < stride; i++)
 | |
|             for (j = 0; j < N0; j++)
 | |
|                 tmp[j*stride+i] = X[i*N0+j];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < N; i++)
 | |
|         X[i] = tmp[i];
 | |
| }
 | |
| 
 | |
| static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
 | |
|                                        int stride, int hadamard)
 | |
| {
 | |
|     int i, j;
 | |
|     int N = N0*stride;
 | |
| 
 | |
|     if (hadamard) {
 | |
|         const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
 | |
|         for (i = 0; i < stride; i++)
 | |
|             for (j = 0; j < N0; j++)
 | |
|                 tmp[ordery[i]*N0+j] = X[j*stride+i];
 | |
|     } else {
 | |
|         for (i = 0; i < stride; i++)
 | |
|             for (j = 0; j < N0; j++)
 | |
|                 tmp[i*N0+j] = X[j*stride+i];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < N; i++)
 | |
|         X[i] = tmp[i];
 | |
| }
 | |
| 
 | |
| static void celt_haar1(float *X, int N0, int stride)
 | |
| {
 | |
|     int i, j;
 | |
|     N0 >>= 1;
 | |
|     for (i = 0; i < stride; i++) {
 | |
|         for (j = 0; j < N0; j++) {
 | |
|             float x0 = X[stride * (2 * j + 0) + i];
 | |
|             float x1 = X[stride * (2 * j + 1) + i];
 | |
|             X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
 | |
|             X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
 | |
|                                   int dualstereo)
 | |
| {
 | |
|     int qn, qb;
 | |
|     int N2 = 2 * N - 1;
 | |
|     if (dualstereo && N == 2)
 | |
|         N2--;
 | |
| 
 | |
|     /* The upper limit ensures that in a stereo split with itheta==16384, we'll
 | |
|      * always have enough bits left over to code at least one pulse in the
 | |
|      * side; otherwise it would collapse, since it doesn't get folded. */
 | |
|     qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
 | |
|     qn = (qb < (1 << 3 >> 1)) ? 1 : ((celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
 | |
|     return qn;
 | |
| }
 | |
| 
 | |
| // this code was adapted from libopus
 | |
| static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
 | |
| {
 | |
|     uint64_t norm = 0;
 | |
|     uint32_t p;
 | |
|     int s, val;
 | |
|     int k0;
 | |
| 
 | |
|     while (N > 2) {
 | |
|         uint32_t q;
 | |
| 
 | |
|         /*Lots of pulses case:*/
 | |
|         if (K >= N) {
 | |
|             const uint32_t *row = celt_pvq_u_row[N];
 | |
| 
 | |
|             /* Are the pulses in this dimension negative? */
 | |
|             p  = row[K + 1];
 | |
|             s  = -(i >= p);
 | |
|             i -= p & s;
 | |
| 
 | |
|             /*Count how many pulses were placed in this dimension.*/
 | |
|             k0 = K;
 | |
|             q = row[N];
 | |
|             if (q > i) {
 | |
|                 K = N;
 | |
|                 do {
 | |
|                     p = celt_pvq_u_row[--K][N];
 | |
|                 } while (p > i);
 | |
|             } else
 | |
|                 for (p = row[K]; p > i; p = row[K])
 | |
|                     K--;
 | |
| 
 | |
|             i    -= p;
 | |
|             val   = (k0 - K + s) ^ s;
 | |
|             norm += val * val;
 | |
|             *y++  = val;
 | |
|         } else { /*Lots of dimensions case:*/
 | |
|             /*Are there any pulses in this dimension at all?*/
 | |
|             p = celt_pvq_u_row[K    ][N];
 | |
|             q = celt_pvq_u_row[K + 1][N];
 | |
| 
 | |
|             if (p <= i && i < q) {
 | |
|                 i -= p;
 | |
|                 *y++ = 0;
 | |
|             } else {
 | |
|                 /*Are the pulses in this dimension negative?*/
 | |
|                 s  = -(i >= q);
 | |
|                 i -= q & s;
 | |
| 
 | |
|                 /*Count how many pulses were placed in this dimension.*/
 | |
|                 k0 = K;
 | |
|                 do p = celt_pvq_u_row[--K][N];
 | |
|                 while (p > i);
 | |
| 
 | |
|                 i    -= p;
 | |
|                 val   = (k0 - K + s) ^ s;
 | |
|                 norm += val * val;
 | |
|                 *y++  = val;
 | |
|             }
 | |
|         }
 | |
|         N--;
 | |
|     }
 | |
| 
 | |
|     /* N == 2 */
 | |
|     p  = 2 * K + 1;
 | |
|     s  = -(i >= p);
 | |
|     i -= p & s;
 | |
|     k0 = K;
 | |
|     K  = (i + 1) / 2;
 | |
| 
 | |
|     if (K)
 | |
|         i -= 2 * K - 1;
 | |
| 
 | |
|     val   = (k0 - K + s) ^ s;
 | |
|     norm += val * val;
 | |
|     *y++  = val;
 | |
| 
 | |
|     /* N==1 */
 | |
|     s     = -i;
 | |
|     val   = (K + s) ^ s;
 | |
|     norm += val * val;
 | |
|     *y    = val;
 | |
| 
 | |
|     return norm;
 | |
| }
 | |
| 
 | |
| static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
 | |
| {
 | |
|     unsigned int idx;
 | |
| #define CELT_PVQ_U(n, k) (celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
 | |
| #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
 | |
|     idx = opus_rc_unimodel(rc, CELT_PVQ_V(N, K));
 | |
|     return celt_cwrsi(N, K, idx, y);
 | |
| }
 | |
| 
 | |
