613 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2002 Dieter Shirley
 | 
						|
 *
 | 
						|
 * dct_unquantize_h263_altivec:
 | 
						|
 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include "libavcodec/dsputil.h"
 | 
						|
#include "libavcodec/mpegvideo.h"
 | 
						|
 | 
						|
#include "dsputil_ppc.h"
 | 
						|
#include "util_altivec.h"
 | 
						|
#include "types_altivec.h"
 | 
						|
#include "dsputil_altivec.h"
 | 
						|
 | 
						|
// Swaps two variables (used for altivec registers)
 | 
						|
#define SWAP(a,b) \
 | 
						|
do { \
 | 
						|
    __typeof__(a) swap_temp=a; \
 | 
						|
    a=b; \
 | 
						|
    b=swap_temp; \
 | 
						|
} while (0)
 | 
						|
 | 
						|
// transposes a matrix consisting of four vectors with four elements each
 | 
						|
#define TRANSPOSE4(a,b,c,d) \
 | 
						|
do { \
 | 
						|
    __typeof__(a) _trans_ach = vec_mergeh(a, c); \
 | 
						|
    __typeof__(a) _trans_acl = vec_mergel(a, c); \
 | 
						|
    __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
 | 
						|
    __typeof__(a) _trans_bdl = vec_mergel(b, d); \
 | 
						|
                                                 \
 | 
						|
    a = vec_mergeh(_trans_ach, _trans_bdh);      \
 | 
						|
    b = vec_mergel(_trans_ach, _trans_bdh);      \
 | 
						|
    c = vec_mergeh(_trans_acl, _trans_bdl);      \
 | 
						|
    d = vec_mergel(_trans_acl, _trans_bdl);      \
 | 
						|
} while (0)
 | 
						|
 | 
						|
 | 
						|
// Loads a four-byte value (int or float) from the target address
 | 
						|
// into every element in the target vector.  Only works if the
 | 
						|
// target address is four-byte aligned (which should be always).
 | 
						|
#define LOAD4(vec, address) \
 | 
						|
{ \
 | 
						|
    __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address);  \
 | 
						|
    vector unsigned char _perm_vec = vec_lvsl(0,(address));     \
 | 
						|
    vec = vec_ld(0, _load_addr);                                \
 | 
						|
    vec = vec_perm(vec, vec, _perm_vec);                        \
 | 
						|
    vec = vec_splat(vec, 0);                                    \
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define FOUROF(a) {a,a,a,a}
 | 
						|
 | 
						|
static int dct_quantize_altivec(MpegEncContext* s,
 | 
						|
                         DCTELEM* data, int n,
 | 
						|
                         int qscale, int* overflow)
 | 
						|
{
 | 
						|
    int lastNonZero;
 | 
						|
    vector float row0, row1, row2, row3, row4, row5, row6, row7;
 | 
						|
    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
 | 
						|
    const vector float zero = (const vector float)FOUROF(0.);
 | 
						|
    // used after quantize step
 | 
						|
    int oldBaseValue = 0;
 | 
						|
 | 
						|
    // Load the data into the row/alt vectors
 | 
						|
    {
 | 
						|
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
 | 
						|
 | 
						|
        data0 = vec_ld(0, data);
 | 
						|
        data1 = vec_ld(16, data);
 | 
						|
        data2 = vec_ld(32, data);
 | 
						|
        data3 = vec_ld(48, data);
 | 
						|
        data4 = vec_ld(64, data);
 | 
						|
        data5 = vec_ld(80, data);
 | 
						|
        data6 = vec_ld(96, data);
 | 
						|
        data7 = vec_ld(112, data);
 | 
						|
 | 
						|
        // Transpose the data before we start
 | 
						|
        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
 | 
						|
 | 
						|
        // load the data into floating point vectors.  We load
 | 
						|
        // the high half of each row into the main row vectors
 | 
						|
        // and the low half into the alt vectors.
