3413 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3413 lines
		
	
	
		
			132 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * HEVC video Decoder
 | 
						|
 *
 | 
						|
 * Copyright (C) 2012 - 2013 Guillaume Martres
 | 
						|
 * Copyright (C) 2012 - 2013 Mickael Raulet
 | 
						|
 * Copyright (C) 2012 - 2013 Gildas Cocherel
 | 
						|
 * Copyright (C) 2012 - 2013 Wassim Hamidouche
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/atomic.h"
 | 
						|
#include "libavutil/attributes.h"
 | 
						|
#include "libavutil/common.h"
 | 
						|
#include "libavutil/display.h"
 | 
						|
#include "libavutil/internal.h"
 | 
						|
#include "libavutil/mastering_display_metadata.h"
 | 
						|
#include "libavutil/md5.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "libavutil/pixdesc.h"
 | 
						|
#include "libavutil/stereo3d.h"
 | 
						|
 | 
						|
#include "bswapdsp.h"
 | 
						|
#include "bytestream.h"
 | 
						|
#include "cabac_functions.h"
 | 
						|
#include "golomb.h"
 | 
						|
#include "hevc.h"
 | 
						|
#include "profiles.h"
 | 
						|
 | 
						|
const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
 | 
						|
 | 
						|
/**
 | 
						|
 * NOTE: Each function hls_foo correspond to the function foo in the
 | 
						|
 * specification (HLS stands for High Level Syntax).
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Section 5.7
 | 
						|
 */
 | 
						|
 | 
						|
/* free everything allocated  by pic_arrays_init() */
 | 
						|
static void pic_arrays_free(HEVCContext *s)
 | 
						|
{
 | 
						|
    av_freep(&s->sao);
 | 
						|
    av_freep(&s->deblock);
 | 
						|
 | 
						|
    av_freep(&s->skip_flag);
 | 
						|
    av_freep(&s->tab_ct_depth);
 | 
						|
 | 
						|
    av_freep(&s->tab_ipm);
 | 
						|
    av_freep(&s->cbf_luma);
 | 
						|
    av_freep(&s->is_pcm);
 | 
						|
 | 
						|
    av_freep(&s->qp_y_tab);
 | 
						|
    av_freep(&s->tab_slice_address);
 | 
						|
    av_freep(&s->filter_slice_edges);
 | 
						|
 | 
						|
    av_freep(&s->horizontal_bs);
 | 
						|
    av_freep(&s->vertical_bs);
 | 
						|
 | 
						|
    av_freep(&s->sh.entry_point_offset);
 | 
						|
    av_freep(&s->sh.size);
 | 
						|
    av_freep(&s->sh.offset);
 | 
						|
 | 
						|
    av_buffer_pool_uninit(&s->tab_mvf_pool);
 | 
						|
    av_buffer_pool_uninit(&s->rpl_tab_pool);
 | 
						|
}
 | 
						|
 | 
						|
/* allocate arrays that depend on frame dimensions */
 | 
						|
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
 | 
						|
{
 | 
						|
    int log2_min_cb_size = sps->log2_min_cb_size;
 | 
						|
    int width            = sps->width;
 | 
						|
    int height           = sps->height;
 | 
						|
    int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
 | 
						|
                           ((height >> log2_min_cb_size) + 1);
 | 
						|
    int ctb_count        = sps->ctb_width * sps->ctb_height;
 | 
						|
    int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
 | 
						|
 | 
						|
    s->bs_width  = (width  >> 2) + 1;
 | 
						|
    s->bs_height = (height >> 2) + 1;
 | 
						|
 | 
						|
    s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
 | 
						|
    s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
 | 
						|
    if (!s->sao || !s->deblock)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->skip_flag    = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
 | 
						|
    s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
 | 
						|
    if (!s->skip_flag || !s->tab_ct_depth)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
 | 
						|
    s->tab_ipm  = av_mallocz(min_pu_size);
 | 
						|
    s->is_pcm   = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
 | 
						|
    if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->filter_slice_edges = av_mallocz(ctb_count);
 | 
						|
    s->tab_slice_address  = av_malloc_array(pic_size_in_ctb,
 | 
						|
                                      sizeof(*s->tab_slice_address));
 | 
						|
    s->qp_y_tab           = av_malloc_array(pic_size_in_ctb,
 | 
						|
                                      sizeof(*s->qp_y_tab));
 | 
						|
    if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
 | 
						|
    s->vertical_bs   = av_mallocz_array(s->bs_width, s->bs_height);
 | 
						|
    if (!s->horizontal_bs || !s->vertical_bs)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
 | 
						|
                                          av_buffer_allocz);
 | 
						|
    s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
 | 
						|
                                          av_buffer_allocz);
 | 
						|
    if (!s->tab_mvf_pool || !s->rpl_tab_pool)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    pic_arrays_free(s);
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
 | 
						|
{
 | 
						|
    int i = 0;
 | 
						|
    int j = 0;
 | 
						|
    uint8_t luma_weight_l0_flag[16];
 | 
						|
    uint8_t chroma_weight_l0_flag[16];
 | 
						|
    uint8_t luma_weight_l1_flag[16];
 | 
						|
    uint8_t chroma_weight_l1_flag[16];
 | 
						|
    int luma_log2_weight_denom;
 | 
						|
 | 
						|
    luma_log2_weight_denom = get_ue_golomb_long(gb);
 | 
						|
    if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
 | 
						|
    s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
 | 
						|
    if (s->ps.sps->chroma_format_idc != 0) {
 | 
						|
        int delta = get_se_golomb(gb);
 | 
						|
        s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | 
						|
        luma_weight_l0_flag[i] = get_bits1(gb);
 | 
						|
        if (!luma_weight_l0_flag[i]) {
 | 
						|
            s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
 | 
						|
            s->sh.luma_offset_l0[i] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (s->ps.sps->chroma_format_idc != 0) {
 | 
						|
        for (i = 0; i < s->sh.nb_refs[L0]; i++)
 | 
						|
            chroma_weight_l0_flag[i] = get_bits1(gb);
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < s->sh.nb_refs[L0]; i++)
 | 
						|
            chroma_weight_l0_flag[i] = 0;
 | 
						|
    }
 | 
						|
    for (i = 0; i < s->sh.nb_refs[L0]; i++) {
 | 
						|
        if (luma_weight_l0_flag[i]) {
 | 
						|
            int delta_luma_weight_l0 = get_se_golomb(gb);
 | 
						|
            s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
 | 
						|
            s->sh.luma_offset_l0[i] = get_se_golomb(gb);
 | 
						|
        }
 | 
						|
        if (chroma_weight_l0_flag[i]) {
 | 
						|
            for (j = 0; j < 2; j++) {
 | 
						|
                int delta_chroma_weight_l0 = get_se_golomb(gb);
 | 
						|
                int delta_chroma_offset_l0 = get_se_golomb(gb);
 | 
						|
                s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
 | 
						|
                s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
 | 
						|
                                                                                    >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | 
						|
            s->sh.chroma_offset_l0[i][0] = 0;
 | 
						|
            s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | 
						|
            s->sh.chroma_offset_l0[i][1] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (s->sh.slice_type == B_SLICE) {
 | 
						|
        for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | 
						|
            luma_weight_l1_flag[i] = get_bits1(gb);
 | 
						|
            if (!luma_weight_l1_flag[i]) {
 | 
						|
                s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
 | 
						|
                s->sh.luma_offset_l1[i] = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (s->ps.sps->chroma_format_idc != 0) {
 | 
						|
            for (i = 0; i < s->sh.nb_refs[L1]; i++)
 | 
						|
                chroma_weight_l1_flag[i] = get_bits1(gb);
 | 
						|
        } else {
 | 
						|
            for (i = 0; i < s->sh.nb_refs[L1]; i++)
 | 
						|
                chroma_weight_l1_flag[i] = 0;
 | 
						|
        }
 | 
						|
        for (i = 0; i < s->sh.nb_refs[L1]; i++) {
 | 
						|
            if (luma_weight_l1_flag[i]) {
 | 
						|
                int delta_luma_weight_l1 = get_se_golomb(gb);
 | 
						|
                s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
 | 
						|
                s->sh.luma_offset_l1[i] = get_se_golomb(gb);
 | 
						|
            }
 | 
						|
            if (chroma_weight_l1_flag[i]) {
 | 
						|
                for (j = 0; j < 2; j++) {
 | 
						|
                    int delta_chroma_weight_l1 = get_se_golomb(gb);
 | 
						|
                    int delta_chroma_offset_l1 = get_se_golomb(gb);
 | 
						|
                    s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
 | 
						|
                    s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
 | 
						|
                                                                                        >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
 | 
						|
                s->sh.chroma_offset_l1[i][0] = 0;
 | 
						|
                s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
 | 
						|
                s->sh.chroma_offset_l1[i][1] = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
 | 
						|
{
 | 
						|
    const HEVCSPS *sps = s->ps.sps;
 | 
						|
    int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
 | 
						|
    int prev_delta_msb = 0;
 | 
						|
    unsigned int nb_sps = 0, nb_sh;
 | 
						|
    int i;
 | 
						|
 | 
						|
    rps->nb_refs = 0;
 | 
						|
    if (!sps->long_term_ref_pics_present_flag)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    if (sps->num_long_term_ref_pics_sps > 0)
 | 
						|
        nb_sps = get_ue_golomb_long(gb);
 | 
						|
    nb_sh = get_ue_golomb_long(gb);
 | 
						|
 | 
						|
    if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
 | 
						|
    rps->nb_refs = nb_sh + nb_sps;
 | 
						|
 | 
						|
    for (i = 0; i < rps->nb_refs; i++) {
 | 
						|
        uint8_t delta_poc_msb_present;
 | 
						|
 | 
						|
        if (i < nb_sps) {
 | 
						|
            uint8_t lt_idx_sps = 0;
 | 
						|
 | 
						|
            if (sps->num_long_term_ref_pics_sps > 1)
 | 
						|
                lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
 | 
						|
 | 
						|
            rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
 | 
						|
            rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
 | 
						|
        } else {
 | 
						|
            rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
 | 
						|
            rps->used[i] = get_bits1(gb);
 | 
						|
        }
 | 
						|
 | 
						|
        delta_poc_msb_present = get_bits1(gb);
 | 
						|
        if (delta_poc_msb_present) {
 | 
						|
            int delta = get_ue_golomb_long(gb);
 | 
						|
 | 
						|
            if (i && i != nb_sps)
 | 
						|
                delta += prev_delta_msb;
 | 
						|
 | 
						|
            rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
 | 
						|
            prev_delta_msb = delta;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
 | 
						|
                                 const HEVCSPS *sps)
 | 
						|
{
 | 
						|
    const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
 | 
						|
    unsigned int num = 0, den = 0;
 | 
						|
 | 
						|
    avctx->pix_fmt             = sps->pix_fmt;
 | 
						|
    avctx->coded_width         = sps->width;
 | 
						|
    avctx->coded_height        = sps->height;
 | 
						|
    avctx->width               = sps->output_width;
 | 
						|
    avctx->height              = sps->output_height;
 | 
						|
    avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
 | 
						|
    avctx->profile             = sps->ptl.general_ptl.profile_idc;
 | 
						|
    avctx->level               = sps->ptl.general_ptl.level_idc;
 | 
						|
 | 
						|
    ff_set_sar(avctx, sps->vui.sar);
 | 
						|
 | 
						|
    if (sps->vui.video_signal_type_present_flag)
 | 
						|
        avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
 | 
						|
                                                            : AVCOL_RANGE_MPEG;
 | 
						|
    else
 | 
						|
        avctx->color_range = AVCOL_RANGE_MPEG;
 | 
						|
 | 
						|
    if (sps->vui.colour_description_present_flag) {
 | 
						|
        avctx->color_primaries = sps->vui.colour_primaries;
 | 
						|
        avctx->color_trc       = sps->vui.transfer_characteristic;
 | 
						|
        avctx->colorspace      = sps->vui.matrix_coeffs;
 | 
						|
    } else {
 | 
						|
        avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
 | 
						|
        avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
 | 
						|
        avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
 | 
						|
    }
 | 
						|
 | 
						|
    if (vps->vps_timing_info_present_flag) {
 | 
						|
        num = vps->vps_num_units_in_tick;
 | 
						|
        den = vps->vps_time_scale;
 | 
						|
    } else if (sps->vui.vui_timing_info_present_flag) {
 | 
						|
        num = sps->vui.vui_num_units_in_tick;
 | 
						|
        den = sps->vui.vui_time_scale;
 | 
						|
    }
 | 
						|
 | 
						|
    if (num != 0 && den != 0)
 | 
						|
        av_reduce(&avctx->framerate.den, &avctx->framerate.num,
 | 
						|
                  num, den, 1 << 30);
 | 
						|
}
 | 
						|
 | 
						|
static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt)
 | 
						|
{
 | 
						|
    #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
 | 
						|
    enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
 | 
						|
    int ret, i;
 | 
						|
 | 
						|
    pic_arrays_free(s);
 | 
						|
    s->ps.sps = NULL;
 | 
						|
    s->ps.vps = NULL;
 | 
						|
 | 
						|
    if (!sps)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    ret = pic_arrays_init(s, sps);
 | 
						|
    if (ret < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    export_stream_params(s->avctx, &s->ps, sps);
 | 
						|
 | 
						|
    switch (sps->pix_fmt) {
 | 
						|
    case AV_PIX_FMT_YUV420P:
 | 
						|
    case AV_PIX_FMT_YUVJ420P:
 | 
						|
#if CONFIG_HEVC_DXVA2_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_DXVA2_VLD;
 | 
						|
#endif
 | 
						|
#if CONFIG_HEVC_D3D11VA_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
 | 
						|
#endif
 | 
						|
#if CONFIG_HEVC_VAAPI_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_VAAPI;
 | 
						|
#endif
 | 
						|
#if CONFIG_HEVC_VDPAU_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_VDPAU;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_YUV420P10:
 | 
						|
#if CONFIG_HEVC_DXVA2_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_DXVA2_VLD;
 | 
						|
#endif
 | 
						|
#if CONFIG_HEVC_D3D11VA_HWACCEL
 | 
						|
        *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
 | 
						|
#endif
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pix_fmt == AV_PIX_FMT_NONE) {
 | 
						|
        *fmt++ = sps->pix_fmt;
 | 
						|
        *fmt = AV_PIX_FMT_NONE;
 | 
						|
 | 
						|
        ret = ff_thread_get_format(s->avctx, pix_fmts);
 | 
						|
        if (ret < 0)
 | 
						|
            goto fail;
 | 
						|
        s->avctx->pix_fmt = ret;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        s->avctx->pix_fmt = pix_fmt;
 | 
						|
    }
 | 
						|
 | 
						|
    ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
 | 
						|
    ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
 | 
						|
    ff_videodsp_init (&s->vdsp,    sps->bit_depth);
 | 
						|
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        av_freep(&s->sao_pixel_buffer_h[i]);
 | 
						|
        av_freep(&s->sao_pixel_buffer_v[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    if (sps->sao_enabled && !s->avctx->hwaccel) {
 | 
						|
        int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
 | 
						|
        int c_idx;
 | 
						|
 | 
						|
        for(c_idx = 0; c_idx < c_count; c_idx++) {
 | 
						|
            int w = sps->width >> sps->hshift[c_idx];
 | 
						|
            int h = sps->height >> sps->vshift[c_idx];
 | 
						|
            s->sao_pixel_buffer_h[c_idx] =
 | 
						|
                av_malloc((w * 2 * sps->ctb_height) <<
 | 
						|
                          sps->pixel_shift);
 | 
						|
            s->sao_pixel_buffer_v[c_idx] =
 | 
						|
                av_malloc((h * 2 * sps->ctb_width) <<
 | 
						|
                          sps->pixel_shift);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->ps.sps = sps;
 | 
						|
    s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    pic_arrays_free(s);
 | 
						|
    s->ps.sps = NULL;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_slice_header(HEVCContext *s)
 | 
						|
{
 | 
						|
    GetBitContext *gb = &s->HEVClc->gb;
 | 
						|
    SliceHeader *sh   = &s->sh;
 | 
						|
    int i, ret;
 | 
						|
 | 
						|
    // Coded parameters
 | 
						|
    sh->first_slice_in_pic_flag = get_bits1(gb);
 | 
						|
    if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
 | 
						|
        s->seq_decode = (s->seq_decode + 1) & 0xff;
 | 
						|
        s->max_ra     = INT_MAX;
 | 
						|
        if (IS_IDR(s))
 | 
						|
            ff_hevc_clear_refs(s);
 | 
						|
    }
 | 
						|
    sh->no_output_of_prior_pics_flag = 0;
 | 
						|
    if (IS_IRAP(s))
 | 
						|
        sh->no_output_of_prior_pics_flag = get_bits1(gb);
 | 
						|
 | 
						|
    sh->pps_id = get_ue_golomb_long(gb);
 | 
						|
    if (sh->pps_id >= MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    if (!sh->first_slice_in_pic_flag &&
 | 
						|
        s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
 | 
						|
    if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
 | 
						|
        sh->no_output_of_prior_pics_flag = 1;
 | 
						|
 | 
						|
    if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
 | 
						|
        const HEVCSPS* last_sps = s->ps.sps;
 | 
						|
        s->ps.sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
 | 
						|
        if (last_sps && IS_IRAP(s) && s->nal_unit_type != NAL_CRA_NUT) {
 | 
						|
            if (s->ps.sps->width !=  last_sps->width || s->ps.sps->height != last_sps->height ||
 | 
						|
                s->ps.sps->temporal_layer[s->ps.sps->max_sub_layers - 1].max_dec_pic_buffering !=
 | 
						|
                last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
 | 
						|
                sh->no_output_of_prior_pics_flag = 0;
 | 
						|
        }
 | 
						|
        ff_hevc_clear_refs(s);
 | 
						|
        ret = set_sps(s, s->ps.sps, AV_PIX_FMT_NONE);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
 | 
						|
        s->seq_decode = (s->seq_decode + 1) & 0xff;
 | 
						|
        s->max_ra     = INT_MAX;
 | 
						|
    }
 | 
						|
 | 
						|
    sh->dependent_slice_segment_flag = 0;
 | 
						|
    if (!sh->first_slice_in_pic_flag) {
 | 
						|
        int slice_address_length;
 | 
						|
 | 
						|
        if (s->ps.pps->dependent_slice_segments_enabled_flag)
 | 
						|
            sh->dependent_slice_segment_flag = get_bits1(gb);
 | 
						|
 | 
						|
        slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
 | 
						|
                                            s->ps.sps->ctb_height);
 | 
						|
        sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
 | 
						|
        if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                   "Invalid slice segment address: %u.\n",
 | 
						|
                   sh->slice_segment_addr);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!sh->dependent_slice_segment_flag) {
 | 
						|
            sh->slice_addr = sh->slice_segment_addr;
 | 
						|
            s->slice_idx++;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        sh->slice_segment_addr = sh->slice_addr = 0;
 | 
						|
        s->slice_idx           = 0;
 | 
						|