| /** Decode pulse vector and combine the result with the pitch vector to produce
 | |
|     the final normalised signal in the current band. */
 | |
| static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
 | |
|                                             unsigned int N, unsigned int K,
 | |
|                                             enum CeltSpread spread,
 | |
|                                             unsigned int blocks, float gain)
 | |
| {
 | |
|     int y[176];
 | |
| 
 | |
|     gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
 | |
|     celt_normalize_residual(y, X, N, gain);
 | |
|     celt_exp_rotation(X, N, blocks, K, spread);
 | |
|     return celt_extract_collapse_mask(y, N, blocks);
 | |
| }
 | |
| 
 | |
| static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
 | |
|                                      const int band, float *X, float *Y,
 | |
|                                      int N, int b, unsigned int blocks,
 | |
|                                      float *lowband, int duration,
 | |
|                                      float *lowband_out, int level,
 | |
|                                      float gain, float *lowband_scratch,
 | |
|                                      int fill)
 | |
| {
 | |
|     const uint8_t *cache;
 | |
|     int dualstereo, split;
 | |
|     int imid = 0, iside = 0;
 | |
|     unsigned int N0 = N;
 | |
|     int N_B;
 | |
|     int N_B0;
 | |
|     int B0 = blocks;
 | |
|     int time_divide = 0;
 | |
|     int recombine = 0;
 | |
|     int inv = 0;
 | |
|     float mid = 0, side = 0;
 | |
|     int longblocks = (B0 == 1);
 | |
|     unsigned int cm = 0;
 | |
| 
 | |
|     N_B0 = N_B = N / blocks;
 | |
|     split = dualstereo = (Y != NULL);
 | |
| 
 | |
|     if (N == 1) {
 | |
|         /* special case for one sample */
 | |
|         int i;
 | |
|         float *x = X;
 | |
|         for (i = 0; i <= dualstereo; i++) {
 | |
|             int sign = 0;
 | |
|             if (s->remaining2 >= 1<<3) {
 | |
|                 sign           = opus_getrawbits(rc, 1);
 | |
|                 s->remaining2 -= 1 << 3;
 | |
|                 b             -= 1 << 3;
 | |
|             }
 | |
|             x[0] = sign ? -1.0f : 1.0f;
 | |
|             x = Y;
 | |
|         }
 | |
|         if (lowband_out)
 | |
|             lowband_out[0] = X[0];
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (!dualstereo && level == 0) {
 | |
|         int tf_change = s->tf_change[band];
 | |
|         int k;
 | |
|         if (tf_change > 0)
 | |
|             recombine = tf_change;
 | |
|         /* Band recombining to increase frequency resolution */
 | |
| 
 | |
|         if (lowband &&
 | |
|             (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
 | |
|             int j;
 | |
|             for (j = 0; j < N; j++)
 | |
|                 lowband_scratch[j] = lowband[j];
 | |
|             lowband = lowband_scratch;
 | |
|         }
 | |
| 
 | |
|         for (k = 0; k < recombine; k++) {
 | |
|             if (lowband)
 | |
|                 celt_haar1(lowband, N >> k, 1 << k);
 | |
|             fill = celt_bit_interleave[fill & 0xF] | celt_bit_interleave[fill >> 4] << 2;
 | |
|         }
 | |
|         blocks >>= recombine;
 | |
|         N_B <<= recombine;
 | |
| 
 | |
|         /* Increasing the time resolution */
 | |
|         while ((N_B & 1) == 0 && tf_change < 0) {
 | |
|             if (lowband)
 | |
|                 celt_haar1(lowband, N_B, blocks);
 | |
|             fill |= fill << blocks;
 | |
|             blocks <<= 1;
 | |
|             N_B >>= 1;
 | |
|             time_divide++;
 | |
|             tf_change++;
 | |
|         }
 | |
|         B0 = blocks;
 | |
|         N_B0 = N_B;
 | |
| 
 | |
|         /* Reorganize the samples in time order instead of frequency order */
 | |
|         if (B0 > 1 && lowband)
 | |
|             celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
 | |
|                                        B0 << recombine, longblocks);
 | |
|     }
 | |
| 
 | |
|     /* If we need 1.5 more bit than we can produce, split the band in two. */
 | |
|     cache = celt_cache_bits +
 | |
|             celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
 | |
|     if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
 | |
|         N >>= 1;
 | |
|         Y = X + N;
 | |
|         split = 1;
 | |
|         duration -= 1;
 | |
|         if (blocks == 1)
 | |
|             fill = (fill & 1) | (fill << 1);
 | |
|         blocks = (blocks + 1) >> 1;
 | |
|     }
 | |
| 
 | |
|     if (split) {
 | |
|         int qn;
 | |
|         int itheta = 0;
 | |
|         int mbits, sbits, delta;
 | |
|         int qalloc;
 | |
|         int pulse_cap;
 | |
|         int offset;
 | |
|         int orig_fill;
 | |
|         int tell;
 | |
| 
 | |
|         /* Decide on the resolution to give to the split parameter theta */
 | |
|         pulse_cap = celt_log_freq_range[band] + duration * 8;
 | |
|         offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
 | |
|                                                           CELT_QTHETA_OFFSET);