 | 
						|
        row0 = vec_ctf(vec_unpackh(data0), 0);
 | 
						|
        alt0 = vec_ctf(vec_unpackl(data0), 0);
 | 
						|
        row1 = vec_ctf(vec_unpackh(data1), 0);
 | 
						|
        alt1 = vec_ctf(vec_unpackl(data1), 0);
 | 
						|
        row2 = vec_ctf(vec_unpackh(data2), 0);
 | 
						|
        alt2 = vec_ctf(vec_unpackl(data2), 0);
 | 
						|
        row3 = vec_ctf(vec_unpackh(data3), 0);
 | 
						|
        alt3 = vec_ctf(vec_unpackl(data3), 0);
 | 
						|
        row4 = vec_ctf(vec_unpackh(data4), 0);
 | 
						|
        alt4 = vec_ctf(vec_unpackl(data4), 0);
 | 
						|
        row5 = vec_ctf(vec_unpackh(data5), 0);
 | 
						|
        alt5 = vec_ctf(vec_unpackl(data5), 0);
 | 
						|
        row6 = vec_ctf(vec_unpackh(data6), 0);
 | 
						|
        alt6 = vec_ctf(vec_unpackl(data6), 0);
 | 
						|
        row7 = vec_ctf(vec_unpackh(data7), 0);
 | 
						|
        alt7 = vec_ctf(vec_unpackl(data7), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // The following block could exist as a separate an altivec dct
 | 
						|
                // function.  However, if we put it inline, the DCT data can remain
 | 
						|
                // in the vector local variables, as floats, which we'll use during the
 | 
						|
                // quantize step...
 | 
						|
    {
 | 
						|
        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
 | 
						|
        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
 | 
						|
        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
 | 
						|
        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
 | 
						|
        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
 | 
						|
        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
 | 
						|
        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
 | 
						|
        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
 | 
						|
        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
 | 
						|
        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
 | 
						|
        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
 | 
						|
        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
 | 
						|
 | 
						|
 | 
						|
        int whichPass, whichHalf;
 | 
						|
 | 
						|
        for(whichPass = 1; whichPass<=2; whichPass++) {
 | 
						|
            for(whichHalf = 1; whichHalf<=2; whichHalf++) {
 | 
						|
                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 | 
						|
                vector float tmp10, tmp11, tmp12, tmp13;
 | 
						|
                vector float z1, z2, z3, z4, z5;
 | 
						|
 | 
						|
                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
 | 
						|
                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
 | 
						|
                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
 | 
						|
                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
 | 
						|
                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
 | 
						|
                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
 | 
						|
                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
 | 
						|
                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
 | 
						|
 | 
						|
                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
 | 
						|
                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
 | 
						|
                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
 | 
						|
                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
 | 
						|
 | 
						|
 | 
						|
                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
 | 
						|
                row0 = vec_add(tmp10, tmp11);
 | 
						|
 | 
						|
                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
 | 
						|
                row4 = vec_sub(tmp10, tmp11);
 | 
						|
 | 
						|
 | 
						|
                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 | 
						|
                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
 | 
						|
 | 
						|
                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
 | 
						|
                //                                CONST_BITS-PASS1_BITS);
 | 
						|
                row2 = vec_madd(tmp13, vec_0_765366865, z1);
 | 
						|
 | 
						|
                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
 | 
						|
                //                                CONST_BITS-PASS1_BITS);
 | 
						|
                row6 = vec_madd(tmp12, vec_1_847759065, z1);
 | 
						|
 | 
						|
                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
 | 
						|
                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
 | 
						|
                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
 | 
						|
                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
 | 
						|
 | 
						|
                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
 | 
						|
                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
 | 
						|
 | 
						|
                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
 | 
						|
                z3 = vec_madd(z3, vec_1_961570560, z5);
 | 
						|
 | 
						|
                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
 | 
						|
                z4 = vec_madd(z4, vec_0_390180644, z5);
 | 
						|
 | 
						|
                // The following adds are rolled into the multiplies above
 | 
						|
                // z3 = vec_add(z3, z5);  // z3 += z5;
 | 
						|
                // z4 = vec_add(z4, z5);  // z4 += z5;
 | 
						|
 | 
						|
                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
 | 
						|
                // Wow!  It's actually more efficient to roll this multiply
 | 
						|
                // into the adds below, even thought the multiply gets done twice!