        s->slice_initialized   = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!sh->dependent_slice_segment_flag) {
 | 
						|
        s->slice_initialized = 0;
 | 
						|
 | 
						|
        for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
 | 
						|
            skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
 | 
						|
 | 
						|
        sh->slice_type = get_ue_golomb_long(gb);
 | 
						|
        if (!(sh->slice_type == I_SLICE ||
 | 
						|
              sh->slice_type == P_SLICE ||
 | 
						|
              sh->slice_type == B_SLICE)) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
 | 
						|
                   sh->slice_type);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        // when flag is not present, picture is inferred to be output
 | 
						|
        sh->pic_output_flag = 1;
 | 
						|
        if (s->ps.pps->output_flag_present_flag)
 | 
						|
            sh->pic_output_flag = get_bits1(gb);
 | 
						|
 | 
						|
        if (s->ps.sps->separate_colour_plane_flag)
 | 
						|
            sh->colour_plane_id = get_bits(gb, 2);
 | 
						|
 | 
						|
        if (!IS_IDR(s)) {
 | 
						|
            int poc, pos;
 | 
						|
 | 
						|
            sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
 | 
						|
            poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
 | 
						|
            if (!sh->first_slice_in_pic_flag && poc != s->poc) {
 | 
						|
                av_log(s->avctx, AV_LOG_WARNING,
 | 
						|
                       "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
 | 
						|
                if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                poc = s->poc;
 | 
						|
            }
 | 
						|
            s->poc = poc;
 | 
						|
 | 
						|
            sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
 | 
						|
            pos = get_bits_left(gb);
 | 
						|
            if (!sh->short_term_ref_pic_set_sps_flag) {
 | 
						|
                ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
 | 
						|
                if (ret < 0)
 | 
						|
                    return ret;
 | 
						|
 | 
						|
                sh->short_term_rps = &sh->slice_rps;
 | 
						|
            } else {
 | 
						|
                int numbits, rps_idx;
 | 
						|
 | 
						|
                if (!s->ps.sps->nb_st_rps) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
 | 
						|
                numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
 | 
						|
                rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
 | 
						|
                sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
 | 
						|
            }
 | 
						|
            sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
 | 
						|
 | 
						|
            pos = get_bits_left(gb);
 | 
						|
            ret = decode_lt_rps(s, &sh->long_term_rps, gb);
 | 
						|
            if (ret < 0) {
 | 
						|
                av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
 | 
						|
                if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
            sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
 | 
						|
 | 
						|
            if (s->ps.sps->sps_temporal_mvp_enabled_flag)
 | 
						|
                sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
 | 
						|
            else
 | 
						|
                sh->slice_temporal_mvp_enabled_flag = 0;
 | 
						|
        } else {
 | 
						|
            s->sh.short_term_rps = NULL;
 | 
						|
            s->poc               = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        /* 8.3.1 */
 | 
						|
        if (s->temporal_id == 0 &&
 | 
						|
            s->nal_unit_type != NAL_TRAIL_N &&
 | 
						|
            s->nal_unit_type != NAL_TSA_N   &&
 | 
						|
            s->nal_unit_type != NAL_STSA_N  &&
 | 
						|
            s->nal_unit_type != NAL_RADL_N  &&
 | 
						|
            s->nal_unit_type != NAL_RADL_R  &&
 | 
						|
            s->nal_unit_type != NAL_RASL_N  &&
 | 
						|
            s->nal_unit_type != NAL_RASL_R)
 | 
						|
            s->pocTid0 = s->poc;
 | 
						|
 | 
						|
        if (s->ps.sps->sao_enabled) {
 | 
						|
            sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
 | 
						|
            if (s->ps.sps->chroma_format_idc) {
 | 
						|
                sh->slice_sample_adaptive_offset_flag[1] =
 | 
						|
                sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            sh->slice_sample_adaptive_offset_flag[0] = 0;
 | 
						|
            sh->slice_sample_adaptive_offset_flag[1] = 0;
 | 
						|
            sh->slice_sample_adaptive_offset_flag[2] = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
 | 
						|
        if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
 | 
						|
            int nb_refs;
 | 
						|
 | 
						|
            sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
 | 
						|
            if (sh->slice_type == B_SLICE)
 | 
						|
                sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
 | 
						|
 | 
						|
            if (get_bits1(gb)) { // num_ref_idx_active_override_flag
 | 
						|
                sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
 | 
						|
                if (sh->slice_type == B_SLICE)
 | 
						|
                    sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
 | 
						|
            }
 | 
						|
            if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
 | 
						|
                       sh->nb_refs[L0], sh->nb_refs[L1]);
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
 | 
						|
            sh->rpl_modification_flag[0] = 0;
 | 
						|
            sh->rpl_modification_flag[1] = 0;
 | 
						|
            nb_refs = ff_hevc_frame_nb_refs(s);
 | 
						|
            if (!nb_refs) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
 | 
						|
            if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
 | 
						|
                sh->rpl_modification_flag[0] = get_bits1(gb);
 | 
						|
                if (sh->rpl_modification_flag[0]) {
 | 
						|
                    for (i = 0; i < sh->nb_refs[L0]; i++)
 | 
						|
                        sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | 
						|
                }
 | 
						|
 | 
						|
                if (sh->slice_type == B_SLICE) {
 | 
						|
                    sh->rpl_modification_flag[1] = get_bits1(gb);
 | 
						|
                    if (sh->rpl_modification_flag[1] == 1)
 | 
						|
                        for (i = 0; i < sh->nb_refs[L1]; i++)
 | 
						|
                            sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if (sh->slice_type == B_SLICE)
 | 
						|
                sh->mvd_l1_zero_flag = get_bits1(gb);
 | 
						|
 | 
						|
            if (s->ps.pps->cabac_init_present_flag)
 | 
						|
                sh->cabac_init_flag = get_bits1(gb);
 | 
						|
            else
 | 
						|
                sh->cabac_init_flag = 0;
 | 
						|
 | 
						|
            sh->collocated_ref_idx = 0;
 | 
						|
            if (sh->slice_temporal_mvp_enabled_flag) {
 | 
						|
                sh->collocated_list = L0;
 | 
						|
                if (sh->slice_type == B_SLICE)
 | 
						|
                    sh->collocated_list = !get_bits1(gb);
 | 
						|
 | 
						|
                if (sh->nb_refs[sh->collocated_list] > 1) {
 | 
						|
                    sh->collocated_ref_idx = get_ue_golomb_long(gb);
 | 
						|
                    if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
 | 
						|
                        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                               "Invalid collocated_ref_idx: %d.\n",
 | 
						|
                               sh->collocated_ref_idx);
 | 
						|
                        return AVERROR_INVALIDDATA;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            if ((s->ps.pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
 | 
						|
                (s->ps.pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
 | 
						|
                pred_weight_table(s, gb);
 | 
						|
            }
 | 
						|
 | 
						|
            sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
 | 
						|
            if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                       "Invalid number of merging MVP candidates: %d.\n",
 | 
						|
                       sh->max_num_merge_cand);
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        sh->slice_qp_delta = get_se_golomb(gb);
 | 
						|
 | 
						|
        if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
 | 
						|
            sh->slice_cb_qp_offset = get_se_golomb(gb);
 | 
						|
            sh->slice_cr_qp_offset = get_se_golomb(gb);
 | 
						|
        } else {
 | 
						|
            sh->slice_cb_qp_offset = 0;
 | 
						|
            sh->slice_cr_qp_offset = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
 | 
						|
            sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
 | 
						|
        else
 | 
						|
            sh->cu_chroma_qp_offset_enabled_flag = 0;
 | 
						|
 | 
						|
        if (s->ps.pps->deblocking_filter_control_present_flag) {
 | 
						|
            int deblocking_filter_override_flag = 0;
 | 
						|
 | 
						|
            if (s->ps.pps->deblocking_filter_override_enabled_flag)
 | 
						|
                deblocking_filter_override_flag = get_bits1(gb);
 | 
						|
 | 
						|
            if (deblocking_filter_override_flag) {
 | 
						|
                sh->disable_deblocking_filter_flag = get_bits1(gb);
 | 
						|
                if (!sh->disable_deblocking_filter_flag) {
 | 
						|
                    sh->beta_offset = get_se_golomb(gb) * 2;
 | 
						|
                    sh->tc_offset   = get_se_golomb(gb) * 2;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
 | 
						|
                sh->beta_offset                    = s->ps.pps->beta_offset;
 | 
						|
                sh->tc_offset                      = s->ps.pps->tc_offset;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            sh->disable_deblocking_filter_flag = 0;
 | 
						|
            sh->beta_offset                    = 0;
 | 
						|
            sh->tc_offset                      = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
 | 
						|
            (sh->slice_sample_adaptive_offset_flag[0] ||
 | 
						|
             sh->slice_sample_adaptive_offset_flag[1] ||
 | 
						|
             !sh->disable_deblocking_filter_flag)) {
 | 
						|
            sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
 | 
						|
        } else {
 | 
						|
            sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
 | 
						|
        }
 | 
						|
    } else if (!s->slice_initialized) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    sh->num_entry_point_offsets = 0;
 | 
						|
    if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
 | 
						|
        unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
 | 
						|
        // It would be possible to bound this tighter but this here is simpler
 | 
						|
        if (num_entry_point_offsets > get_bits_left(gb)) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        sh->num_entry_point_offsets = num_entry_point_offsets;
 | 
						|
        if (sh->num_entry_point_offsets > 0) {
 | 
						|
            int offset_len = get_ue_golomb_long(gb) + 1;
 | 
						|
 | 
						|
            if (offset_len < 1 || offset_len > 32) {
 | 
						|
                sh->num_entry_point_offsets = 0;
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
 | 
						|
            av_freep(&sh->entry_point_offset);
 | 
						|
            av_freep(&sh->offset);
 | 
						|
            av_freep(&sh->size);
 | 
						|
            sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
 | 
						|
            sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
 | 
						|
            sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
 | 
						|
            if (!sh->entry_point_offset || !sh->offset || !sh->size) {
 | 
						|
                sh->num_entry_point_offsets = 0;
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
 | 
						|
                return AVERROR(ENOMEM);
 | 
						|
            }
 | 
						|
            for (i = 0; i < sh->num_entry_point_offsets; i++) {
 | 
						|
                unsigned val = get_bits_long(gb, offset_len);
 | 
						|
                sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
 | 
						|
            }
 | 
						|
            if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
 | 
						|
                s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
 | 
						|
                s->threads_number = 1;
 | 
						|
            } else
 | 
						|
                s->enable_parallel_tiles = 0;
 | 
						|
        } else
 | 
						|
            s->enable_parallel_tiles = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.pps->slice_header_extension_present_flag) {
 | 
						|
        unsigned int length = get_ue_golomb_long(gb);
 | 
						|
        if (length*8LL > get_bits_left(gb)) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        for (i = 0; i < length; i++)
 | 
						|
            skip_bits(gb, 8);  // slice_header_extension_data_byte
 | 
						|
    }
 | 
						|
 | 
						|
    // Inferred parameters
 | 
						|
    sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
 | 
						|
    if (sh->slice_qp > 51 ||
 | 
						|
        sh->slice_qp < -s->ps.sps->qp_bd_offset) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
               "The slice_qp %d is outside the valid range "
 | 
						|
               "[%d, 51].\n",
 | 
						|
               sh->slice_qp,
 | 
						|
               -s->ps.sps->qp_bd_offset);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    sh->slice_ctb_addr_rs = sh->slice_segment_addr;
 | 
						|
 | 
						|
    if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (get_bits_left(gb) < 0) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
               "Overread slice header by %d bits\n", -get_bits_left(gb));
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
 | 
						|
 | 
						|
    if (!s->ps.pps->cu_qp_delta_enabled_flag)
 | 
						|
        s->HEVClc->qp_y = s->sh.slice_qp;
 | 
						|
 | 
						|
    s->slice_initialized = 1;
 | 
						|
    s->HEVClc->tu.cu_qp_offset_cb = 0;
 | 
						|
    s->HEVClc->tu.cu_qp_offset_cr = 0;
 | 
						|
 | 
						|
    s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == NAL_CRA_NUT && s->last_eos);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
 | 
						|
 | 
						|
#define SET_SAO(elem, value)                            \
 | 
						|
do {                                                    \
 | 
						|
    if (!sao_merge_up_flag && !sao_merge_left_flag)     \
 | 
						|
        sao->elem = value;                              \
 | 
						|
    else if (sao_merge_left_flag)                       \
 | 
						|
        sao->elem = CTB(s->sao, rx-1, ry).elem;         \
 | 
						|
    else if (sao_merge_up_flag)                         \
 | 
						|
        sao->elem = CTB(s->sao, rx, ry-1).elem;         \
 | 
						|
    else                                                \
 | 
						|
        sao->elem = 0;                                  \
 | 
						|
} while (0)
 | 
						|
 | 
						|
static void hls_sao_param(HEVCContext *s, int rx, int ry)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc    = s->HEVClc;
 | 
						|
    int sao_merge_left_flag = 0;
 | 
						|
    int sao_merge_up_flag   = 0;
 | 
						|
    SAOParams *sao          = &CTB(s->sao, rx, ry);
 | 
						|
    int c_idx, i;
 | 
						|
 | 
						|
    if (s->sh.slice_sample_adaptive_offset_flag[0] ||
 | 
						|
        s->sh.slice_sample_adaptive_offset_flag[1]) {
 | 
						|
        if (rx > 0) {
 | 
						|
            if (lc->ctb_left_flag)
 | 
						|
                sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
 | 
						|
        }
 | 
						|
        if (ry > 0 && !sao_merge_left_flag) {
 | 
						|
            if (lc->ctb_up_flag)
 | 
						|
                sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
 | 
						|
        int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
 | 
						|
                                                 s->ps.pps->log2_sao_offset_scale_chroma;
 | 
						|
 | 
						|
        if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
 | 
						|
            sao->type_idx[c_idx] = SAO_NOT_APPLIED;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (c_idx == 2) {
 | 
						|
            sao->type_idx[2] = sao->type_idx[1];
 | 
						|
            sao->eo_class[2] = sao->eo_class[1];
 | 
						|
        } else {
 | 
						|
            SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
 | 
						|
        }
 | 
						|
 | 
						|
        if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
 | 
						|
            continue;
 | 
						|
 | 
						|
        for (i = 0; i < 4; i++)
 | 
						|
            SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
 | 
						|
 | 
						|
        if (sao->type_idx[c_idx] == SAO_BAND) {
 | 
						|
            for (i = 0; i < 4; i++) {
 | 
						|
                if (sao->offset_abs[c_idx][i]) {
 | 
						|
                    SET_SAO(offset_sign[c_idx][i],
 | 
						|
                            ff_hevc_sao_offset_sign_decode(s));
 | 
						|
                } else {
 | 
						|
                    sao->offset_sign[c_idx][i] = 0;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
 | 
						|
        } else if (c_idx != 2) {
 | 
						|
            SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
 | 
						|
        }
 | 
						|
 | 
						|
        // Inferred parameters
 | 
						|
        sao->offset_val[c_idx][0] = 0;
 | 
						|
        for (i = 0; i < 4; i++) {
 | 
						|
            sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
 | 
						|
            if (sao->type_idx[c_idx] == SAO_EDGE) {
 | 
						|
                if (i > 1)
 | 
						|
                    sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | 
						|
            } else if (sao->offset_sign[c_idx][i]) {
 | 
						|
                sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
 | 
						|
            }
 | 
						|
            sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#undef SET_SAO
 | 
						|
#undef CTB
 | 
						|
 | 
						|
static int hls_cross_component_pred(HEVCContext *s, int idx) {
 | 
						|
    HEVCLocalContext *lc    = s->HEVClc;
 | 
						|
    int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
 | 
						|
 | 
						|
    if (log2_res_scale_abs_plus1 !=  0) {
 | 
						|
        int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
 | 
						|
        lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
 | 
						|
                               (1 - 2 * res_scale_sign_flag);
 | 
						|
    } else {
 | 
						|
        lc->tu.res_scale_val = 0;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_transform_unit(HEVCContext *s, int x0, int y0,
 | 
						|
                              int xBase, int yBase, int cb_xBase, int cb_yBase,
 | 
						|
                              int log2_cb_size, int log2_trafo_size,
 | 
						|
                              int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
        int trafo_size = 1 << log2_trafo_size;
 | 
						|
        ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
 | 
						|
 | 
						|
        s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
 | 
						|
        (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
 | 
						|
        int scan_idx   = SCAN_DIAG;
 | 
						|
        int scan_idx_c = SCAN_DIAG;
 | 
						|
        int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
 | 
						|
                         (s->ps.sps->chroma_format_idc == 2 &&
 | 
						|
                         (cbf_cb[1] || cbf_cr[1]));
 | 
						|
 | 
						|
        if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
 | 
						|
            lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
 | 
						|
            if (lc->tu.cu_qp_delta != 0)
 | 
						|
                if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
 | 
						|
                    lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
 | 
						|
            lc->tu.is_cu_qp_delta_coded = 1;
 | 
						|
 | 
						|
            if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
 | 
						|
                lc->tu.cu_qp_delta >  (25 + s->ps.sps->qp_bd_offset / 2)) {
 | 
						|
                av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                       "The cu_qp_delta %d is outside the valid range "
 | 
						|
                       "[%d, %d].\n",
 | 
						|
                       lc->tu.cu_qp_delta,
 | 
						|
                       -(26 + s->ps.sps->qp_bd_offset / 2),
 | 
						|
                        (25 + s->ps.sps->qp_bd_offset / 2));
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
 | 
						|
            ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
 | 
						|
            !lc->cu.cu_transquant_bypass_flag  &&  !lc->tu.is_cu_chroma_qp_offset_coded) {
 | 
						|
            int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
 | 
						|
            if (cu_chroma_qp_offset_flag) {
 | 
						|
                int cu_chroma_qp_offset_idx  = 0;
 | 
						|
                if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
 | 
						|
                    cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                        "cu_chroma_qp_offset_idx not yet tested.\n");
 | 
						|
                }
 | 
						|
                lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
 | 
						|
                lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
 | 
						|
            } else {
 | 
						|
                lc->tu.cu_qp_offset_cb = 0;
 | 
						|
                lc->tu.cu_qp_offset_cr = 0;
 | 
						|
            }
 | 
						|
            lc->tu.is_cu_chroma_qp_offset_coded = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
 | 
						|
            if (lc->tu.intra_pred_mode >= 6 &&
 | 
						|
                lc->tu.intra_pred_mode <= 14) {
 | 
						|
                scan_idx = SCAN_VERT;
 | 
						|
            } else if (lc->tu.intra_pred_mode >= 22 &&
 | 
						|
                       lc->tu.intra_pred_mode <= 30) {
 | 
						|
                scan_idx = SCAN_HORIZ;
 | 
						|
            }
 | 
						|
 | 
						|
            if (lc->tu.intra_pred_mode_c >=  6 &&
 | 
						|
                lc->tu.intra_pred_mode_c <= 14) {
 | 
						|
                scan_idx_c = SCAN_VERT;
 | 
						|
            } else if (lc->tu.intra_pred_mode_c >= 22 &&
 | 
						|
                       lc->tu.intra_pred_mode_c <= 30) {
 | 
						|
                scan_idx_c = SCAN_HORIZ;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        lc->tu.cross_pf = 0;
 | 
						|
 | 
						|
        if (cbf_luma)
 | 
						|
            ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
 | 
						|
        if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
 | 
						|
            int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
 | 
						|
            int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
 | 
						|
            lc->tu.cross_pf  = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
 | 
						|
                                (lc->cu.pred_mode == MODE_INTER ||
 | 
						|
                                 (lc->tu.chroma_mode_c ==  4)));
 | 
						|
 | 
						|
            if (lc->tu.cross_pf) {
 | 
						|
                hls_cross_component_pred(s, 0);
 | 
						|
            }
 | 
						|
            for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
 | 
						|
                if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
                    ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
 | 
						|
                    s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
 | 
						|
                }
 | 
						|
                if (cbf_cb[i])
 | 
						|
                    ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
 | 
						|
                                                log2_trafo_size_c, scan_idx_c, 1);
 | 
						|
                else
 | 
						|
                    if (lc->tu.cross_pf) {
 | 
						|
                        ptrdiff_t stride = s->frame->linesize[1];
 | 
						|
                        int hshift = s->ps.sps->hshift[1];
 | 
						|
                        int vshift = s->ps.sps->vshift[1];
 | 
						|
                        int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
 | 
						|
                        int16_t *coeffs   = (int16_t*)lc->edge_emu_buffer2;
 | 
						|
                        int size = 1 << log2_trafo_size_c;
 | 
						|
 | 
						|
                        uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
 | 
						|
                                                              ((x0 >> hshift) << s->ps.sps->pixel_shift)];
 | 
						|
                        for (i = 0; i < (size * size); i++) {
 | 
						|
                            coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
 | 
						|
                        }
 | 
						|
                        s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
 | 
						|
                    }
 | 
						|
            }
 | 
						|
 | 
						|
            if (lc->tu.cross_pf) {
 | 
						|
                hls_cross_component_pred(s, 1);
 | 
						|
            }
 | 
						|
            for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
 | 
						|
                if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
                    ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
 | 
						|
                    s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
 | 
						|
                }
 | 
						|
                if (cbf_cr[i])
 | 
						|
                    ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
 | 
						|
                                                log2_trafo_size_c, scan_idx_c, 2);
 | 
						|
                else
 | 
						|
                    if (lc->tu.cross_pf) {
 | 
						|
                        ptrdiff_t stride = s->frame->linesize[2];
 | 
						|
                        int hshift = s->ps.sps->hshift[2];
 | 
						|
                        int vshift = s->ps.sps->vshift[2];
 | 
						|
                        int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
 | 
						|
                        int16_t *coeffs   = (int16_t*)lc->edge_emu_buffer2;
 | 
						|
                        int size = 1 << log2_trafo_size_c;
 | 
						|
 | 
						|
                        uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
 | 
						|
                                                          ((x0 >> hshift) << s->ps.sps->pixel_shift)];
 | 
						|
                        for (i = 0; i < (size * size); i++) {
 | 
						|
                            coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
 | 
						|
                        }
 | 
						|
                        s->hevcdsp.transform_add[log2_trafo_size_c-2](dst, coeffs, stride);
 | 
						|
                    }
 | 
						|
            }
 | 
						|
        } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
 | 
						|
            int trafo_size_h = 1 << (log2_trafo_size + 1);
 | 
						|
            int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
 | 
						|
            for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
 | 
						|
                if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
                    ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
 | 
						|
                                                    trafo_size_h, trafo_size_v);
 | 
						|
                    s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
 | 
						|
                }
 | 
						|
                if (cbf_cb[i])
 | 
						|
                    ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
 | 
						|
                                                log2_trafo_size, scan_idx_c, 1);
 | 
						|
            }
 | 
						|
            for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
 | 
						|
                if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
                    ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
 | 
						|
                                                trafo_size_h, trafo_size_v);
 | 
						|
                    s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
 | 
						|
                }
 | 
						|
                if (cbf_cr[i])
 | 
						|
                    ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
 | 
						|
                                                log2_trafo_size, scan_idx_c, 2);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
        if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
 | 
						|
            int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
 | 
						|
            int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
 | 
						|
            ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
 | 
						|
            s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
 | 
						|
            s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
 | 
						|
            if (s->ps.sps->chroma_format_idc == 2) {
 | 
						|
                ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
 | 
						|
                                                trafo_size_h, trafo_size_v);
 | 
						|
                s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
 | 
						|
                s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
 | 
						|
            }
 | 
						|
        } else if (blk_idx == 3) {
 | 
						|
            int trafo_size_h = 1 << (log2_trafo_size + 1);
 | 
						|
            int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
 | 
						|
            ff_hevc_set_neighbour_available(s, xBase, yBase,
 | 
						|
                                            trafo_size_h, trafo_size_v);
 | 
						|
            s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
 | 
						|
            s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
 | 
						|
            if (s->ps.sps->chroma_format_idc == 2) {
 | 
						|
                ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
 | 
						|
                                                trafo_size_h, trafo_size_v);
 | 
						|
                s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
 | 
						|
                s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | 
						|
{
 | 
						|
    int cb_size          = 1 << log2_cb_size;
 | 
						|
    int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
 | 
						|
 | 
						|
    int min_pu_width     = s->ps.sps->min_pu_width;
 | 
						|
    int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
 | 
						|
    int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
 | 
						|
        for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
 | 
						|
            s->is_pcm[i + j * min_pu_width] = 2;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_transform_tree(HEVCContext *s, int x0, int y0,
 | 
						|
                              int xBase, int yBase, int cb_xBase, int cb_yBase,
 | 
						|
                              int log2_cb_size, int log2_trafo_size,
 | 
						|
                              int trafo_depth, int blk_idx,
 | 
						|
                              const int *base_cbf_cb, const int *base_cbf_cr)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    uint8_t split_transform_flag;
 | 
						|
    int cbf_cb[2];
 | 
						|
    int cbf_cr[2];
 | 
						|
    int ret;
 | 
						|
 | 
						|
    cbf_cb[0] = base_cbf_cb[0];
 | 
						|
    cbf_cb[1] = base_cbf_cb[1];
 | 
						|
    cbf_cr[0] = base_cbf_cr[0];
 | 
						|
    cbf_cr[1] = base_cbf_cr[1];
 | 
						|
 | 
						|
    if (lc->cu.intra_split_flag) {
 | 
						|
        if (trafo_depth == 1) {
 | 
						|
            lc->tu.intra_pred_mode   = lc->pu.intra_pred_mode[blk_idx];
 | 
						|
            if (s->ps.sps->chroma_format_idc == 3) {
 | 
						|
                lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
 | 
						|
                lc->tu.chroma_mode_c     = lc->pu.chroma_mode_c[blk_idx];
 | 
						|
            } else {
 | 
						|
                lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
 | 
						|
                lc->tu.chroma_mode_c     = lc->pu.chroma_mode_c[0];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        lc->tu.intra_pred_mode   = lc->pu.intra_pred_mode[0];
 | 
						|
        lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
 | 
						|
        lc->tu.chroma_mode_c     = lc->pu.chroma_mode_c[0];
 | 
						|
    }
 | 
						|
 | 
						|
    if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
 | 
						|
        log2_trafo_size >  s->ps.sps->log2_min_tb_size    &&
 | 
						|
        trafo_depth     < lc->cu.max_trafo_depth       &&
 | 
						|
        !(lc->cu.intra_split_flag && trafo_depth == 0)) {
 | 
						|
        split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
 | 
						|
    } else {
 | 
						|
        int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
 | 
						|
                          lc->cu.pred_mode == MODE_INTER &&
 | 
						|
                          lc->cu.part_mode != PART_2Nx2N &&
 | 
						|
                          trafo_depth == 0;
 | 
						|
 | 
						|
        split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
 | 
						|
                               (lc->cu.intra_split_flag && trafo_depth == 0) ||
 | 
						|
                               inter_split;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
 | 
						|
        if (trafo_depth == 0 || cbf_cb[0]) {
 | 
						|
            cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | 
						|
            if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
 | 
						|
                cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (trafo_depth == 0 || cbf_cr[0]) {
 | 
						|
            cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | 
						|
            if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
 | 
						|
                cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (split_transform_flag) {
 | 
						|
        const int trafo_size_split = 1 << (log2_trafo_size - 1);
 | 
						|
        const int x1 = x0 + trafo_size_split;
 | 
						|
        const int y1 = y0 + trafo_size_split;
 | 
						|
 | 
						|
#define SUBDIVIDE(x, y, idx)                                                    \
 | 
						|
do {                                                                            \
 | 
						|
    ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
 | 
						|
                             log2_trafo_size - 1, trafo_depth + 1, idx,         \
 | 
						|
                             cbf_cb, cbf_cr);                                   \
 | 
						|
    if (ret < 0)                                                                \
 | 
						|
        return ret;                                                             \
 | 
						|
} while (0)
 | 
						|
 | 
						|
        SUBDIVIDE(x0, y0, 0);
 | 
						|
        SUBDIVIDE(x1, y0, 1);
 | 
						|
        SUBDIVIDE(x0, y1, 2);
 | 
						|
        SUBDIVIDE(x1, y1, 3);
 | 
						|
 | 
						|
#undef SUBDIVIDE
 | 
						|
    } else {
 | 
						|
        int min_tu_size      = 1 << s->ps.sps->log2_min_tb_size;
 | 
						|
        int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
 | 
						|
        int min_tu_width     = s->ps.sps->min_tb_width;
 | 
						|
        int cbf_luma         = 1;
 | 
						|
 | 
						|
        if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
 | 
						|
            cbf_cb[0] || cbf_cr[0] ||
 | 
						|
            (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
 | 
						|
            cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
 | 
						|
        }
 | 
						|
 | 
						|
        ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
 | 
						|
                                 log2_cb_size, log2_trafo_size,
 | 
						|
                                 blk_idx, cbf_luma, cbf_cb, cbf_cr);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
        // TODO: store cbf_luma somewhere else
 | 
						|
        if (cbf_luma) {
 | 
						|
            int i, j;
 | 
						|
            for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
 | 
						|
                for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
 | 
						|
                    int x_tu = (x0 + j) >> log2_min_tu_size;
 | 
						|
                    int y_tu = (y0 + i) >> log2_min_tu_size;
 | 
						|
                    s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
 | 
						|
                }
 | 
						|
        }
 | 
						|
        if (!s->sh.disable_deblocking_filter_flag) {
 | 
						|
            ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
 | 
						|
            if (s->ps.pps->transquant_bypass_enable_flag &&
 | 
						|
                lc->cu.cu_transquant_bypass_flag)
 | 
						|
                set_deblocking_bypass(s, x0, y0, log2_trafo_size);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    GetBitContext gb;
 | 
						|
    int cb_size   = 1 << log2_cb_size;
 | 
						|
    int stride0   = s->frame->linesize[0];
 | 
						|
    uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
 | 
						|
    int   stride1 = s->frame->linesize[1];
 | 
						|
    uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
 | 
						|
    int   stride2 = s->frame->linesize[2];
 | 
						|
    uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
 | 
						|
 | 
						|
    int length         = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
 | 
						|
                         (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
 | 
						|
                          ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
 | 
						|
                          s->ps.sps->pcm.bit_depth_chroma;
 | 
						|
    const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (!s->sh.disable_deblocking_filter_flag)
 | 
						|
        ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | 
						|
 | 
						|
    ret = init_get_bits(&gb, pcm, length);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size,     &gb, s->ps.sps->pcm.bit_depth);
 | 
						|
    if (s->ps.sps->chroma_format_idc) {
 | 
						|
        s->hevcdsp.put_pcm(dst1, stride1,
 | 
						|
                           cb_size >> s->ps.sps->hshift[1],
 | 
						|
                           cb_size >> s->ps.sps->vshift[1],
 | 
						|
                           &gb, s->ps.sps->pcm.bit_depth_chroma);
 | 
						|
        s->hevcdsp.put_pcm(dst2, stride2,
 | 
						|
                           cb_size >> s->ps.sps->hshift[2],
 | 
						|
                           cb_size >> s->ps.sps->vshift[2],
 | 
						|
                           &gb, s->ps.sps->pcm.bit_depth_chroma);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
 | 
						|
 *
 | 
						|
 * @param s HEVC decoding context
 | 
						|
 * @param dst target buffer for block data at block position
 | 
						|
 * @param dststride stride of the dst buffer
 | 
						|
 * @param ref reference picture buffer at origin (0, 0)
 | 
						|
 * @param mv motion vector (relative to block position) to get pixel data from
 | 
						|
 * @param x_off horizontal position of block from origin (0, 0)
 | 
						|
 * @param y_off vertical position of block from origin (0, 0)
 | 
						|
 * @param block_w width of block
 | 
						|
 * @param block_h height of block
 | 
						|
 * @param luma_weight weighting factor applied to the luma prediction
 | 
						|
 * @param luma_offset additive offset applied to the luma prediction value
 | 
						|
 */
 | 
						|
 | 
						|
static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
 | 
						|