 | |
|         qn = (dualstereo && band >= s->intensitystereo) ? 1 :
 | |
|              celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
 | |
|         tell = opus_rc_tell_frac(rc);
 | |
|         if (qn != 1) {
 | |
|             /* Entropy coding of the angle. We use a uniform pdf for the
 | |
|             time split, a step for stereo, and a triangular one for the rest. */
 | |
|             if (dualstereo && N > 2)
 | |
|                 itheta = opus_rc_stepmodel(rc, qn/2);
 | |
|             else if (dualstereo || B0 > 1)
 | |
|                 itheta = opus_rc_unimodel(rc, qn+1);
 | |
|             else
 | |
|                 itheta = opus_rc_trimodel(rc, qn);
 | |
|             itheta = itheta * 16384 / qn;
 | |
|             /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
 | |
|             Let's do that at higher complexity */
 | |
|         } else if (dualstereo) {
 | |
|             inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? opus_rc_p2model(rc, 2) : 0;
 | |
|             itheta = 0;
 | |
|         }
 | |
|         qalloc = opus_rc_tell_frac(rc) - tell;
 | |
|         b -= qalloc;
 | |
| 
 | |
|         orig_fill = fill;
 | |
|         if (itheta == 0) {
 | |
|             imid = 32767;
 | |
|             iside = 0;
 | |
|             fill &= (1 << blocks) - 1;
 | |
|             delta = -16384;
 | |
|         } else if (itheta == 16384) {
 | |
|             imid = 0;
 | |
|             iside = 32767;
 | |
|             fill &= ((1 << blocks) - 1) << blocks;
 | |
|             delta = 16384;
 | |
|         } else {
 | |
|             imid = celt_cos(itheta);
 | |
|             iside = celt_cos(16384-itheta);
 | |
|             /* This is the mid vs side allocation that minimizes squared error
 | |
|             in that band. */
 | |
|             delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
 | |
|         }
 | |
| 
 | |
|         mid  = imid  / 32768.0f;
 | |
|         side = iside / 32768.0f;
 | |
| 
 | |
|         /* This is a special case for N=2 that only works for stereo and takes
 | |
|         advantage of the fact that mid and side are orthogonal to encode
 | |
|         the side with just one bit. */
 | |
|         if (N == 2 && dualstereo) {
 | |
|             int c;
 | |
|             int sign = 0;
 | |
|             float tmp;
 | |
|             float *x2, *y2;
 | |
|             mbits = b;
 | |
|             /* Only need one bit for the side */
 | |
|             sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
 | |
|             mbits -= sbits;
 | |
|             c = (itheta > 8192);
 | |
|             s->remaining2 -= qalloc+sbits;
 | |
| 
 | |
|             x2 = c ? Y : X;
 | |
|             y2 = c ? X : Y;
 | |
|             if (sbits)
 | |
|                 sign = opus_getrawbits(rc, 1);
 | |
|             sign = 1 - 2 * sign;
 | |
|             /* We use orig_fill here because we want to fold the side, but if
 | |
|             itheta==16384, we'll have cleared the low bits of fill. */
 | |
|             cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
 | |
|                                   lowband, duration, lowband_out, level, gain,
 | |
|                                   lowband_scratch, orig_fill);
 | |
|             /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
 | |
|             and there's no need to worry about mixing with the other channel. */
 | |
|             y2[0] = -sign * x2[1];
 | |
|             y2[1] =  sign * x2[0];
 | |
|             X[0] *= mid;
 | |
|             X[1] *= mid;
 | |
|             Y[0] *= side;
 | |
|             Y[1] *= side;
 | |
|             tmp = X[0];
 | |
|             X[0] = tmp - Y[0];
 | |
|             Y[0] = tmp + Y[0];
 | |
|             tmp = X[1];
 | |
|             X[1] = tmp - Y[1];
 | |
|             Y[1] = tmp + Y[1];
 | |
|         } else {
 | |
|             /* "Normal" split code */
 | |
|             float *next_lowband2     = NULL;
 | |
|             float *next_lowband_out1 = NULL;
 | |
|             int next_level = 0;
 | |
|             int rebalance;
 | |
| 
 | |
|             /* Give more bits to low-energy MDCTs than they would
 | |
|              * otherwise deserve */
 | |
|             if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
 | |
|                 if (itheta > 8192)
 | |
|                     /* Rough approximation for pre-echo masking */
 | |
|                     delta -= delta >> (4 - duration);
 | |
|                 else
 | |
|                     /* Corresponds to a forward-masking slope of
 | |
|                      * 1.5 dB per 10 ms */
 | |
|                     delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
 | |
|             }
 | |
|             mbits = av_clip((b - delta) / 2, 0, b);
 | |
|             sbits = b - mbits;
 | |
|             s->remaining2 -= qalloc;
 | |
| 
 | |
|             if (lowband && !dualstereo)
 | |
|                 next_lowband2 = lowband + N; /* >32-bit split case */
 | |
| 
 | |
|             /* Only stereo needs to pass on lowband_out.