 | 
						|
                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
 | 
						|
 | 
						|
                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
 | 
						|
                // Same with this one...
 | 
						|
                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
 | 
						|
 | 
						|
                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
 | 
						|
                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
 | 
						|
                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
 | 
						|
 | 
						|
                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
 | 
						|
                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
 | 
						|
                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
 | 
						|
 | 
						|
                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
 | 
						|
                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
 | 
						|
                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
 | 
						|
 | 
						|
                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
 | 
						|
                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
 | 
						|
                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
 | 
						|
 | 
						|
                // Swap the row values with the alts.  If this is the first half,
 | 
						|
                // this sets up the low values to be acted on in the second half.
 | 
						|
                // If this is the second half, it puts the high values back in
 | 
						|
                // the row values where they are expected to be when we're done.
 | 
						|
                SWAP(row0, alt0);
 | 
						|
                SWAP(row1, alt1);
 | 
						|
                SWAP(row2, alt2);
 | 
						|
                SWAP(row3, alt3);
 | 
						|
                SWAP(row4, alt4);
 | 
						|
                SWAP(row5, alt5);
 | 
						|
                SWAP(row6, alt6);
 | 
						|
                SWAP(row7, alt7);
 | 
						|
            }
 | 
						|
 | 
						|
            if (whichPass == 1) {
 | 
						|
                // transpose the data for the second pass
 | 
						|
 | 
						|
                // First, block transpose the upper right with lower left.
 | 
						|
                SWAP(row4, alt0);
 | 
						|
                SWAP(row5, alt1);
 | 
						|
                SWAP(row6, alt2);
 | 
						|
                SWAP(row7, alt3);
 | 
						|
 | 
						|
                // Now, transpose each block of four
 | 
						|
                TRANSPOSE4(row0, row1, row2, row3);
 | 
						|
                TRANSPOSE4(row4, row5, row6, row7);
 | 
						|
                TRANSPOSE4(alt0, alt1, alt2, alt3);
 | 
						|
                TRANSPOSE4(alt4, alt5, alt6, alt7);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // perform the quantize step, using the floating point data
 | 
						|
    // still in the row/alt registers
 | 
						|
    {
 | 
						|
        const int* biasAddr;
 | 
						|
        const vector signed int* qmat;
 | 
						|
        vector float bias, negBias;
 | 
						|
 | 
						|
        if (s->mb_intra) {
 | 
						|
            vector signed int baseVector;
 | 
						|
 | 
						|
            // We must cache element 0 in the intra case
 | 
						|
            // (it needs special handling).
 | 
						|
            baseVector = vec_cts(vec_splat(row0, 0), 0);
 | 
						|
            vec_ste(baseVector, 0, &oldBaseValue);
 | 
						|
 | 
						|
            qmat = (vector signed int*)s->q_intra_matrix[qscale];
 | 
						|
            biasAddr = &(s->intra_quant_bias);
 | 
						|
        } else {
 | 
						|
            qmat = (vector signed int*)s->q_inter_matrix[qscale];
 | 
						|
            biasAddr = &(s->inter_quant_bias);
 | 
						|
        }
 | 
						|
 | 
						|
        // Load the bias vector (We add 0.5 to the bias so that we're
 | 
						|
                                // rounding when we convert to int, instead of flooring.)