                        AVFrame *ref, const Mv *mv, int x_off, int y_off,
 | 
						|
                        int block_w, int block_h, int luma_weight, int luma_offset)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    uint8_t *src         = ref->data[0];
 | 
						|
    ptrdiff_t srcstride  = ref->linesize[0];
 | 
						|
    int pic_width        = s->ps.sps->width;
 | 
						|
    int pic_height       = s->ps.sps->height;
 | 
						|
    int mx               = mv->x & 3;
 | 
						|
    int my               = mv->y & 3;
 | 
						|
    int weight_flag      = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
 | 
						|
                           (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
 | 
						|
    int idx              = ff_hevc_pel_weight[block_w];
 | 
						|
 | 
						|
    x_off += mv->x >> 2;
 | 
						|
    y_off += mv->y >> 2;
 | 
						|
    src   += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
 | 
						|
 | 
						|
    if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
 | 
						|
        x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | 
						|
        y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset     = QPEL_EXTRA_BEFORE * srcstride       + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
        int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
 | 
						|
                                 edge_emu_stride, srcstride,
 | 
						|
                                 block_w + QPEL_EXTRA,
 | 
						|
                                 block_h + QPEL_EXTRA,
 | 
						|
                                 x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
        src = lc->edge_emu_buffer + buf_offset;
 | 
						|
        srcstride = edge_emu_stride;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!weight_flag)
 | 
						|
        s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
 | 
						|
                                                      block_h, mx, my, block_w);
 | 
						|
    else
 | 
						|
        s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
 | 
						|
                                                        block_h, s->sh.luma_log2_weight_denom,
 | 
						|
                                                        luma_weight, luma_offset, mx, my, block_w);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
 | 
						|
 *
 | 
						|
 * @param s HEVC decoding context
 | 
						|
 * @param dst target buffer for block data at block position
 | 
						|
 * @param dststride stride of the dst buffer
 | 
						|
 * @param ref0 reference picture0 buffer at origin (0, 0)
 | 
						|
 * @param mv0 motion vector0 (relative to block position) to get pixel data from
 | 
						|
 * @param x_off horizontal position of block from origin (0, 0)
 | 
						|
 * @param y_off vertical position of block from origin (0, 0)
 | 
						|
 * @param block_w width of block
 | 
						|
 * @param block_h height of block
 | 
						|
 * @param ref1 reference picture1 buffer at origin (0, 0)
 | 
						|
 * @param mv1 motion vector1 (relative to block position) to get pixel data from
 | 
						|
 * @param current_mv current motion vector structure
 | 
						|
 */
 | 
						|
 static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
 | 
						|
                       AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
 | 
						|
                       int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    ptrdiff_t src0stride  = ref0->linesize[0];
 | 
						|
    ptrdiff_t src1stride  = ref1->linesize[0];
 | 
						|
    int pic_width        = s->ps.sps->width;
 | 
						|
    int pic_height       = s->ps.sps->height;
 | 
						|
    int mx0              = mv0->x & 3;
 | 
						|
    int my0              = mv0->y & 3;
 | 
						|
    int mx1              = mv1->x & 3;
 | 
						|
    int my1              = mv1->y & 3;
 | 
						|
    int weight_flag      = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
 | 
						|
                           (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
 | 
						|
    int x_off0           = x_off + (mv0->x >> 2);
 | 
						|
    int y_off0           = y_off + (mv0->y >> 2);
 | 
						|
    int x_off1           = x_off + (mv1->x >> 2);
 | 
						|
    int y_off1           = y_off + (mv1->y >> 2);
 | 
						|
    int idx              = ff_hevc_pel_weight[block_w];
 | 
						|
 | 
						|
    uint8_t *src0  = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
 | 
						|
    uint8_t *src1  = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
 | 
						|
 | 
						|
    if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
 | 
						|
        x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | 
						|
        y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset     = QPEL_EXTRA_BEFORE * src0stride       + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
        int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
 | 
						|
                                 edge_emu_stride, src0stride,
 | 
						|
                                 block_w + QPEL_EXTRA,
 | 
						|
                                 block_h + QPEL_EXTRA,
 | 
						|
                                 x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
        src0 = lc->edge_emu_buffer + buf_offset;
 | 
						|
        src0stride = edge_emu_stride;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
 | 
						|
        x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
 | 
						|
        y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset     = QPEL_EXTRA_BEFORE * src1stride       + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
        int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
 | 
						|
                                 edge_emu_stride, src1stride,
 | 
						|
                                 block_w + QPEL_EXTRA,
 | 
						|
                                 block_h + QPEL_EXTRA,
 | 
						|
                                 x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
        src1 = lc->edge_emu_buffer2 + buf_offset;
 | 
						|
        src1stride = edge_emu_stride;
 | 
						|
    }
 | 
						|
 | 
						|
    s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
 | 
						|
                                                block_h, mx0, my0, block_w);
 | 
						|
    if (!weight_flag)
 | 
						|
        s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
 | 
						|
                                                       block_h, mx1, my1, block_w);
 | 
						|
    else
 | 
						|
        s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
 | 
						|
                                                         block_h, s->sh.luma_log2_weight_denom,
 | 
						|
                                                         s->sh.luma_weight_l0[current_mv->ref_idx[0]],
 | 
						|
                                                         s->sh.luma_weight_l1[current_mv->ref_idx[1]],
 | 
						|
                                                         s->sh.luma_offset_l0[current_mv->ref_idx[0]],
 | 
						|
                                                         s->sh.luma_offset_l1[current_mv->ref_idx[1]],
 | 
						|
                                                         mx1, my1, block_w);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
 | 
						|
 *
 | 
						|
 * @param s HEVC decoding context
 | 
						|
 * @param dst1 target buffer for block data at block position (U plane)
 | 
						|
 * @param dst2 target buffer for block data at block position (V plane)
 | 
						|
 * @param dststride stride of the dst1 and dst2 buffers
 | 
						|
 * @param ref reference picture buffer at origin (0, 0)
 | 
						|
 * @param mv motion vector (relative to block position) to get pixel data from
 | 
						|
 * @param x_off horizontal position of block from origin (0, 0)
 | 
						|
 * @param y_off vertical position of block from origin (0, 0)
 | 
						|
 * @param block_w width of block
 | 
						|
 * @param block_h height of block
 | 
						|
 * @param chroma_weight weighting factor applied to the chroma prediction
 | 
						|
 * @param chroma_offset additive offset applied to the chroma prediction value
 | 
						|
 */
 | 
						|
 | 
						|
static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
 | 
						|
                          ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
 | 
						|
                          int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int pic_width        = s->ps.sps->width >> s->ps.sps->hshift[1];
 | 
						|
    int pic_height       = s->ps.sps->height >> s->ps.sps->vshift[1];
 | 
						|
    const Mv *mv         = ¤t_mv->mv[reflist];
 | 
						|
    int weight_flag      = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
 | 
						|
                           (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
 | 
						|
    int idx              = ff_hevc_pel_weight[block_w];
 | 
						|
    int hshift           = s->ps.sps->hshift[1];
 | 
						|
    int vshift           = s->ps.sps->vshift[1];
 | 
						|
    intptr_t mx          = av_mod_uintp2(mv->x, 2 + hshift);
 | 
						|
    intptr_t my          = av_mod_uintp2(mv->y, 2 + vshift);
 | 
						|
    intptr_t _mx         = mx << (1 - hshift);
 | 
						|
    intptr_t _my         = my << (1 - vshift);
 | 
						|
 | 
						|
    x_off += mv->x >> (2 + hshift);
 | 
						|
    y_off += mv->y >> (2 + vshift);
 | 
						|
    src0  += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
 | 
						|
 | 
						|
    if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
 | 
						|
        x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | 
						|
        y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
 | 
						|
        int buf_offset0 = EPEL_EXTRA_BEFORE *
 | 
						|
                          (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
 | 
						|
                                 edge_emu_stride, srcstride,
 | 
						|
                                 block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | 
						|
                                 x_off - EPEL_EXTRA_BEFORE,
 | 
						|
                                 y_off - EPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
 | 
						|
        src0 = lc->edge_emu_buffer + buf_offset0;
 | 
						|
        srcstride = edge_emu_stride;
 | 
						|
    }
 | 
						|
    if (!weight_flag)
 | 
						|
        s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
 | 
						|
                                                  block_h, _mx, _my, block_w);
 | 
						|
    else
 | 
						|
        s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
 | 
						|
                                                        block_h, s->sh.chroma_log2_weight_denom,
 | 
						|
                                                        chroma_weight, chroma_offset, _mx, _my, block_w);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
 | 
						|
 *
 | 
						|
 * @param s HEVC decoding context
 | 
						|
 * @param dst target buffer for block data at block position
 | 
						|
 * @param dststride stride of the dst buffer
 | 
						|
 * @param ref0 reference picture0 buffer at origin (0, 0)
 | 
						|
 * @param mv0 motion vector0 (relative to block position) to get pixel data from
 | 
						|
 * @param x_off horizontal position of block from origin (0, 0)
 | 
						|
 * @param y_off vertical position of block from origin (0, 0)
 | 
						|
 * @param block_w width of block
 | 
						|
 * @param block_h height of block
 | 
						|
 * @param ref1 reference picture1 buffer at origin (0, 0)
 | 
						|
 * @param mv1 motion vector1 (relative to block position) to get pixel data from
 | 
						|
 * @param current_mv current motion vector structure
 | 
						|
 * @param cidx chroma component(cb, cr)
 | 
						|
 */
 | 
						|
static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
 | 
						|
                         int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    uint8_t *src1        = ref0->data[cidx+1];
 | 
						|
    uint8_t *src2        = ref1->data[cidx+1];
 | 
						|
    ptrdiff_t src1stride = ref0->linesize[cidx+1];
 | 
						|
    ptrdiff_t src2stride = ref1->linesize[cidx+1];
 | 
						|
    int weight_flag      = (s->sh.slice_type == P_SLICE && s->ps.pps->weighted_pred_flag) ||
 | 
						|
                           (s->sh.slice_type == B_SLICE && s->ps.pps->weighted_bipred_flag);
 | 
						|
    int pic_width        = s->ps.sps->width >> s->ps.sps->hshift[1];
 | 
						|
    int pic_height       = s->ps.sps->height >> s->ps.sps->vshift[1];
 | 
						|
    Mv *mv0              = ¤t_mv->mv[0];
 | 
						|
    Mv *mv1              = ¤t_mv->mv[1];
 | 
						|
    int hshift = s->ps.sps->hshift[1];
 | 
						|
    int vshift = s->ps.sps->vshift[1];
 | 
						|
 | 
						|
    intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
 | 
						|
    intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
 | 
						|
    intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
 | 
						|
    intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
 | 
						|
    intptr_t _mx0 = mx0 << (1 - hshift);
 | 
						|
    intptr_t _my0 = my0 << (1 - vshift);
 | 
						|
    intptr_t _mx1 = mx1 << (1 - hshift);
 | 
						|
    intptr_t _my1 = my1 << (1 - vshift);
 | 
						|
 | 
						|
    int x_off0 = x_off + (mv0->x >> (2 + hshift));
 | 
						|
    int y_off0 = y_off + (mv0->y >> (2 + vshift));
 | 
						|
    int x_off1 = x_off + (mv1->x >> (2 + hshift));
 | 
						|
    int y_off1 = y_off + (mv1->y >> (2 + vshift));
 | 
						|
    int idx = ff_hevc_pel_weight[block_w];
 | 
						|
    src1  += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
 | 
						|
    src2  += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
 | 
						|
 | 
						|
    if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
 | 
						|
        x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | 
						|
        y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
 | 
						|
        int buf_offset1 = EPEL_EXTRA_BEFORE *
 | 
						|
                          (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
 | 
						|
                                 edge_emu_stride, src1stride,
 | 
						|
                                 block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | 
						|
                                 x_off0 - EPEL_EXTRA_BEFORE,
 | 
						|
                                 y_off0 - EPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
 | 
						|
        src1 = lc->edge_emu_buffer + buf_offset1;
 | 
						|
        src1stride = edge_emu_stride;
 | 
						|
    }
 | 
						|
 | 
						|
    if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
 | 
						|
        x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
 | 
						|
        y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
 | 
						|
        const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
 | 
						|
        int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
 | 
						|
        int buf_offset1 = EPEL_EXTRA_BEFORE *
 | 
						|
                          (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
 | 
						|
 | 
						|
        s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
 | 
						|
                                 edge_emu_stride, src2stride,
 | 
						|
                                 block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
 | 
						|
                                 x_off1 - EPEL_EXTRA_BEFORE,
 | 
						|
                                 y_off1 - EPEL_EXTRA_BEFORE,
 | 
						|
                                 pic_width, pic_height);
 | 
						|
 | 
						|
        src2 = lc->edge_emu_buffer2 + buf_offset1;
 | 
						|
        src2stride = edge_emu_stride;
 | 
						|
    }
 | 
						|
 | 
						|
    s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
 | 
						|
                                                block_h, _mx0, _my0, block_w);
 | 
						|
    if (!weight_flag)
 | 
						|
        s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
 | 
						|
                                                       src2, src2stride, lc->tmp,
 | 
						|
                                                       block_h, _mx1, _my1, block_w);
 | 
						|
    else
 | 
						|
        s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
 | 
						|
                                                         src2, src2stride, lc->tmp,
 | 
						|
                                                         block_h,
 | 
						|
                                                         s->sh.chroma_log2_weight_denom,
 | 
						|
                                                         s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
 | 
						|
                                                         s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
 | 
						|
                                                         s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
 | 
						|
                                                         s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
 | 
						|
                                                         _mx1, _my1, block_w);
 | 
						|
}
 | 
						|
 | 
						|
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
 | 
						|
                                const Mv *mv, int y0, int height)
 | 
						|
{
 | 
						|
    int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
 | 
						|
 | 
						|
    if (s->threads_type == FF_THREAD_FRAME )
 | 
						|
        ff_thread_await_progress(&ref->tf, y, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
 | 
						|
                                  int nPbH, int log2_cb_size, int part_idx,
 | 
						|
                                  int merge_idx, MvField *mv)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    enum InterPredIdc inter_pred_idc = PRED_L0;
 | 
						|
    int mvp_flag;
 | 
						|
 | 
						|
    ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
 | 
						|
    mv->pred_flag = 0;
 | 
						|
    if (s->sh.slice_type == B_SLICE)
 | 
						|
        inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
 | 
						|
 | 
						|
    if (inter_pred_idc != PRED_L1) {
 | 
						|
        if (s->sh.nb_refs[L0])
 | 
						|
            mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
 | 
						|
 | 
						|
        mv->pred_flag = PF_L0;
 | 
						|
        ff_hevc_hls_mvd_coding(s, x0, y0, 0);
 | 
						|
        mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
 | 
						|
        ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | 
						|
                                 part_idx, merge_idx, mv, mvp_flag, 0);
 | 
						|
        mv->mv[0].x += lc->pu.mvd.x;
 | 
						|
        mv->mv[0].y += lc->pu.mvd.y;
 | 
						|
    }
 | 
						|
 | 
						|
    if (inter_pred_idc != PRED_L0) {
 | 
						|
        if (s->sh.nb_refs[L1])
 | 
						|
            mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
 | 
						|
 | 
						|
        if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
 | 
						|
            AV_ZERO32(&lc->pu.mvd);
 | 
						|
        } else {
 | 
						|
            ff_hevc_hls_mvd_coding(s, x0, y0, 1);
 | 
						|
        }
 | 
						|
 | 
						|
        mv->pred_flag += PF_L1;
 | 
						|
        mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
 | 
						|
        ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | 
						|
                                 part_idx, merge_idx, mv, mvp_flag, 1);
 | 
						|
        mv->mv[1].x += lc->pu.mvd.x;
 | 
						|
        mv->mv[1].y += lc->pu.mvd.y;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
 | 
						|
                                int nPbW, int nPbH,
 | 
						|
                                int log2_cb_size, int partIdx, int idx)
 | 
						|
{
 | 
						|
#define POS(c_idx, x, y)                                                              \
 | 
						|
    &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
 | 
						|