 | |
|              * Otherwise, it's handled at the end */
 | |
|             if (dualstereo)
 | |
|                 next_lowband_out1 = lowband_out;
 | |
|             else
 | |
|                 next_level = level + 1;
 | |
| 
 | |
|             rebalance = s->remaining2;
 | |
|             if (mbits >= sbits) {
 | |
|                 /* In stereo mode, we do not apply a scaling to the mid
 | |
|                  * because we need the normalized mid for folding later */
 | |
|                 cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
 | |
|                                       lowband, duration, next_lowband_out1,
 | |
|                                       next_level, dualstereo ? 1.0f : (gain * mid),
 | |
|                                       lowband_scratch, fill);
 | |
| 
 | |
|                 rebalance = mbits - (rebalance - s->remaining2);
 | |
|                 if (rebalance > 3 << 3 && itheta != 0)
 | |
|                     sbits += rebalance - (3 << 3);
 | |
| 
 | |
|                 /* For a stereo split, the high bits of fill are always zero,
 | |
|                  * so no folding will be done to the side. */
 | |
|                 cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
 | |
|                                        next_lowband2, duration, NULL,
 | |
|                                        next_level, gain * side, NULL,
 | |
|                                        fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
 | |
|             } else {
 | |
|                 /* For a stereo split, the high bits of fill are always zero,
 | |
|                  * so no folding will be done to the side. */
 | |
|                 cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
 | |
|                                       next_lowband2, duration, NULL,
 | |
|                                       next_level, gain * side, NULL,
 | |
|                                       fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
 | |
| 
 | |
|                 rebalance = sbits - (rebalance - s->remaining2);
 | |
|                 if (rebalance > 3 << 3 && itheta != 16384)
 | |
|                     mbits += rebalance - (3 << 3);
 | |
| 
 | |
|                 /* In stereo mode, we do not apply a scaling to the mid because
 | |
|                  * we need the normalized mid for folding later */
 | |
|                 cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
 | |
|                                        lowband, duration, next_lowband_out1,
 | |
|                                        next_level, dualstereo ? 1.0f : (gain * mid),
 | |
|                                        lowband_scratch, fill);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* This is the basic no-split case */
 | |
|         unsigned int q         = celt_bits2pulses(cache, b);
 | |
|         unsigned int curr_bits = celt_pulses2bits(cache, q);
 | |
|         s->remaining2 -= curr_bits;
 | |
| 
 | |
|         /* Ensures we can never bust the budget */
 | |
|         while (s->remaining2 < 0 && q > 0) {
 | |
|             s->remaining2 += curr_bits;
 | |
|             curr_bits      = celt_pulses2bits(cache, --q);
 | |
|             s->remaining2 -= curr_bits;
 | |
|         }
 | |
| 
 | |
|         if (q != 0) {
 | |
|             /* Finally do the actual quantization */
 | |
|             cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
 | |
|                                   s->spread, blocks, gain);
 | |
|         } else {
 | |
|             /* If there's no pulse, fill the band anyway */
 | |
|             int j;
 | |
|             unsigned int cm_mask = (1 << blocks) - 1;
 | |
|             fill &= cm_mask;
 | |
|             if (!fill) {
 | |
|                 for (j = 0; j < N; j++)
 | |
|                     X[j] = 0.0f;
 | |
|             } else {
 | |
|                 if (!lowband) {
 | |
|                     /* Noise */
 | |
|                     for (j = 0; j < N; j++)
 | |
|                         X[j] = (((int32_t)celt_rng(s)) >> 20);
 | |
|                     cm = cm_mask;
 | |
|                 } else {
 | |
|                     /* Folded spectrum */
 | |
|                     for (j = 0; j < N; j++) {
 | |
|                         /* About 48 dB below the "normal" folding level */
 | |
|                         X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
 | |
|                     }
 | |
|                     cm = fill;
 | |
|                 }
 | |
|                 celt_renormalize_vector(X, N, gain);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* This code is used by the decoder and by the resynthesis-enabled encoder */
 | |
|     if (dualstereo) {
 | |
|         int j;
 | |
|         if (N != 2)
 | |
|             celt_stereo_merge(X, Y, mid, N);
 | |
|         if (inv) {
 | |
|             for (j = 0; j < N; j++)
 | |
|                 Y[j] *= -1;
 | |
|         }
 | |
|     } else if (level == 0) {
 | |
|         int k;
 | |
| 
 | |
|         /* Undo the sample reorganization going from time order to frequency order */
 | |
|         if (B0 > 1)
 | |
|             celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
 | |
|                                      B0<<recombine, longblocks);
 | |
| 
 | |