 | 
						|
        {
 | 
						|
            vector signed int biasInt;
 | 
						|
            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
 | 
						|
            LOAD4(biasInt, biasAddr);
 | 
						|
            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
 | 
						|
            negBias = vec_madd(bias, negOneFloat, zero);
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
            vector float q0, q1, q2, q3, q4, q5, q6, q7;
 | 
						|
 | 
						|
            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
 | 
						|
            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
 | 
						|
            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
 | 
						|
            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
 | 
						|
            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
 | 
						|
            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
 | 
						|
            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
 | 
						|
            q7 = vec_ctf(qmat[14], QMAT_SHIFT);
 | 
						|
 | 
						|
            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
 | 
						|
                    vec_cmpgt(row0, zero));
 | 
						|
            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
 | 
						|
                    vec_cmpgt(row1, zero));
 | 
						|
            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
 | 
						|
                    vec_cmpgt(row2, zero));
 | 
						|
            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
 | 
						|
                    vec_cmpgt(row3, zero));
 | 
						|
            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
 | 
						|
                    vec_cmpgt(row4, zero));
 | 
						|
            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
 | 
						|
                    vec_cmpgt(row5, zero));
 | 
						|
            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
 | 
						|
                    vec_cmpgt(row6, zero));
 | 
						|
            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
 | 
						|
                    vec_cmpgt(row7, zero));
 | 
						|
 | 
						|
            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
 | 
						|
            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
 | 
						|
            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
 | 
						|
            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
 | 
						|
            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
 | 
						|
            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
 | 
						|
            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
 | 
						|
            q7 = vec_ctf(qmat[15], QMAT_SHIFT);
 | 
						|
 | 
						|
            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
 | 
						|
                    vec_cmpgt(alt0, zero));
 | 
						|
            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
 | 
						|
                    vec_cmpgt(alt1, zero));
 | 
						|
            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
 | 
						|
                    vec_cmpgt(alt2, zero));
 | 
						|
            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
 | 
						|
                    vec_cmpgt(alt3, zero));
 | 
						|
            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
 | 
						|
                    vec_cmpgt(alt4, zero));
 | 
						|
            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
 | 
						|
                    vec_cmpgt(alt5, zero));
 | 
						|
            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
 | 
						|
                    vec_cmpgt(alt6, zero));
 | 
						|
            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
 | 
						|
                    vec_cmpgt(alt7, zero));
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    // Store the data back into the original block
 | 
						|
    {
 | 
						|
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
 | 
						|
 | 
						|
        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
 | 
						|
        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
 | 
						|
        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
 | 
						|
        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
 | 
						|
        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
 | 
						|
        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
 | 
						|
        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
 | 
						|
        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
 | 
						|
 | 
						|
        {
 | 
						|
            // Clamp for overflow
 | 
						|
            vector signed int max_q_int, min_q_int;
 | 
						|
            vector signed short max_q, min_q;
 | 
						|
 | 
						|
            LOAD4(max_q_int, &(s->max_qcoeff));
 | 
						|
            LOAD4(min_q_int, &(s->min_qcoeff));
 | 
						|
 | 
						|
            max_q = vec_pack(max_q_int, max_q_int);
 | 
						|
            min_q = vec_pack(min_q_int, min_q_int);
 | 
						|
 | 
						|
            data0 = vec_max(vec_min(data0, max_q), min_q);
 | 
						|
            data1 = vec_max(vec_min(data1, max_q), min_q);
 | 
						|
            data2 = vec_max(vec_min(data2, max_q), min_q);
 | 
						|
            data4 = vec_max(vec_min(data4, max_q), min_q);
 | 
						|
            data5 = vec_max(vec_min(data5, max_q), min_q);
 | 
						|
            data6 = vec_max(vec_min(data6, max_q), min_q);
 | 
						|
            data7 = vec_max(vec_min(data7, max_q), min_q);
 | 
						|
        }
 | 
						|
 | 
						|
        {
 | 
						|
        vector bool char zero_01, zero_23, zero_45, zero_67;
 | 
						|
        vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67;
 | 
						|
        vector signed char negOne = vec_splat_s8(-1);
 | 
						|
        vector signed char* scanPtr =
 | 
						|
                (vector signed char*)(s->intra_scantable.inverse);
 | 
						|
        signed char lastNonZeroChar;
 | 
						|
 | 
						|
        // Determine the largest non-zero index.