                           (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int merge_idx = 0;
 | 
						|
    struct MvField current_mv = {{{ 0 }}};
 | 
						|
 | 
						|
    int min_pu_width = s->ps.sps->min_pu_width;
 | 
						|
 | 
						|
    MvField *tab_mvf = s->ref->tab_mvf;
 | 
						|
    RefPicList  *refPicList = s->ref->refPicList;
 | 
						|
    HEVCFrame *ref0 = NULL, *ref1 = NULL;
 | 
						|
    uint8_t *dst0 = POS(0, x0, y0);
 | 
						|
    uint8_t *dst1 = POS(1, x0, y0);
 | 
						|
    uint8_t *dst2 = POS(2, x0, y0);
 | 
						|
    int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
 | 
						|
    int min_cb_width     = s->ps.sps->min_cb_width;
 | 
						|
    int x_cb             = x0 >> log2_min_cb_size;
 | 
						|
    int y_cb             = y0 >> log2_min_cb_size;
 | 
						|
    int x_pu, y_pu;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
 | 
						|
 | 
						|
    if (!skip_flag)
 | 
						|
        lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
 | 
						|
 | 
						|
    if (skip_flag || lc->pu.merge_flag) {
 | 
						|
        if (s->sh.max_num_merge_cand > 1)
 | 
						|
            merge_idx = ff_hevc_merge_idx_decode(s);
 | 
						|
        else
 | 
						|
            merge_idx = 0;
 | 
						|
 | 
						|
        ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | 
						|
                                   partIdx, merge_idx, ¤t_mv);
 | 
						|
    } else {
 | 
						|
        hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
 | 
						|
                              partIdx, merge_idx, ¤t_mv);
 | 
						|
    }
 | 
						|
 | 
						|
    x_pu = x0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
    y_pu = y0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
 | 
						|
    for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
 | 
						|
        for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
 | 
						|
            tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
 | 
						|
 | 
						|
    if (current_mv.pred_flag & PF_L0) {
 | 
						|
        ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
 | 
						|
        if (!ref0)
 | 
						|
            return;
 | 
						|
        hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH);
 | 
						|
    }
 | 
						|
    if (current_mv.pred_flag & PF_L1) {
 | 
						|
        ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
 | 
						|
        if (!ref1)
 | 
						|
            return;
 | 
						|
        hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH);
 | 
						|
    }
 | 
						|
 | 
						|
    if (current_mv.pred_flag == PF_L0) {
 | 
						|
        int x0_c = x0 >> s->ps.sps->hshift[1];
 | 
						|
        int y0_c = y0 >> s->ps.sps->vshift[1];
 | 
						|
        int nPbW_c = nPbW >> s->ps.sps->hshift[1];
 | 
						|
        int nPbH_c = nPbH >> s->ps.sps->vshift[1];
 | 
						|
 | 
						|
        luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
 | 
						|
                    ¤t_mv.mv[0], x0, y0, nPbW, nPbH,
 | 
						|
                    s->sh.luma_weight_l0[current_mv.ref_idx[0]],
 | 
						|
                    s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
 | 
						|
 | 
						|
        if (s->ps.sps->chroma_format_idc) {
 | 
						|
            chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
 | 
						|
                          0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | 
						|
                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
 | 
						|
            chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
 | 
						|
                          0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | 
						|
                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
 | 
						|
        }
 | 
						|
    } else if (current_mv.pred_flag == PF_L1) {
 | 
						|
        int x0_c = x0 >> s->ps.sps->hshift[1];
 | 
						|
        int y0_c = y0 >> s->ps.sps->vshift[1];
 | 
						|
        int nPbW_c = nPbW >> s->ps.sps->hshift[1];
 | 
						|
        int nPbH_c = nPbH >> s->ps.sps->vshift[1];
 | 
						|
 | 
						|
        luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
 | 
						|
                    ¤t_mv.mv[1], x0, y0, nPbW, nPbH,
 | 
						|
                    s->sh.luma_weight_l1[current_mv.ref_idx[1]],
 | 
						|
                    s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
 | 
						|
 | 
						|
        if (s->ps.sps->chroma_format_idc) {
 | 
						|
            chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
 | 
						|
                          1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | 
						|
                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
 | 
						|
 | 
						|
            chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
 | 
						|
                          1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv,
 | 
						|
                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
 | 
						|
        }
 | 
						|
    } else if (current_mv.pred_flag == PF_BI) {
 | 
						|
        int x0_c = x0 >> s->ps.sps->hshift[1];
 | 
						|
        int y0_c = y0 >> s->ps.sps->vshift[1];
 | 
						|
        int nPbW_c = nPbW >> s->ps.sps->hshift[1];
 | 
						|
        int nPbH_c = nPbH >> s->ps.sps->vshift[1];
 | 
						|
 | 
						|
        luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
 | 
						|
                   ¤t_mv.mv[0], x0, y0, nPbW, nPbH,
 | 
						|
                   ref1->frame, ¤t_mv.mv[1], ¤t_mv);
 | 
						|
 | 
						|
        if (s->ps.sps->chroma_format_idc) {
 | 
						|
            chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
 | 
						|
                         x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0);
 | 
						|
 | 
						|
            chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
 | 
						|
                         x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 8.4.1
 | 
						|
 */
 | 
						|
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
 | 
						|
                                int prev_intra_luma_pred_flag)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int x_pu             = x0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int y_pu             = y0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int min_pu_width     = s->ps.sps->min_pu_width;
 | 
						|
    int size_in_pus      = pu_size >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int x0b              = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
 | 
						|
    int y0b              = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
 | 
						|
 | 
						|
    int cand_up   = (lc->ctb_up_flag || y0b) ?
 | 
						|
                    s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
 | 
						|
    int cand_left = (lc->ctb_left_flag || x0b) ?
 | 
						|
                    s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
 | 
						|
 | 
						|
    int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
 | 
						|
 | 
						|
    MvField *tab_mvf = s->ref->tab_mvf;
 | 
						|
    int intra_pred_mode;
 | 
						|
    int candidate[3];
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    // intra_pred_mode prediction does not cross vertical CTB boundaries
 | 
						|
    if ((y0 - 1) < y_ctb)
 | 
						|
        cand_up = INTRA_DC;
 | 
						|
 | 
						|
    if (cand_left == cand_up) {
 | 
						|
        if (cand_left < 2) {
 | 
						|
            candidate[0] = INTRA_PLANAR;
 | 
						|
            candidate[1] = INTRA_DC;
 | 
						|
            candidate[2] = INTRA_ANGULAR_26;
 | 
						|
        } else {
 | 
						|
            candidate[0] = cand_left;
 | 
						|
            candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
 | 
						|
            candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        candidate[0] = cand_left;
 | 
						|
        candidate[1] = cand_up;
 | 
						|
        if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
 | 
						|
            candidate[2] = INTRA_PLANAR;
 | 
						|
        } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
 | 
						|
            candidate[2] = INTRA_DC;
 | 
						|
        } else {
 | 
						|
            candidate[2] = INTRA_ANGULAR_26;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (prev_intra_luma_pred_flag) {
 | 
						|
        intra_pred_mode = candidate[lc->pu.mpm_idx];
 | 
						|
    } else {
 | 
						|
        if (candidate[0] > candidate[1])
 | 
						|
            FFSWAP(uint8_t, candidate[0], candidate[1]);
 | 
						|
        if (candidate[0] > candidate[2])
 | 
						|
            FFSWAP(uint8_t, candidate[0], candidate[2]);
 | 
						|
        if (candidate[1] > candidate[2])
 | 
						|
            FFSWAP(uint8_t, candidate[1], candidate[2]);
 | 
						|
 | 
						|
        intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
 | 
						|
        for (i = 0; i < 3; i++)
 | 
						|
            if (intra_pred_mode >= candidate[i])
 | 
						|
                intra_pred_mode++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* write the intra prediction units into the mv array */
 | 
						|
    if (!size_in_pus)
 | 
						|
        size_in_pus = 1;
 | 
						|
    for (i = 0; i < size_in_pus; i++) {
 | 
						|
        memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
 | 
						|
               intra_pred_mode, size_in_pus);
 | 
						|
 | 
						|
        for (j = 0; j < size_in_pus; j++) {
 | 
						|
            tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return intra_pred_mode;
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
 | 
						|
                                          int log2_cb_size, int ct_depth)
 | 
						|
{
 | 
						|
    int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
 | 
						|
    int x_cb   = x0 >> s->ps.sps->log2_min_cb_size;
 | 
						|
    int y_cb   = y0 >> s->ps.sps->log2_min_cb_size;
 | 
						|
    int y;
 | 
						|
 | 
						|
    for (y = 0; y < length; y++)
 | 
						|
        memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
 | 
						|
               ct_depth, length);
 | 
						|
}
 | 
						|
 | 
						|
static const uint8_t tab_mode_idx[] = {
 | 
						|
     0,  1,  2,  2,  2,  2,  3,  5,  7,  8, 10, 12, 13, 15, 17, 18, 19, 20,
 | 
						|
    21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
 | 
						|
 | 
						|
static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
 | 
						|
                                  int log2_cb_size)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
 | 
						|
    uint8_t prev_intra_luma_pred_flag[4];
 | 
						|
    int split   = lc->cu.part_mode == PART_NxN;
 | 
						|
    int pb_size = (1 << log2_cb_size) >> split;
 | 
						|
    int side    = split + 1;
 | 
						|
    int chroma_mode;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = 0; i < side; i++)
 | 
						|
        for (j = 0; j < side; j++)
 | 
						|
            prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
 | 
						|
 | 
						|
    for (i = 0; i < side; i++) {
 | 
						|
        for (j = 0; j < side; j++) {
 | 
						|
            if (prev_intra_luma_pred_flag[2 * i + j])
 | 
						|
                lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
 | 
						|
            else
 | 
						|
                lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
 | 
						|
 | 
						|
            lc->pu.intra_pred_mode[2 * i + j] =
 | 
						|
                luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
 | 
						|
                                     prev_intra_luma_pred_flag[2 * i + j]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.sps->chroma_format_idc == 3) {
 | 
						|
        for (i = 0; i < side; i++) {
 | 
						|
            for (j = 0; j < side; j++) {
 | 
						|
                lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
 | 
						|
                if (chroma_mode != 4) {
 | 
						|
                    if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
 | 
						|
                        lc->pu.intra_pred_mode_c[2 * i + j] = 34;
 | 
						|
                    else
 | 
						|
                        lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
 | 
						|
                } else {
 | 
						|
                    lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else if (s->ps.sps->chroma_format_idc == 2) {
 | 
						|
        int mode_idx;
 | 
						|
        lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
 | 
						|
        if (chroma_mode != 4) {
 | 
						|
            if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
 | 
						|
                mode_idx = 34;
 | 
						|
            else
 | 
						|
                mode_idx = intra_chroma_table[chroma_mode];
 | 
						|
        } else {
 | 
						|
            mode_idx = lc->pu.intra_pred_mode[0];
 | 
						|
        }
 | 
						|
        lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
 | 
						|
    } else if (s->ps.sps->chroma_format_idc != 0) {
 | 
						|
        chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
 | 
						|
        if (chroma_mode != 4) {
 | 
						|
            if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
 | 
						|
                lc->pu.intra_pred_mode_c[0] = 34;
 | 
						|
            else
 | 
						|
                lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
 | 
						|
        } else {
 | 
						|
            lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void intra_prediction_unit_default_value(HEVCContext *s,
 | 
						|
                                                int x0, int y0,
 | 
						|
                                                int log2_cb_size)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int pb_size          = 1 << log2_cb_size;
 | 
						|
    int size_in_pus      = pb_size >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int min_pu_width     = s->ps.sps->min_pu_width;
 | 
						|
    MvField *tab_mvf     = s->ref->tab_mvf;
 | 
						|
    int x_pu             = x0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int y_pu             = y0 >> s->ps.sps->log2_min_pu_size;
 | 
						|
    int j, k;
 | 
						|
 | 
						|
    if (size_in_pus == 0)
 | 
						|
        size_in_pus = 1;
 | 
						|
    for (j = 0; j < size_in_pus; j++)
 | 
						|
        memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
 | 
						|
    if (lc->cu.pred_mode == MODE_INTRA)
 | 
						|
        for (j = 0; j < size_in_pus; j++)
 | 
						|
            for (k = 0; k < size_in_pus; k++)
 | 
						|
                tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
 | 
						|
{
 | 
						|
    int cb_size          = 1 << log2_cb_size;
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
 | 
						|
    int length           = cb_size >> log2_min_cb_size;
 | 
						|
    int min_cb_width     = s->ps.sps->min_cb_width;
 | 
						|
    int x_cb             = x0 >> log2_min_cb_size;
 | 
						|
    int y_cb             = y0 >> log2_min_cb_size;
 | 
						|
    int idx              = log2_cb_size - 2;
 | 
						|
    int qp_block_mask    = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
 | 
						|
    int x, y, ret;
 | 
						|
 | 
						|
    lc->cu.x                = x0;
 | 
						|
    lc->cu.y                = y0;
 | 
						|
    lc->cu.pred_mode        = MODE_INTRA;
 | 
						|
    lc->cu.part_mode        = PART_2Nx2N;
 | 
						|
    lc->cu.intra_split_flag = 0;
 | 
						|
 | 
						|
    SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
 | 
						|
    for (x = 0; x < 4; x++)
 | 
						|
        lc->pu.intra_pred_mode[x] = 1;
 | 
						|
    if (s->ps.pps->transquant_bypass_enable_flag) {
 | 
						|
        lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
 | 
						|
        if (lc->cu.cu_transquant_bypass_flag)
 | 
						|
            set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | 
						|
    } else
 | 
						|
        lc->cu.cu_transquant_bypass_flag = 0;
 | 
						|
 | 
						|
    if (s->sh.slice_type != I_SLICE) {
 | 
						|
        uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
 | 
						|
 | 
						|
        x = y_cb * min_cb_width + x_cb;
 | 
						|
        for (y = 0; y < length; y++) {
 | 
						|
            memset(&s->skip_flag[x], skip_flag, length);
 | 
						|
            x += min_cb_width;
 | 
						|
        }
 | 
						|
        lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
 | 
						|
    } else {
 | 
						|
        x = y_cb * min_cb_width + x_cb;
 | 
						|
        for (y = 0; y < length; y++) {
 | 
						|
            memset(&s->skip_flag[x], 0, length);
 | 
						|
            x += min_cb_width;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
 | 
						|
        hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
 | 
						|
        intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | 
						|
 | 
						|
        if (!s->sh.disable_deblocking_filter_flag)
 | 
						|
            ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | 
						|
    } else {
 | 
						|
        int pcm_flag = 0;
 | 
						|
 | 
						|
        if (s->sh.slice_type != I_SLICE)
 | 
						|
            lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
 | 
						|
        if (lc->cu.pred_mode != MODE_INTRA ||
 | 
						|
            log2_cb_size == s->ps.sps->log2_min_cb_size) {
 | 
						|
            lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
 | 
						|
            lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
 | 
						|
                                      lc->cu.pred_mode == MODE_INTRA;
 | 
						|
        }
 | 
						|
 | 
						|
        if (lc->cu.pred_mode == MODE_INTRA) {
 | 
						|
            if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
 | 
						|
                log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
 | 
						|
                log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
 | 
						|
                pcm_flag = ff_hevc_pcm_flag_decode(s);
 | 
						|
            }
 | 
						|
            if (pcm_flag) {
 | 
						|
                intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | 
						|
                ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
 | 
						|
                if (s->ps.sps->pcm.loop_filter_disable_flag)
 | 
						|
                    set_deblocking_bypass(s, x0, y0, log2_cb_size);
 | 
						|
 | 
						|
                if (ret < 0)
 | 
						|
                    return ret;
 | 
						|
            } else {
 | 
						|
                intra_prediction_unit(s, x0, y0, log2_cb_size);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
 | 
						|
            switch (lc->cu.part_mode) {
 | 
						|
            case PART_2Nx2N:
 | 
						|
                hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
 | 
						|
                break;
 | 
						|
            case PART_2NxN:
 | 
						|
                hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0, idx);
 | 
						|
                hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
 | 
						|
                break;
 | 
						|
            case PART_Nx2N:
 | 
						|
                hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
 | 
						|
                hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
 | 
						|
                break;
 | 
						|
            case PART_2NxnU:
 | 
						|
                hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0, idx);
 | 
						|
                hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
 | 
						|
                break;
 | 
						|
            case PART_2NxnD:
 | 
						|
                hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
 | 
						|
                hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1, idx);
 | 
						|
                break;
 | 
						|
            case PART_nLx2N:
 | 
						|
                hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0, idx - 2);
 | 
						|
                hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
 | 
						|
                break;
 | 
						|
            case PART_nRx2N:
 | 
						|
                hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
 | 
						|
                hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1, idx - 2);
 | 
						|
                break;
 | 
						|
            case PART_NxN:
 | 
						|
                hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
 | 
						|
                hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
 | 
						|
                hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
 | 
						|
                hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!pcm_flag) {
 | 
						|
            int rqt_root_cbf = 1;
 | 
						|
 | 
						|
            if (lc->cu.pred_mode != MODE_INTRA &&
 | 
						|
                !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
 | 
						|
                rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
 | 
						|
            }
 | 
						|
            if (rqt_root_cbf) {
 | 
						|
                const static int cbf[2] = { 0 };
 | 
						|
                lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
 | 
						|
                                         s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
 | 
						|
                                         s->ps.sps->max_transform_hierarchy_depth_inter;
 | 
						|
                ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
 | 
						|
                                         log2_cb_size,
 | 
						|
                                         log2_cb_size, 0, 0, cbf, cbf);
 | 
						|
                if (ret < 0)
 | 
						|
                    return ret;
 | 
						|
            } else {
 | 
						|
                if (!s->sh.disable_deblocking_filter_flag)
 | 
						|
                    ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
 | 
						|
        ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
 | 
						|
 | 
						|
    x = y_cb * min_cb_width + x_cb;
 | 
						|
    for (y = 0; y < length; y++) {
 | 
						|
        memset(&s->qp_y_tab[x], lc->qp_y, length);
 | 
						|
        x += min_cb_width;
 | 
						|
    }
 | 
						|
 | 
						|
    if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
 | 
						|
       ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
 | 
						|
        lc->qPy_pred = lc->qp_y;
 | 
						|
    }
 | 
						|
 | 
						|
    set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
 | 
						|
                               int log2_cb_size, int cb_depth)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    const int cb_size    = 1 << log2_cb_size;
 | 
						|
    int ret;
 | 
						|
    int split_cu;
 | 
						|
 | 
						|
    lc->ct_depth = cb_depth;
 | 
						|
    if (x0 + cb_size <= s->ps.sps->width  &&
 | 
						|
        y0 + cb_size <= s->ps.sps->height &&
 | 
						|
        log2_cb_size > s->ps.sps->log2_min_cb_size) {
 | 
						|
        split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
 | 
						|
    } else {
 | 
						|
        split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
 | 
						|
    }
 | 
						|
    if (s->ps.pps->cu_qp_delta_enabled_flag &&
 | 
						|
        log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
 | 
						|
        lc->tu.is_cu_qp_delta_coded = 0;
 | 
						|
        lc->tu.cu_qp_delta          = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->sh.cu_chroma_qp_offset_enabled_flag &&
 | 
						|
        log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
 | 
						|
        lc->tu.is_cu_chroma_qp_offset_coded = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (split_cu) {
 | 
						|
        int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
 | 
						|
        const int cb_size_split = cb_size >> 1;
 | 
						|
        const int x1 = x0 + cb_size_split;
 | 
						|
        const int y1 = y0 + cb_size_split;
 | 
						|
 | 
						|
        int more_data = 0;
 | 
						|
 | 
						|
        more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
 | 
						|
        if (more_data < 0)
 | 
						|
            return more_data;
 | 
						|
 | 
						|
        if (more_data && x1 < s->ps.sps->width) {
 | 
						|
            more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
 | 
						|
            if (more_data < 0)
 | 
						|
                return more_data;
 | 
						|
        }
 | 
						|
        if (more_data && y1 < s->ps.sps->height) {
 | 
						|
            more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
 | 
						|
            if (more_data < 0)
 | 
						|
                return more_data;
 | 
						|
        }
 | 
						|
        if (more_data && x1 < s->ps.sps->width &&
 | 
						|
            y1 < s->ps.sps->height) {
 | 
						|
            more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
 | 
						|
            if (more_data < 0)
 | 
						|
                return more_data;
 | 
						|
        }
 | 
						|
 | 
						|
        if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
 | 
						|
            ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
 | 
						|
            lc->qPy_pred = lc->qp_y;
 | 
						|
 | 
						|
        if (more_data)
 | 
						|
            return ((x1 + cb_size_split) < s->ps.sps->width ||
 | 
						|
                    (y1 + cb_size_split) < s->ps.sps->height);
 | 
						|
        else
 | 
						|
            return 0;
 | 
						|
    } else {
 | 
						|
        ret = hls_coding_unit(s, x0, y0, log2_cb_size);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
        if ((!((x0 + cb_size) %
 | 
						|
               (1 << (s->ps.sps->log2_ctb_size))) ||
 | 
						|
             (x0 + cb_size >= s->ps.sps->width)) &&
 | 
						|
            (!((y0 + cb_size) %
 | 
						|
               (1 << (s->ps.sps->log2_ctb_size))) ||
 | 
						|
             (y0 + cb_size >= s->ps.sps->height))) {
 | 
						|
            int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
 | 
						|
            return !end_of_slice_flag;
 | 
						|
        } else {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
 | 
						|
                                 int ctb_addr_ts)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc  = s->HEVClc;
 | 
						|
    int ctb_size          = 1 << s->ps.sps->log2_ctb_size;
 | 
						|
    int ctb_addr_rs       = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | 
						|
    int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
 | 
						|
 | 
						|
    s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
 | 
						|
 | 
						|
    if (s->ps.pps->entropy_coding_sync_enabled_flag) {
 | 
						|
        if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
 | 
						|
            lc->first_qp_group = 1;
 | 
						|
        lc->end_of_tiles_x = s->ps.sps->width;
 | 
						|
    } else if (s->ps.pps->tiles_enabled_flag) {
 | 
						|
        if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
 | 
						|
            int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
 | 
						|
            lc->end_of_tiles_x   = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
 | 
						|
            lc->first_qp_group   = 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        lc->end_of_tiles_x = s->ps.sps->width;
 | 
						|
    }
 | 
						|
 | 
						|
    lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
 | 
						|
 | 
						|
    lc->boundary_flags = 0;
 | 
						|
    if (s->ps.pps->tiles_enabled_flag) {
 | 
						|
        if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
 | 
						|
            lc->boundary_flags |= BOUNDARY_LEFT_TILE;
 | 
						|
        if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
 | 
						|
            lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
 | 
						|
        if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
 | 
						|
            lc->boundary_flags |= BOUNDARY_UPPER_TILE;
 | 
						|
        if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
 | 
						|
            lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
 | 
						|
    } else {
 | 
						|
        if (ctb_addr_in_slice <= 0)
 | 
						|
            lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
 | 
						|
        if (ctb_addr_in_slice < s->ps.sps->ctb_width)
 | 
						|
            lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
 | 
						|
    }
 | 
						|
 | 
						|
    lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
 | 
						|
    lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
 | 
						|
    lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
 | 
						|
    lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
 | 
						|
}
 | 
						|
 | 
						|
static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
 | 
						|
{
 | 
						|
    HEVCContext *s  = avctxt->priv_data;
 | 
						|
    int ctb_size    = 1 << s->ps.sps->log2_ctb_size;
 | 
						|
    int more_data   = 1;
 | 
						|
    int x_ctb       = 0;
 | 
						|
    int y_ctb       = 0;
 | 
						|
    int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
 | 
						|
 | 
						|
    if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->sh.dependent_slice_segment_flag) {
 | 
						|
        int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
 | 
						|
        if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
 | 
						|
        int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | 
						|
 | 
						|
        x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
 | 
						|
        y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
 | 
						|
        hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
 | 
						|
 | 
						|
        ff_hevc_cabac_init(s, ctb_addr_ts);
 | 
						|
 | 
						|
        hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
 | 
						|
 | 
						|
        s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
 | 
						|
        s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
 | 
						|
        s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
 | 
						|
 | 
						|
        more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
 | 
						|
        if (more_data < 0) {
 | 
						|
            s->tab_slice_address[ctb_addr_rs] = -1;
 | 
						|
            return more_data;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        ctb_addr_ts++;
 | 
						|
        ff_hevc_save_states(s, ctb_addr_ts);
 | 
						|
        ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
 | 
						|
    }
 | 
						|
 | 
						|
    if (x_ctb + ctb_size >= s->ps.sps->width &&
 | 
						|
        y_ctb + ctb_size >= s->ps.sps->height)
 | 
						|
        ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
 | 
						|
 | 
						|
    return ctb_addr_ts;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_slice_data(HEVCContext *s)
 | 
						|
{
 | 
						|
    int arg[2];
 | 
						|
    int ret[2];
 | 
						|
 | 
						|
    arg[0] = 0;
 | 
						|
    arg[1] = 1;
 | 
						|
 | 
						|
    s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
 | 
						|
    return ret[0];
 | 
						|
}
 | 
						|
static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
 | 
						|
{
 | 
						|
    HEVCContext *s1  = avctxt->priv_data, *s;
 | 
						|
    HEVCLocalContext *lc;
 | 
						|
    int ctb_size    = 1<< s1->ps.sps->log2_ctb_size;
 | 
						|
    int more_data   = 1;
 | 
						|
    int *ctb_row_p    = input_ctb_row;
 | 
						|
    int ctb_row = ctb_row_p[job];
 | 
						|
    int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
 | 
						|
    int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
 | 
						|
    int thread = ctb_row % s1->threads_number;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    s = s1->sList[self_id];
 | 
						|
    lc = s->HEVClc;
 | 
						|
 | 
						|
    if(ctb_row) {
 | 
						|
        ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
 | 
						|
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
        ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
 | 
						|
    }
 | 
						|
 | 
						|
    while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
 | 
						|
        int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
 | 
						|
        int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
 | 
						|
 | 
						|
        hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
 | 
						|
 | 
						|
        ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
 | 
						|
 | 
						|
        if (avpriv_atomic_int_get(&s1->wpp_err)){
 | 
						|
            ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        ff_hevc_cabac_init(s, ctb_addr_ts);
 | 
						|
        hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
 | 
						|
        more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
 | 
						|
 | 
						|
        if (more_data < 0) {
 | 
						|
            s->tab_slice_address[ctb_addr_rs] = -1;
 | 
						|
            avpriv_atomic_int_set(&s1->wpp_err,  1);
 | 
						|
            ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
 | 
						|
            return more_data;
 | 
						|
        }
 | 
						|
 | 
						|
        ctb_addr_ts++;
 | 
						|
 | 
						|
        ff_hevc_save_states(s, ctb_addr_ts);
 | 
						|
        ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
 | 
						|
        ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
 | 
						|
 | 
						|
        if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
 | 
						|
            avpriv_atomic_int_set(&s1->wpp_err,  1);
 | 
						|
            ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
 | 
						|
            ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
 | 
						|
            ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
 | 
						|
            return ctb_addr_ts;
 | 
						|
        }
 | 
						|
        ctb_addr_rs       = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
 | 
						|
        x_ctb+=ctb_size;
 | 
						|
 | 
						|
        if(x_ctb >= s->ps.sps->width) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hls_slice_data_wpp(HEVCContext *s, const HEVCNAL *nal)
 | 
						|
{
 | 
						|
    const uint8_t *data = nal->data;
 | 
						|
    int length          = nal->size;
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
 | 
						|
    int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
 | 
						|
    int64_t offset;
 | 
						|
    int64_t startheader, cmpt = 0;
 | 
						|
    int i, j, res = 0;
 | 
						|
 | 
						|
    if (!ret || !arg) {
 | 
						|
        av_free(ret);
 | 
						|
        av_free(arg);
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
 | 
						|
            s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
 | 
						|
            s->ps.sps->ctb_width, s->ps.sps->ctb_height
 | 
						|
        );
 | 
						|
        res = AVERROR_INVALIDDATA;
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
 | 
						|
 | 
						|
    if (!s->sList[1]) {
 | 
						|
        for (i = 1; i < s->threads_number; i++) {
 | 
						|
            s->sList[i] = av_malloc(sizeof(HEVCContext));
 | 
						|
            memcpy(s->sList[i], s, sizeof(HEVCContext));
 | 
						|
            s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
 | 
						|
            s->sList[i]->HEVClc = s->HEVClcList[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    offset = (lc->gb.index >> 3);
 | 
						|
 | 
						|
    for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
 | 
						|
        if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
 | 
						|
            startheader--;
 | 
						|
            cmpt++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
 | 
						|
        offset += (s->sh.entry_point_offset[i - 1] - cmpt);
 | 
						|
        for (j = 0, cmpt = 0, startheader = offset
 | 
						|
             + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
 | 
						|
            if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
 | 
						|
                startheader--;
 | 
						|
                cmpt++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
 | 
						|
        s->sh.offset[i - 1] = offset;
 | 
						|
 | 
						|
    }
 | 
						|
    if (s->sh.num_entry_point_offsets != 0) {
 | 
						|
        offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
 | 
						|
        if (length < offset) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
 | 
						|
            res = AVERROR_INVALIDDATA;
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
 | 
						|
        s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
 | 
						|
 | 
						|
    }
 | 
						|
    s->data = data;
 | 
						|
 | 
						|
    for (i = 1; i < s->threads_number; i++) {
 | 
						|
        s->sList[i]->HEVClc->first_qp_group = 1;
 | 
						|
        s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
 | 
						|
        memcpy(s->sList[i], s, sizeof(HEVCContext));
 | 
						|
        s->sList[i]->HEVClc = s->HEVClcList[i];
 | 
						|
    }
 | 
						|
 | 
						|
    avpriv_atomic_int_set(&s->wpp_err, 0);
 | 
						|
    ff_reset_entries(s->avctx);
 | 
						|
 | 
						|
    for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
 | 
						|
        arg[i] = i;
 | 
						|
        ret[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.pps->entropy_coding_sync_enabled_flag)
 | 
						|
        s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
 | 
						|
 | 
						|
    for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
 | 
						|
        res += ret[i];
 | 
						|
error:
 | 
						|
    av_free(ret);
 | 
						|
    av_free(arg);
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static int set_side_data(HEVCContext *s)
 | 
						|
{
 | 
						|
    AVFrame *out = s->ref->frame;
 | 
						|
 | 
						|
    if (s->sei_frame_packing_present &&
 | 
						|
        s->frame_packing_arrangement_type >= 3 &&
 | 
						|
        s->frame_packing_arrangement_type <= 5 &&
 | 
						|
        s->content_interpretation_type > 0 &&
 | 
						|
        s->content_interpretation_type < 3) {
 | 
						|
        AVStereo3D *stereo = av_stereo3d_create_side_data(out);
 | 
						|
        if (!stereo)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
 | 
						|
        switch (s->frame_packing_arrangement_type) {
 | 
						|
        case 3:
 | 
						|
            if (s->quincunx_subsampling)
 | 
						|
                stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
 | 
						|
            else
 | 
						|
                stereo->type = AV_STEREO3D_SIDEBYSIDE;
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            stereo->type = AV_STEREO3D_TOPBOTTOM;
 | 
						|
            break;
 | 
						|
        case 5:
 | 
						|
            stereo->type = AV_STEREO3D_FRAMESEQUENCE;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->content_interpretation_type == 2)
 | 
						|
            stereo->flags = AV_STEREO3D_FLAG_INVERT;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->sei_display_orientation_present &&
 | 
						|
        (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
 | 
						|
        double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
 | 
						|
        AVFrameSideData *rotation = av_frame_new_side_data(out,
 | 
						|
                                                           AV_FRAME_DATA_DISPLAYMATRIX,
 | 
						|
                                                           sizeof(int32_t) * 9);
 | 
						|
        if (!rotation)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
 | 
						|
        av_display_rotation_set((int32_t *)rotation->data, angle);
 | 
						|
        av_display_matrix_flip((int32_t *)rotation->data,
 | 
						|
                               s->sei_hflip, s->sei_vflip);
 | 
						|
    }
 | 
						|
 | 
						|
    // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
 | 
						|
    // so the side data persists for the entire coded video sequence.