|         /* Undo time-freq changes that we did earlier */
 | |
|         N_B = N_B0;
 | |
|         blocks = B0;
 | |
|         for (k = 0; k < time_divide; k++) {
 | |
|             blocks >>= 1;
 | |
|             N_B <<= 1;
 | |
|             cm |= cm >> blocks;
 | |
|             celt_haar1(X, N_B, blocks);
 | |
|         }
 | |
| 
 | |
|         for (k = 0; k < recombine; k++) {
 | |
|             cm = celt_bit_deinterleave[cm];
 | |
|             celt_haar1(X, N0>>k, 1<<k);
 | |
|         }
 | |
|         blocks <<= recombine;
 | |
| 
 | |
|         /* Scale output for later folding */
 | |
|         if (lowband_out) {
 | |
|             int j;
 | |
|             float n = sqrtf(N0);
 | |
|             for (j = 0; j < N0; j++)
 | |
|                 lowband_out[j] = n * X[j];
 | |
|         }
 | |
|         cm &= (1 << blocks) - 1;
 | |
|     }
 | |
|     return cm;
 | |
| }
 | |
| 
 | |
| static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         float *dst = data + (celt_freq_bands[i] << s->duration);
 | |
|         float norm = pow(2, frame->energy[i] + celt_mean_energy[i]);
 | |
| 
 | |
|         for (j = 0; j < celt_freq_range[i] << s->duration; j++)
 | |
|             dst[j] *= norm;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
 | |
| {
 | |
|     const int T0 = frame->pf_period_old;
 | |
|     const int T1 = frame->pf_period;
 | |
| 
 | |
|     float g00, g01, g02;
 | |
|     float g10, g11, g12;
 | |
| 
 | |
|     float x0, x1, x2, x3, x4;
 | |
| 
 | |
|     int i;
 | |
| 
 | |
|     if (frame->pf_gains[0]     == 0.0 &&
 | |
|         frame->pf_gains_old[0] == 0.0)
 | |
|         return;
 | |
| 
 | |
|     g00 = frame->pf_gains_old[0];
 | |
|     g01 = frame->pf_gains_old[1];
 | |
|     g02 = frame->pf_gains_old[2];
 | |
|     g10 = frame->pf_gains[0];
 | |
|     g11 = frame->pf_gains[1];
 | |
|     g12 = frame->pf_gains[2];
 | |
| 
 | |
|     x1 = data[-T1 + 1];
 | |
|     x2 = data[-T1];
 | |
|     x3 = data[-T1 - 1];
 | |
|     x4 = data[-T1 - 2];
 | |
| 
 | |
|     for (i = 0; i < CELT_OVERLAP; i++) {
 | |
|         float w = ff_celt_window2[i];
 | |
|         x0 = data[i - T1 + 2];
 | |
| 
 | |
|         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
 | |
|                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
 | |
|                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
 | |
|                     w         * g10 * x2                                    +
 | |
|                     w         * g11 * (x1 + x3)                             +
 | |
|                     w         * g12 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter_apply(CeltFrame *frame,
 | |
|                                   float *data, int len)
 | |
| {
 | |
|     const int T = frame->pf_period;
 | |
|     float g0, g1, g2;
 | |
|     float x0, x1, x2, x3, x4;
 | |
|     int i;
 | |
| 
 | |
|     if (frame->pf_gains[0] == 0.0 || len <= 0)
 | |
|         return;
 | |
| 
 | |
|     g0 = frame->pf_gains[0];
 | |
|     g1 = frame->pf_gains[1];
 | |
|     g2 = frame->pf_gains[2];
 | |
| 
 | |
|     x4 = data[-T - 2];
 | |
|     x3 = data[-T - 1];
 | |
|     x2 = data[-T];
 | |
|     x1 = data[-T + 1];
 | |
| 
 | |
|     for (i = 0; i < len; i++) {
 | |
|         x0 = data[i - T + 2];
 | |
|         data[i] += g0 * x2        +
 | |
|                    g1 * (x1 + x3) +
 | |
|                    g2 * (x0 + x4);
 | |
|         x4 = x3;
 | |
|         x3 = x2;
 | |
|         x2 = x1;
 | |
|         x1 = x0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_postfilter(CeltContext *s, CeltFrame *frame)
 | |
| {
 | |
|     int len = s->blocksize * s->blocks;
 | |
| 
 | |
|     celt_postfilter_apply_transition(frame, frame->buf + 1024);
 | |
| 
 | |
|     frame->pf_period_old = frame->pf_period;
 | |
|     memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
 | |
| 
 | |
|     frame->pf_period = frame->pf_period_new;
 | |
|     memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
 | |
| 
 | |
|     if (len > CELT_OVERLAP) {
 | |
|         celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
 | |
|         celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
 | |
|                               len - 2 * CELT_OVERLAP);
 | |
| 
 | |
|         frame->pf_period_old = frame->pf_period;
 | |
|         memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
 | |
|     }
 | |
| 
 | |
|     memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
 | |
| }
 | |
| 
 | |
| static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
 | |
| {
 | |
|     static const float postfilter_taps[3][3] = {
 | |
|         { 0.3066406250f, 0.2170410156f, 0.1296386719f },
 | |
|         { 0.4638671875f, 0.2680664062f, 0.0           },
 | |
|         { 0.7998046875f, 0.1000976562f, 0.0           }
 | |
|     };
 | |
|     int i;
 | |
| 
 | |
|     memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
 | |
|     memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
 | |
| 
 | |
|     if (s->startband == 0 && consumed + 16 <= s->framebits) {
 | |
|         int has_postfilter = opus_rc_p2model(rc, 1);
 | |
|         if (has_postfilter) {
 | |
|             float gain;
 | |
|             int tapset, octave, period;
 | |
| 
 | |
|             octave = opus_rc_unimodel(rc, 6);
 | |