 | 
						|
        zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
 | 
						|
                vec_cmpeq(data1, (vector signed short)zero));
 | 
						|
        zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
 | 
						|
                vec_cmpeq(data3, (vector signed short)zero));
 | 
						|
        zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
 | 
						|
                vec_cmpeq(data5, (vector signed short)zero));
 | 
						|
        zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
 | 
						|
                vec_cmpeq(data7, (vector signed short)zero));
 | 
						|
 | 
						|
        // 64 biggest values
 | 
						|
        scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
 | 
						|
        scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
 | 
						|
        scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
 | 
						|
        scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
 | 
						|
 | 
						|
        // 32 largest values
 | 
						|
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23);
 | 
						|
        scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67);
 | 
						|
 | 
						|
        // 16 largest values
 | 
						|
        scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45);
 | 
						|
 | 
						|
        // 8 largest values
 | 
						|
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | 
						|
                vec_mergel(scanIndexes_01, negOne));
 | 
						|
 | 
						|
        // 4 largest values
 | 
						|
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | 
						|
                vec_mergel(scanIndexes_01, negOne));
 | 
						|
 | 
						|
        // 2 largest values
 | 
						|
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | 
						|
                vec_mergel(scanIndexes_01, negOne));
 | 
						|
 | 
						|
        // largest value
 | 
						|
        scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne),
 | 
						|
                vec_mergel(scanIndexes_01, negOne));
 | 
						|
 | 
						|
        scanIndexes_01 = vec_splat(scanIndexes_01, 0);
 | 
						|
 | 
						|
 | 
						|
        vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
 | 
						|
 | 
						|
        lastNonZero = lastNonZeroChar;
 | 
						|
 | 
						|
        // While the data is still in vectors we check for the transpose IDCT permute
 | 
						|
        // and handle it using the vector unit if we can.  This is the permute used
 | 
						|
        // by the altivec idct, so it is common when using the altivec dct.
 | 
						|
 | 
						|
        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) {
 | 
						|
            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
 | 
						|
        }
 | 
						|
 | 
						|
        vec_st(data0, 0, data);
 | 
						|
        vec_st(data1, 16, data);
 | 
						|
        vec_st(data2, 32, data);
 | 
						|
        vec_st(data3, 48, data);
 | 
						|
        vec_st(data4, 64, data);
 | 
						|
        vec_st(data5, 80, data);
 | 
						|
        vec_st(data6, 96, data);
 | 
						|
        vec_st(data7, 112, data);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // special handling of block[0]
 | 
						|
    if (s->mb_intra) {
 | 
						|
        if (!s->h263_aic) {
 | 
						|
            if (n < 4)
 | 
						|
                oldBaseValue /= s->y_dc_scale;
 | 
						|
            else
 | 
						|
                oldBaseValue /= s->c_dc_scale;
 | 
						|
        }
 | 
						|
 | 
						|
        // Divide by 8, rounding the result
 | 
						|
        data[0] = (oldBaseValue + 4) >> 3;
 | 
						|
    }
 | 
						|
 | 
						|
    // We handled the transpose permutation above and we don't
 | 
						|
    // need to permute the "no" permutation case.