 | 
						|
    if (s->sei_mastering_display_info_present > 0 &&
 | 
						|
        IS_IRAP(s) && s->no_rasl_output_flag) {
 | 
						|
        s->sei_mastering_display_info_present--;
 | 
						|
    }
 | 
						|
    if (s->sei_mastering_display_info_present) {
 | 
						|
        // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
 | 
						|
        const int mapping[3] = {2, 0, 1};
 | 
						|
        const int chroma_den = 50000;
 | 
						|
        const int luma_den = 10000;
 | 
						|
        int i;
 | 
						|
        AVMasteringDisplayMetadata *metadata =
 | 
						|
            av_mastering_display_metadata_create_side_data(out);
 | 
						|
        if (!metadata)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            const int j = mapping[i];
 | 
						|
            metadata->display_primaries[i][0].num = s->display_primaries[j][0];
 | 
						|
            metadata->display_primaries[i][0].den = chroma_den;
 | 
						|
            metadata->display_primaries[i][1].num = s->display_primaries[j][1];
 | 
						|
            metadata->display_primaries[i][1].den = chroma_den;
 | 
						|
        }
 | 
						|
        metadata->white_point[0].num = s->white_point[0];
 | 
						|
        metadata->white_point[0].den = chroma_den;
 | 
						|
        metadata->white_point[1].num = s->white_point[1];
 | 
						|
        metadata->white_point[1].den = chroma_den;
 | 
						|
 | 
						|
        metadata->max_luminance.num = s->max_mastering_luminance;
 | 
						|
        metadata->max_luminance.den = luma_den;
 | 
						|
        metadata->min_luminance.num = s->min_mastering_luminance;
 | 
						|
        metadata->min_luminance.den = luma_den;
 | 
						|
        metadata->has_luminance = 1;
 | 
						|
        metadata->has_primaries = 1;
 | 
						|
 | 
						|
        av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
 | 
						|
        av_log(s->avctx, AV_LOG_DEBUG,
 | 
						|
               "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
 | 
						|
               av_q2d(metadata->display_primaries[0][0]),
 | 
						|
               av_q2d(metadata->display_primaries[0][1]),
 | 
						|
               av_q2d(metadata->display_primaries[1][0]),
 | 
						|
               av_q2d(metadata->display_primaries[1][1]),
 | 
						|
               av_q2d(metadata->display_primaries[2][0]),
 | 
						|
               av_q2d(metadata->display_primaries[2][1]),
 | 
						|
               av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
 | 
						|
        av_log(s->avctx, AV_LOG_DEBUG,
 | 
						|
               "min_luminance=%f, max_luminance=%f\n",
 | 
						|
               av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->a53_caption) {
 | 
						|
        AVFrameSideData* sd = av_frame_new_side_data(out,
 | 
						|
                                                     AV_FRAME_DATA_A53_CC,
 | 
						|
                                                     s->a53_caption_size);
 | 
						|
        if (sd)
 | 
						|
            memcpy(sd->data, s->a53_caption, s->a53_caption_size);
 | 
						|
        av_freep(&s->a53_caption);
 | 
						|
        s->a53_caption_size = 0;
 | 
						|
        s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hevc_frame_start(HEVCContext *s)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    int pic_size_in_ctb  = ((s->ps.sps->width  >> s->ps.sps->log2_min_cb_size) + 1) *
 | 
						|
                           ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
 | 
						|
    int ret;
 | 
						|
 | 
						|
    memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
 | 
						|
    memset(s->vertical_bs,   0, s->bs_width * s->bs_height);
 | 
						|
    memset(s->cbf_luma,      0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
 | 
						|
    memset(s->is_pcm,        0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
 | 
						|
    memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
 | 
						|
 | 
						|
    s->is_decoded        = 0;
 | 
						|
    s->first_nal_type    = s->nal_unit_type;
 | 
						|
 | 
						|
    if (s->ps.pps->tiles_enabled_flag)
 | 
						|
        lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
 | 
						|
 | 
						|
    ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
 | 
						|
    if (ret < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    ret = ff_hevc_frame_rps(s);
 | 
						|
    if (ret < 0) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
 | 
						|
        goto fail;
 | 
						|
    }
 | 
						|
 | 
						|
    s->ref->frame->key_frame = IS_IRAP(s);
 | 
						|
 | 
						|
    ret = set_side_data(s);
 | 
						|
    if (ret < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->frame->pict_type = 3 - s->sh.slice_type;
 | 
						|
 | 
						|
    if (!IS_IRAP(s))
 | 
						|
        ff_hevc_bump_frame(s);
 | 
						|
 | 
						|
    av_frame_unref(s->output_frame);
 | 
						|
    ret = ff_hevc_output_frame(s, s->output_frame, 0);
 | 
						|
    if (ret < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    if (!s->avctx->hwaccel)
 | 
						|
        ff_thread_finish_setup(s->avctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    if (s->ref)
 | 
						|
        ff_hevc_unref_frame(s, s->ref, ~0);
 | 
						|
    s->ref = NULL;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
 | 
						|
{
 | 
						|
    HEVCLocalContext *lc = s->HEVClc;
 | 
						|
    GetBitContext *gb    = &lc->gb;
 | 
						|
    int ctb_addr_ts, ret;
 | 
						|
 | 
						|
    *gb              = nal->gb;
 | 
						|
    s->nal_unit_type = nal->type;
 | 
						|
    s->temporal_id   = nal->temporal_id;
 | 
						|
 | 
						|
    switch (s->nal_unit_type) {
 | 
						|
    case NAL_VPS:
 | 
						|
        ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
 | 
						|
        if (ret < 0)
 | 
						|
            goto fail;
 | 
						|
        break;
 | 
						|
    case NAL_SPS:
 | 
						|
        ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
 | 
						|
                                     s->apply_defdispwin);
 | 
						|
        if (ret < 0)
 | 
						|
            goto fail;
 | 
						|
        break;
 | 
						|
    case NAL_PPS:
 | 
						|
        ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
 | 
						|
        if (ret < 0)
 | 
						|
            goto fail;
 | 
						|
        break;
 | 
						|
    case NAL_SEI_PREFIX:
 | 
						|
    case NAL_SEI_SUFFIX:
 | 
						|
        ret = ff_hevc_decode_nal_sei(s);
 | 
						|
        if (ret < 0)
 | 
						|
            goto fail;
 | 
						|
        break;
 | 
						|
    case NAL_TRAIL_R:
 | 
						|
    case NAL_TRAIL_N:
 | 
						|
    case NAL_TSA_N:
 | 
						|
    case NAL_TSA_R:
 | 
						|
    case NAL_STSA_N:
 | 
						|
    case NAL_STSA_R:
 | 
						|
    case NAL_BLA_W_LP:
 | 
						|
    case NAL_BLA_W_RADL:
 | 
						|
    case NAL_BLA_N_LP:
 | 
						|
    case NAL_IDR_W_RADL:
 | 
						|
    case NAL_IDR_N_LP:
 | 
						|
    case NAL_CRA_NUT:
 | 
						|
    case NAL_RADL_N:
 | 
						|
    case NAL_RADL_R:
 | 
						|
    case NAL_RASL_N:
 | 
						|
    case NAL_RASL_R:
 | 
						|
        ret = hls_slice_header(s);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
 | 
						|
        if (s->max_ra == INT_MAX) {
 | 
						|
            if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
 | 
						|
                s->max_ra = s->poc;
 | 
						|
            } else {
 | 
						|
                if (IS_IDR(s))
 | 
						|
                    s->max_ra = INT_MIN;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
 | 
						|
            s->poc <= s->max_ra) {
 | 
						|
            s->is_decoded = 0;
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
            if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
 | 
						|
                s->max_ra = INT_MIN;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->sh.first_slice_in_pic_flag) {
 | 
						|
            ret = hevc_frame_start(s);
 | 
						|
            if (ret < 0)
 | 
						|
                return ret;
 | 
						|
        } else if (!s->ref) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->nal_unit_type != s->first_nal_type) {
 | 
						|
            av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                   "Non-matching NAL types of the VCL NALUs: %d %d\n",
 | 
						|
                   s->first_nal_type, s->nal_unit_type);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!s->sh.dependent_slice_segment_flag &&
 | 
						|
            s->sh.slice_type != I_SLICE) {
 | 
						|
            ret = ff_hevc_slice_rpl(s);
 | 
						|
            if (ret < 0) {
 | 
						|
                av_log(s->avctx, AV_LOG_WARNING,
 | 
						|
                       "Error constructing the reference lists for the current slice.\n");
 | 
						|
                goto fail;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
 | 
						|
            ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
 | 
						|
            if (ret < 0)
 | 
						|
                goto fail;
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->avctx->hwaccel) {
 | 
						|
            ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
 | 
						|
            if (ret < 0)
 | 
						|
                goto fail;
 | 
						|
        } else {
 | 
						|
            if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
 | 
						|
                ctb_addr_ts = hls_slice_data_wpp(s, nal);
 | 
						|
            else
 | 
						|
                ctb_addr_ts = hls_slice_data(s);
 | 
						|
            if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
 | 
						|
                s->is_decoded = 1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (ctb_addr_ts < 0) {
 | 
						|
                ret = ctb_addr_ts;
 | 
						|
                goto fail;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case NAL_EOS_NUT:
 | 
						|
    case NAL_EOB_NUT:
 | 
						|
        s->seq_decode = (s->seq_decode + 1) & 0xff;
 | 
						|
        s->max_ra     = INT_MAX;
 | 
						|
        break;
 | 
						|
    case NAL_AUD:
 | 
						|
    case NAL_FD_NUT:
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_log(s->avctx, AV_LOG_INFO,
 | 
						|
               "Skipping NAL unit %d\n", s->nal_unit_type);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
fail:
 | 
						|
    if (s->avctx->err_recognition & AV_EF_EXPLODE)
 | 
						|
        return ret;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
 | 
						|
{
 | 
						|
    int i, ret = 0;
 | 
						|
 | 
						|
    s->ref = NULL;
 | 
						|
    s->last_eos = s->eos;
 | 
						|
    s->eos = 0;
 | 
						|
 | 
						|
    /* split the input packet into NAL units, so we know the upper bound on the
 | 
						|
     * number of slices in the frame */
 | 
						|
    ret = ff_hevc_split_packet(s, &s->pkt, buf, length, s->avctx, s->is_nalff,
 | 
						|
                               s->nal_length_size);
 | 
						|
    if (ret < 0) {
 | 
						|
        av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
               "Error splitting the input into NAL units.\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < s->pkt.nb_nals; i++) {
 | 
						|
        if (s->pkt.nals[i].type == NAL_EOB_NUT ||
 | 
						|
            s->pkt.nals[i].type == NAL_EOS_NUT)
 | 
						|
            s->eos = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* decode the NAL units */
 | 
						|
    for (i = 0; i < s->pkt.nb_nals; i++) {
 | 
						|
        ret = decode_nal_unit(s, &s->pkt.nals[i]);
 | 
						|
        if (ret < 0) {
 | 
						|
            av_log(s->avctx, AV_LOG_WARNING,
 | 
						|
                   "Error parsing NAL unit #%d.\n", i);
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
fail:
 | 
						|
    if (s->ref && s->threads_type == FF_THREAD_FRAME)
 | 
						|
        ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void print_md5(void *log_ctx, int level, uint8_t md5[16])
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < 16; i++)
 | 
						|
        av_log(log_ctx, level, "%02"PRIx8, md5[i]);
 | 
						|
}
 | 
						|
 | 
						|
static int verify_md5(HEVCContext *s, AVFrame *frame)
 | 
						|
{
 | 
						|
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
 | 
						|
    int pixel_shift;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    if (!desc)
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
 | 
						|
    pixel_shift = desc->comp[0].depth > 8;
 | 
						|
 | 
						|
    av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
 | 
						|
           s->poc);
 | 
						|
 | 
						|
    /* the checksums are LE, so we have to byteswap for >8bpp formats
 | 
						|
     * on BE arches */
 | 
						|
#if HAVE_BIGENDIAN
 | 
						|
    if (pixel_shift && !s->checksum_buf) {
 | 
						|
        av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
 | 
						|
                       FFMAX3(frame->linesize[0], frame->linesize[1],
 | 
						|
                              frame->linesize[2]));
 | 
						|
        if (!s->checksum_buf)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    for (i = 0; frame->data[i]; i++) {
 | 
						|
        int width  = s->avctx->coded_width;
 | 
						|
        int height = s->avctx->coded_height;
 | 
						|
        int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
 | 
						|
        int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
 | 
						|
        uint8_t md5[16];
 | 
						|
 | 
						|
        av_md5_init(s->md5_ctx);
 | 
						|
        for (j = 0; j < h; j++) {
 | 
						|
            const uint8_t *src = frame->data[i] + j * frame->linesize[i];
 | 
						|
#if HAVE_BIGENDIAN
 | 
						|
            if (pixel_shift) {
 | 
						|
                s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
 | 
						|
                                    (const uint16_t *) src, w);
 | 
						|
                src = s->checksum_buf;
 | 
						|
            }
 | 
						|
#endif
 | 
						|
            av_md5_update(s->md5_ctx, src, w << pixel_shift);
 | 
						|
        }
 | 
						|
        av_md5_final(s->md5_ctx, md5);
 | 
						|
 | 
						|
        if (!memcmp(md5, s->md5[i], 16)) {
 | 
						|
            av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
 | 
						|
            print_md5(s->avctx, AV_LOG_DEBUG, md5);
 | 
						|
            av_log   (s->avctx, AV_LOG_DEBUG, "; ");
 | 
						|
        } else {
 | 
						|
            av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
 | 
						|
            print_md5(s->avctx, AV_LOG_ERROR, md5);
 | 
						|
            av_log   (s->avctx, AV_LOG_ERROR, " != ");
 | 
						|
            print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
 | 
						|
            av_log   (s->avctx, AV_LOG_ERROR, "\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    av_log(s->avctx, AV_LOG_DEBUG, "\n");
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
 | 
						|
                             AVPacket *avpkt)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    HEVCContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    if (!avpkt->size) {
 | 
						|
        ret = ff_hevc_output_frame(s, data, 1);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
 | 
						|