|             period = (16 << octave) + opus_getrawbits(rc, 4 + octave) - 1;
 | |
|             gain   = 0.09375f * (opus_getrawbits(rc, 3) + 1);
 | |
|             tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
 | |
|                      opus_rc_getsymbol(rc, celt_model_tapset) : 0;
 | |
| 
 | |
|             for (i = 0; i < 2; i++) {
 | |
|                 CeltFrame *frame = &s->frame[i];
 | |
| 
 | |
|                 frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
 | |
|                 frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
 | |
|                 frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
 | |
|                 frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         consumed = opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     return consumed;
 | |
| }
 | |
| 
 | |
| static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
 | |
| {
 | |
|     int i, j, k;
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         int renormalize = 0;
 | |
|         float *xptr;
 | |
|         float prev[2];
 | |
|         float Ediff, r;
 | |
|         float thresh, sqrt_1;
 | |
|         int depth;
 | |
| 
 | |
|         /* depth in 1/8 bits */
 | |
|         depth = (1 + s->pulses[i]) / (celt_freq_range[i] << s->duration);
 | |
|         thresh = pow(2, -1.0 - 0.125f * depth);
 | |
|         sqrt_1 = 1.0f / sqrtf(celt_freq_range[i] << s->duration);
 | |
| 
 | |
|         xptr = X + (celt_freq_bands[i] << s->duration);
 | |
| 
 | |
|         prev[0] = frame->prev_energy[0][i];
 | |
|         prev[1] = frame->prev_energy[1][i];
 | |
|         if (s->coded_channels == 1) {
 | |
|             CeltFrame *frame1 = &s->frame[1];
 | |
| 
 | |
|             prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
 | |
|             prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
 | |
|         }
 | |
|         Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
 | |
|         Ediff = FFMAX(0, Ediff);
 | |
| 
 | |
|         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
 | |
|         short blocks don't have the same energy as long */
 | |
|         r = pow(2, 1 - Ediff);
 | |
|         if (s->duration == 3)
 | |
|             r *= M_SQRT2;
 | |
|         r = FFMIN(thresh, r) * sqrt_1;
 | |
|         for (k = 0; k < 1 << s->duration; k++) {
 | |
|             /* Detect collapse */
 | |
|             if (!(frame->collapse_masks[i] & 1 << k)) {
 | |
|                 /* Fill with noise */
 | |
|                 for (j = 0; j < celt_freq_range[i]; j++)
 | |
|                     xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
 | |
|                 renormalize = 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* We just added some energy, so we need to renormalize */
 | |
|         if (renormalize)
 | |
|             celt_renormalize_vector(xptr, celt_freq_range[i] << s->duration, 1.0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
 | |
| {
 | |
|     float lowband_scratch[8 * 22];
 | |
|     float norm[2 * 8 * 100];
 | |
| 
 | |
|     int totalbits = (s->framebits << 3) - s->anticollapse_bit;
 | |
| 
 | |
|     int update_lowband = 1;
 | |
|     int lowband_offset = 0;
 | |
| 
 | |
|     int i, j;
 | |
| 
 | |
|     memset(s->coeffs, 0, sizeof(s->coeffs));
 | |
| 
 | |
|     for (i = s->startband; i < s->endband; i++) {
 | |
|         int band_offset = celt_freq_bands[i] << s->duration;
 | |
|         int band_size   = celt_freq_range[i] << s->duration;
 | |
|         float *X = s->coeffs[0] + band_offset;
 | |
|         float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
 | |
| 
 | |
|         int consumed = opus_rc_tell_frac(rc);
 | |
|         float *norm2 = norm + 8 * 100;
 | |
|         int effective_lowband = -1;
 | |
|         unsigned int cm[2];
 | |
|         int b;
 | |
| 
 | |
|         /* Compute how many bits we want to allocate to this band */
 | |
|         if (i != s->startband)
 | |
|             s->remaining -= consumed;
 | |
|         s->remaining2 = totalbits - consumed - 1;
 | |
|         if (i <= s->codedbands - 1) {
 | |
|             int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
 | |
|             b = av_clip(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 0, 16383);
 | |
|         } else
 | |
|             b = 0;
 | |
| 
 | |
|         if (celt_freq_bands[i] - celt_freq_range[i] >= celt_freq_bands[s->startband] &&
 | |
|             (update_lowband || lowband_offset == 0))
 | |
|             lowband_offset = i;
 | |
| 
 | |
|         /* Get a conservative estimate of the collapse_mask's for the bands we're
 | |
|         going to be folding from. */
 | |
|         if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
 | |
|                                     s->blocks > 1 || s->tf_change[i] < 0)) {
 | |
|             int foldstart, foldend;
 | |
| 
 | |
|             /* This ensures we never repeat spectral content within one band */
 | |
|             effective_lowband = FFMAX(celt_freq_bands[s->startband],
 | |
|                                       celt_freq_bands[lowband_offset] - celt_freq_range[i]);
 | |
|             foldstart = lowband_offset;
 | |
|             while (celt_freq_bands[--foldstart] > effective_lowband);
 | |
|             foldend = lowband_offset - 1;
 | |
|             while (celt_freq_bands[++foldend] < effective_lowband + celt_freq_range[i]);
 | |
| 
 | |
|             cm[0] = cm[1] = 0;
 | |
|             for (j = foldstart; j < foldend; j++) {
 | |
|                 cm[0] |= s->frame[0].collapse_masks[j];
 | |
|                 cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
 | |
|             }
 | |
|         } else
 | |
|             /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
 | |
|             always) be non-zero.*/
 | |
|             cm[0] = cm[1] = (1 << s->blocks) - 1;
 | |
| 
 | |
|         if (s->dualstereo && i == s->intensitystereo) {
 | |
|             /* Switch off dual stereo to do intensity */
 | |
|             s->dualstereo = 0;
 | |
|             for (j = celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
 | |
|                 norm[j] = (norm[j] + norm2[j]) / 2;
 | |
|         }
 | |
| 
 | |
|         if (s->dualstereo) {
 | |
|             cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
 | |
|                                      effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
 | |
|             norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
 | |
| 
 | |
|             cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
 | |
|                                      effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
 | |
|             norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
 | |
|         } else {
 | |
|             cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
 | |
|             effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
 | |
|             norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
 | |
| 
 | |
|             cm[1] = cm[0];
 | |
|         }
 | |
| 
 | |
|         s->frame[0].collapse_masks[i]                     = (uint8_t)cm[0];
 | |
|         s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | |
|         s->remaining += s->pulses[i] + consumed;
 | |
| 
 | |
|         /* Update the folding position only as long as we have 1 bit/sample depth */
 | |
|         update_lowband = (b > band_size << 3);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
 | |
|                          float **output, int coded_channels, int frame_size,
 | |
|                          int startband,  int endband)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     int consumed;           // bits of entropy consumed thus far for this frame
 | |
|     int silence = 0;
 | |
|     int transient = 0;
 | |
|     int anticollapse = 0;
 | |
|     CeltIMDCTContext *imdct;
 | |
|     float imdct_scale = 1.0;
 | |
| 
 | |
|     if (coded_channels != 1 && coded_channels != 2) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
 | |
|                coded_channels);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
 | |
|                startband, endband);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     s->flushed        = 0;
 | |
|     s->coded_channels = coded_channels;
 | |
|     s->startband      = startband;
 | |
|     s->endband        = endband;
 | |
|     s->framebits      = rc->rb.bytes * 8;
 | |
| 
 | |
|     s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
 | |
|     if (s->duration > CELT_MAX_LOG_BLOCKS ||
 | |
|         frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
 | |
|         av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
 | |
|                frame_size);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     if (!s->output_channels)
 | |
|         s->output_channels = coded_channels;
 | |
| 
 | |
|     memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
 | |
|     memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
 | |
| 
 | |
|     consumed = opus_rc_tell(rc);
 | |
| 
 | |
|     /* obtain silence flag */
 | |
|     if (consumed >= s->framebits)
 | |
|         silence = 1;
 | |
|     else if (consumed == 1)
 | |
|         silence = opus_rc_p2model(rc, 15);
 | |
| 
 | |
| 
 | |
|     if (silence) {
 | |
|         consumed = s->framebits;
 | |
|         rc->total_read_bits += s->framebits - opus_rc_tell(rc);
 | |
|     }
 | |
| 
 | |
|     /* obtain post-filter options */
 | |
|     consumed = parse_postfilter(s, rc, consumed);
 | |
| 
 | |
|     /* obtain transient flag */
 | |
|     if (s->duration != 0 && consumed+3 <= s->framebits)
 | |
|         transient = opus_rc_p2model(rc, 3);
 | |
| 
 | |
|     s->blocks    = transient ? 1 << s->duration : 1;
 | |
|     s->blocksize = frame_size / s->blocks;
 | |
| 
 | |
|     imdct = s->imdct[transient ? 0 : s->duration];
 | |
| 
 | |
|     if (coded_channels == 1) {
 | |
|         for (i = 0; i < CELT_MAX_BANDS; i++)
 | |
|             s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
 | |
|     }
 | |
| 
 | |
|     celt_decode_coarse_energy(s, rc);
 | |
|     celt_decode_tf_changes   (s, rc, transient);
 | |
|     celt_decode_allocation   (s, rc);
 | |
|     celt_decode_fine_energy  (s, rc);
 | |
|     celt_decode_bands        (s, rc);
 | |
| 
 | |
|     if (s->anticollapse_bit)
 | |
|         anticollapse = opus_getrawbits(rc, 1);
 | |
| 
 | |
|     celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
 | |
| 
 | |
|     /* apply anti-collapse processing and denormalization to
 | |
|      * each coded channel */
 | |
|     for (i = 0; i < s->coded_channels; i++) {
 | |