        *got_output = ret;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    s->ref = NULL;
 | 
						|
    ret    = decode_nal_units(s, avpkt->data, avpkt->size);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    if (avctx->hwaccel) {
 | 
						|
        if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR,
 | 
						|
                   "hardware accelerator failed to decode picture\n");
 | 
						|
            ff_hevc_unref_frame(s, s->ref, ~0);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* verify the SEI checksum */
 | 
						|
        if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
 | 
						|
            s->is_md5) {
 | 
						|
            ret = verify_md5(s, s->ref->frame);
 | 
						|
            if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
 | 
						|
                ff_hevc_unref_frame(s, s->ref, ~0);
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    s->is_md5 = 0;
 | 
						|
 | 
						|
    if (s->is_decoded) {
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
 | 
						|
        s->is_decoded = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->output_frame->buf[0]) {
 | 
						|
        av_frame_move_ref(data, s->output_frame);
 | 
						|
        *got_output = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return avpkt->size;
 | 
						|
}
 | 
						|
 | 
						|
static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    ret = ff_thread_ref_frame(&dst->tf, &src->tf);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
 | 
						|
    if (!dst->tab_mvf_buf)
 | 
						|
        goto fail;
 | 
						|
    dst->tab_mvf = src->tab_mvf;
 | 
						|
 | 
						|
    dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
 | 
						|
    if (!dst->rpl_tab_buf)
 | 
						|
        goto fail;
 | 
						|
    dst->rpl_tab = src->rpl_tab;
 | 
						|
 | 
						|
    dst->rpl_buf = av_buffer_ref(src->rpl_buf);
 | 
						|
    if (!dst->rpl_buf)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    dst->poc        = src->poc;
 | 
						|
    dst->ctb_count  = src->ctb_count;
 | 
						|
    dst->window     = src->window;
 | 
						|
    dst->flags      = src->flags;
 | 
						|
    dst->sequence   = src->sequence;
 | 
						|
 | 
						|
    if (src->hwaccel_picture_private) {
 | 
						|
        dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
 | 
						|
        if (!dst->hwaccel_priv_buf)
 | 
						|
            goto fail;
 | 
						|
        dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
fail:
 | 
						|
    ff_hevc_unref_frame(s, dst, ~0);
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int hevc_decode_free(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    HEVCContext       *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    pic_arrays_free(s);
 | 
						|
 | 
						|
    av_freep(&s->md5_ctx);
 | 
						|
 | 
						|
    av_freep(&s->cabac_state);
 | 
						|
 | 
						|
    for (i = 0; i < 3; i++) {
 | 
						|
        av_freep(&s->sao_pixel_buffer_h[i]);
 | 
						|
        av_freep(&s->sao_pixel_buffer_v[i]);
 | 
						|
    }
 | 
						|
    av_frame_free(&s->output_frame);
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | 
						|
        ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | 
						|
        av_frame_free(&s->DPB[i].frame);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
 | 
						|
        av_buffer_unref(&s->ps.vps_list[i]);
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
 | 
						|
        av_buffer_unref(&s->ps.sps_list[i]);
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
 | 
						|
        av_buffer_unref(&s->ps.pps_list[i]);
 | 
						|
    s->ps.sps = NULL;
 | 
						|
    s->ps.pps = NULL;
 | 
						|
    s->ps.vps = NULL;
 | 
						|
 | 
						|
    av_freep(&s->sh.entry_point_offset);
 | 
						|
    av_freep(&s->sh.offset);
 | 
						|
    av_freep(&s->sh.size);
 | 
						|
 | 
						|
    for (i = 1; i < s->threads_number; i++) {
 | 
						|
        HEVCLocalContext *lc = s->HEVClcList[i];
 | 
						|
        if (lc) {
 | 
						|
            av_freep(&s->HEVClcList[i]);
 | 
						|
            av_freep(&s->sList[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (s->HEVClc == s->HEVClcList[0])
 | 
						|
        s->HEVClc = NULL;
 | 
						|
    av_freep(&s->HEVClcList[0]);
 | 
						|
 | 
						|
    for (i = 0; i < s->pkt.nals_allocated; i++) {
 | 
						|
        av_freep(&s->pkt.nals[i].rbsp_buffer);
 | 
						|
        av_freep(&s->pkt.nals[i].skipped_bytes_pos);
 | 
						|
    }
 | 
						|
    av_freep(&s->pkt.nals);
 | 
						|
    s->pkt.nals_allocated = 0;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int hevc_init_context(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    HEVCContext *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
 | 
						|
    if (!s->HEVClc)
 | 
						|
        goto fail;
 | 
						|
    s->HEVClcList[0] = s->HEVClc;
 | 
						|
    s->sList[0] = s;
 | 
						|
 | 
						|
    s->cabac_state = av_malloc(HEVC_CONTEXTS);
 | 
						|
    if (!s->cabac_state)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    s->output_frame = av_frame_alloc();
 | 
						|
    if (!s->output_frame)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | 
						|
        s->DPB[i].frame = av_frame_alloc();
 | 
						|
        if (!s->DPB[i].frame)
 | 
						|
            goto fail;
 | 
						|
        s->DPB[i].tf.f = s->DPB[i].frame;
 | 
						|
    }
 | 
						|
 | 
						|
    s->max_ra = INT_MAX;
 | 
						|
 | 
						|
    s->md5_ctx = av_md5_alloc();
 | 
						|
    if (!s->md5_ctx)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    ff_bswapdsp_init(&s->bdsp);
 | 
						|
 | 
						|
    s->context_initialized = 1;
 | 
						|
    s->eos = 0;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    hevc_decode_free(avctx);
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
static int hevc_update_thread_context(AVCodecContext *dst,
 | 
						|
                                      const AVCodecContext *src)
 | 
						|
{
 | 
						|
    HEVCContext *s  = dst->priv_data;
 | 
						|
    HEVCContext *s0 = src->priv_data;
 | 
						|
    int i, ret;
 | 
						|
 | 
						|
    if (!s->context_initialized) {
 | 
						|
        ret = hevc_init_context(dst);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
 | 
						|
        ff_hevc_unref_frame(s, &s->DPB[i], ~0);
 | 
						|
        if (s0->DPB[i].frame->buf[0]) {
 | 
						|
            ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
 | 
						|
            if (ret < 0)
 | 
						|
                return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.sps != s0->ps.sps)
 | 
						|
        s->ps.sps = NULL;
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
 | 
						|
        av_buffer_unref(&s->ps.vps_list[i]);
 | 
						|
        if (s0->ps.vps_list[i]) {
 | 
						|
            s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
 | 
						|
            if (!s->ps.vps_list[i])
 | 
						|
                return AVERROR(ENOMEM);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
 | 
						|
        av_buffer_unref(&s->ps.sps_list[i]);
 | 
						|
        if (s0->ps.sps_list[i]) {
 | 
						|
            s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
 | 
						|
            if (!s->ps.sps_list[i])
 | 
						|
                return AVERROR(ENOMEM);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
 | 
						|
        av_buffer_unref(&s->ps.pps_list[i]);
 | 
						|
        if (s0->ps.pps_list[i]) {
 | 
						|
            s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
 | 
						|
            if (!s->ps.pps_list[i])
 | 
						|
                return AVERROR(ENOMEM);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->ps.sps != s0->ps.sps)
 | 
						|
        if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
 | 
						|
            return ret;
 | 
						|
 | 
						|
    s->seq_decode = s0->seq_decode;
 | 
						|
    s->seq_output = s0->seq_output;
 | 
						|
    s->pocTid0    = s0->pocTid0;
 | 
						|
    s->max_ra     = s0->max_ra;
 | 
						|
    s->eos        = s0->eos;
 | 
						|
    s->no_rasl_output_flag = s0->no_rasl_output_flag;
 | 
						|
 | 
						|
    s->is_nalff        = s0->is_nalff;
 | 
						|
    s->nal_length_size = s0->nal_length_size;
 | 
						|
 | 
						|
    s->threads_number      = s0->threads_number;
 | 
						|
    s->threads_type        = s0->threads_type;
 | 
						|
 | 
						|
    if (s0->eos) {
 | 
						|
        s->seq_decode = (s->seq_decode + 1) & 0xff;
 | 
						|
        s->max_ra = INT_MAX;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int hevc_decode_extradata(HEVCContext *s)
 | 
						|
{
 | 
						|
    AVCodecContext *avctx = s->avctx;
 | 
						|
    GetByteContext gb;
 | 
						|
    int ret, i;
 | 
						|
 | 
						|
    bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
 | 
						|
 | 
						|
    if (avctx->extradata_size > 3 &&
 | 
						|
        (avctx->extradata[0] || avctx->extradata[1] ||
 | 
						|
         avctx->extradata[2] > 1)) {
 | 
						|
        /* It seems the extradata is encoded as hvcC format.
 | 
						|
         * Temporarily, we support configurationVersion==0 until 14496-15 3rd
 | 
						|
         * is finalized. When finalized, configurationVersion will be 1 and we
 | 
						|
         * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
 | 
						|
        int i, j, num_arrays, nal_len_size;
 | 
						|
 | 
						|
        s->is_nalff = 1;
 | 
						|
 | 
						|
        bytestream2_skip(&gb, 21);
 | 
						|
        nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
 | 
						|
        num_arrays   = bytestream2_get_byte(&gb);
 | 
						|
 | 
						|
        /* nal units in the hvcC always have length coded with 2 bytes,
 | 
						|
         * so put a fake nal_length_size = 2 while parsing them */
 | 
						|
        s->nal_length_size = 2;
 | 
						|
 | 
						|
        /* Decode nal units from hvcC. */
 | 
						|
        for (i = 0; i < num_arrays; i++) {
 | 
						|
            int type = bytestream2_get_byte(&gb) & 0x3f;
 | 
						|
            int cnt  = bytestream2_get_be16(&gb);
 | 
						|
 | 
						|
            for (j = 0; j < cnt; j++) {
 | 
						|
                // +2 for the nal size field
 | 
						|
                int nalsize = bytestream2_peek_be16(&gb) + 2;
 | 
						|
                if (bytestream2_get_bytes_left(&gb) < nalsize) {
 | 
						|
                    av_log(s->avctx, AV_LOG_ERROR,
 | 
						|
                           "Invalid NAL unit size in extradata.\n");
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
 | 
						|
                ret = decode_nal_units(s, gb.buffer, nalsize);
 | 
						|
                if (ret < 0) {
 | 
						|
                    av_log(avctx, AV_LOG_ERROR,
 | 
						|
                           "Decoding nal unit %d %d from hvcC failed\n",
 | 
						|
                           type, i);
 | 
						|
                    return ret;
 | 
						|
                }
 | 
						|
                bytestream2_skip(&gb, nalsize);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Now store right nal length size, that will be used to parse
 | 
						|
         * all other nals */
 | 
						|
        s->nal_length_size = nal_len_size;
 | 
						|
    } else {
 | 
						|
        s->is_nalff = 0;
 | 
						|
        ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
 | 
						|
        if (ret < 0)
 | 
						|
            return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* export stream parameters from the first SPS */
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
 | 
						|
        if (s->ps.sps_list[i]) {
 | 
						|
            const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
 | 
						|
            export_stream_params(s->avctx, &s->ps, sps);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int hevc_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    HEVCContext *s = avctx->priv_data;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    avctx->internal->allocate_progress = 1;
 | 
						|
 | 
						|
    ret = hevc_init_context(avctx);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    s->enable_parallel_tiles = 0;
 | 
						|
    s->picture_struct = 0;
 | 
						|
    s->eos = 1;
 | 
						|
 | 
						|
    if(avctx->active_thread_type & FF_THREAD_SLICE)
 | 
						|
        s->threads_number = avctx->thread_count;
 | 
						|
    else
 | 
						|
        s->threads_number = 1;
 | 
						|
 | 
						|
    if (avctx->extradata_size > 0 && avctx->extradata) {
 | 
						|
        ret = hevc_decode_extradata(s);
 | 
						|
        if (ret < 0) {
 | 
						|
            hevc_decode_free(avctx);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
 | 
						|
            s->threads_type = FF_THREAD_FRAME;
 | 
						|
        else
 | 
						|
            s->threads_type = FF_THREAD_SLICE;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    HEVCContext *s = avctx->priv_data;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    memset(s, 0, sizeof(*s));
 | 
						|
 | 
						|
    ret = hevc_init_context(avctx);
 | 
						|
    if (ret < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void hevc_decode_flush(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    HEVCContext *s = avctx->priv_data;
 | 
						|
    ff_hevc_flush_dpb(s);
 | 
						|
    s->max_ra = INT_MAX;
 | 
						|
    s->eos = 1;
 | 
						|
}
 | 
						|
 | 
						|
#define OFFSET(x) offsetof(HEVCContext, x)
 | 
						|
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
 | 
						|
 | 
						|
static const AVOption options[] = {
 | 
						|
    { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
 | 
						|
        AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
 | 
						|
    { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
 | 
						|
        AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
 | 
						|
    { NULL },
 | 
						|
};
 | 
						|
 | 
						|
static const AVClass hevc_decoder_class = {
 | 
						|
    .class_name = "HEVC decoder",
 | 
						|
    .item_name  = av_default_item_name,
 | 
						|
    .option     = options,
 | 
						|
    .version    = LIBAVUTIL_VERSION_INT,
 | 
						|
};
 | 
						|
 | 
						|
AVCodec ff_hevc_decoder = {
 | 
						|
    .name                  = "hevc",
 | 
						|
    .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
 | 
						|
    .type                  = AVMEDIA_TYPE_VIDEO,
 | 
						|
    .id                    = AV_CODEC_ID_HEVC,
 | 
						|
    .priv_data_size        = sizeof(HEVCContext),
 | 
						|
    .priv_class            = &hevc_decoder_class,
 | 
						|
    .init                  = hevc_decode_init,
 | 
						|
    .close                 = hevc_decode_free,
 | 
						|
    .decode                = hevc_decode_frame,
 | 
						|
    .flush                 = hevc_decode_flush,
 | 
						|
    .update_thread_context = hevc_update_thread_context,
 | 
						|
    .init_thread_copy      = hevc_init_thread_copy,
 | 
						|
    .capabilities          = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
 | 
						|
                             AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
 | 
						|
    .profiles              = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
 | 
						|
};
 |