|         CeltFrame *frame = &s->frame[i];
 | |
| 
 | |
|         if (anticollapse)
 | |
|             process_anticollapse(s, frame, s->coeffs[i]);
 | |
| 
 | |
|         celt_denormalize(s, frame, s->coeffs[i]);
 | |
|     }
 | |
| 
 | |
|     /* stereo -> mono downmix */
 | |
|     if (s->output_channels < s->coded_channels) {
 | |
|         s->dsp.vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
 | |
|         imdct_scale = 0.5;
 | |
|     } else if (s->output_channels > s->coded_channels)
 | |
|         memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
 | |
| 
 | |
|     if (silence) {
 | |
|         for (i = 0; i < 2; i++) {
 | |
|             CeltFrame *frame = &s->frame[i];
 | |
| 
 | |
|             for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
 | |
|                 frame->energy[j] = CELT_ENERGY_SILENCE;
 | |
|         }
 | |
|         memset(s->coeffs, 0, sizeof(s->coeffs));
 | |
|     }
 | |
| 
 | |
|     /* transform and output for each output channel */
 | |
|     for (i = 0; i < s->output_channels; i++) {
 | |
|         CeltFrame *frame = &s->frame[i];
 | |
|         float m = frame->deemph_coeff;
 | |
| 
 | |
|         /* iMDCT and overlap-add */
 | |
|         for (j = 0; j < s->blocks; j++) {
 | |
|             float *dst  = frame->buf + 1024 + j * s->blocksize;
 | |
| 
 | |
|             imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
 | |
|                               s->blocks, imdct_scale);
 | |
|             s->dsp.vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
 | |
|                                       celt_window, CELT_OVERLAP / 2);
 | |
|         }
 | |
| 
 | |
|         /* postfilter */
 | |
|         celt_postfilter(s, frame);
 | |
| 
 | |
|         /* deemphasis and output scaling */
 | |
|         for (j = 0; j < frame_size; j++) {
 | |
|             float tmp = frame->buf[1024 - frame_size + j] + m;
 | |
|             m = tmp * CELT_DEEMPH_COEFF;
 | |
|             output[i][j] = tmp / 32768.;
 | |
|         }
 | |
|         frame->deemph_coeff = m;
 | |
|     }
 | |
| 
 | |
|     if (coded_channels == 1)
 | |
|         memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
 | |
| 
 | |
|     for (i = 0; i < 2; i++ ) {
 | |
|         CeltFrame *frame = &s->frame[i];
 | |
| 
 | |
|         if (!transient) {
 | |
|             memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
 | |
|             memcpy(frame->prev_energy[0], frame->energy,         sizeof(frame->prev_energy[0]));
 | |
|         } else {
 | |
|             for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|                 frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
 | |
|         }
 | |
| 
 | |
|         for (j = 0; j < s->startband; j++) {
 | |
|             frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             frame->energy[j]         = 0.0;
 | |
|         }
 | |
|         for (j = s->endband; j < CELT_MAX_BANDS; j++) {
 | |
|             frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | |
|             frame->energy[j]         = 0.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->seed = rc->range;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void ff_celt_flush(CeltContext *s)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     if (s->flushed)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < 2; i++) {
 | |
|         CeltFrame *frame = &s->frame[i];
 | |
| 
 | |
|         for (j = 0; j < CELT_MAX_BANDS; j++)
 | |
|             frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
 | |
| 
 | |
|         memset(frame->energy, 0, sizeof(frame->energy));
 | |
|         memset(frame->buf,    0, sizeof(frame->buf));
 | |
| 
 | |
|         memset(frame->pf_gains,     0, sizeof(frame->pf_gains));
 | |
|         memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
 | |
|         memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
 | |
| 
 | |
|         frame->deemph_coeff = 0.0;
 | |
|     }
 | |
|     s->seed = 0;
 | |
| 
 | |
|     s->flushed = 1;
 | |
| }
 | |
| 
 | |
| void ff_celt_free(CeltContext **ps)
 | |
| {
 | |
|     CeltContext *s = *ps;
 | |
|     int i;
 | |
| 
 | |
|     if (!s)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
 | |
|         ff_celt_imdct_uninit(&s->imdct[i]);
 | |
| 
 | |
|     av_freep(ps);
 | |
| }
 | |
| 
 | |
| int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
 | |
| {
 | |
|     CeltContext *s;
 | |
|     int i, ret;
 | |
| 
 | |
|     if (output_channels != 1 && output_channels != 2) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
 | |
|                output_channels);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     s = av_mallocz(sizeof(*s));
 | |
|     if (!s)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     s->avctx           = avctx;
 | |
|     s->output_channels = output_channels;
 | |
| 
 | |
|     for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
 | |
|         ret = ff_celt_imdct_init(&s->imdct[i], i + 3);
 | |
|         if (ret < 0)
 | |
|             goto fail;
 | |
|     }
 | |
| 
 | |
|     avpriv_float_dsp_init(&s->dsp, avctx->flags & CODEC_FLAG_BITEXACT);
 | |
| 
 | |
|     ff_celt_flush(s);
 | |
| 
 | |
|     *ps = s;
 | |
| 
 | |
|     return 0;
 | |
| fail:
 | |
|     ff_celt_free(&s);
 | |
|     return ret;
 | |
| }
 |