 | 
						|
    if ((lastNonZero > 0) &&
 | 
						|
        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
 | 
						|
        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) {
 | 
						|
        ff_block_permute(data, s->dsp.idct_permutation,
 | 
						|
                s->intra_scantable.scantable, lastNonZero);
 | 
						|
    }
 | 
						|
 | 
						|
    return lastNonZero;
 | 
						|
}
 | 
						|
 | 
						|
/* AltiVec version of dct_unquantize_h263
 | 
						|
   this code assumes `block' is 16 bytes-aligned */
 | 
						|
static void dct_unquantize_h263_altivec(MpegEncContext *s,
 | 
						|
                                 DCTELEM *block, int n, int qscale)
 | 
						|
{
 | 
						|
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
 | 
						|
    int i, level, qmul, qadd;
 | 
						|
    int nCoeffs;
 | 
						|
 | 
						|
    assert(s->block_last_index[n]>=0);
 | 
						|
 | 
						|
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
 | 
						|
 | 
						|
    qadd = (qscale - 1) | 1;
 | 
						|
    qmul = qscale << 1;
 | 
						|
 | 
						|
    if (s->mb_intra) {
 | 
						|
        if (!s->h263_aic) {
 | 
						|
            if (n < 4)
 | 
						|
                block[0] = block[0] * s->y_dc_scale;
 | 
						|
            else
 | 
						|
                block[0] = block[0] * s->c_dc_scale;
 | 
						|
        }else
 | 
						|
            qadd = 0;
 | 
						|
        i = 1;
 | 
						|
        nCoeffs= 63; //does not always use zigzag table
 | 
						|
    } else {
 | 
						|
        i = 0;
 | 
						|
        nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
 | 
						|
    }
 | 
						|
 | 
						|
    {
 | 
						|
        register const vector signed short vczero = (const vector signed short)vec_splat_s16(0);
 | 
						|
        DECLARE_ALIGNED(16, short, qmul8) = qmul;
 | 
						|
        DECLARE_ALIGNED(16, short, qadd8) = qadd;
 | 
						|
        register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
 | 
						|
        register vector bool short blockv_null, blockv_neg;
 | 
						|
        register short backup_0 = block[0];
 | 
						|
        register int j = 0;
 | 
						|
 | 
						|
        qmulv = vec_splat((vec_s16)vec_lde(0, &qmul8), 0);
 | 
						|
        qaddv = vec_splat((vec_s16)vec_lde(0, &qadd8), 0);
 | 
						|
        nqaddv = vec_sub(vczero, qaddv);
 | 
						|
 | 
						|
#if 0   // block *is* 16 bytes-aligned, it seems.
 | 
						|
        // first make sure block[j] is 16 bytes-aligned
 | 
						|
        for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
 | 
						|
            level = block[j];
 | 
						|
            if (level) {
 | 
						|
                if (level < 0) {
 | 
						|
                    level = level * qmul - qadd;
 | 
						|
                } else {
 | 
						|
                    level = level * qmul + qadd;
 | 
						|
                }
 | 
						|
                block[j] = level;
 | 
						|
            }
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // vectorize all the 16 bytes-aligned blocks
 | 
						|
        // of 8 elements
 | 
						|
        for(; (j + 7) <= nCoeffs ; j+=8) {
 | 
						|
            blockv = vec_ld(j << 1, block);
 | 
						|
            blockv_neg = vec_cmplt(blockv, vczero);
 | 
						|
            blockv_null = vec_cmpeq(blockv, vczero);
 | 
						|
            // choose between +qadd or -qadd as the third operand
 | 
						|
            temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
 | 
						|
            // multiply & add (block{i,i+7} * qmul [+-] qadd)
 | 
						|
            temp1 = vec_mladd(blockv, qmulv, temp1);
 | 
						|
            // put 0 where block[{i,i+7} used to have 0
 | 
						|
            blockv = vec_sel(temp1, blockv, blockv_null);
 | 
						|
            vec_st(blockv, j << 1, block);
 | 
						|
        }
 | 
						|
 | 
						|
        // if nCoeffs isn't a multiple of 8, finish the job
 | 
						|
        // using good old scalar units.
 | 
						|
        // (we could do it using a truncated vector,
 | 
						|
        // but I'm not sure it's worth the hassle)
 | 
						|
        for(; j <= nCoeffs ; j++) {
 | 
						|
            level = block[j];
 | 
						|
            if (level) {
 | 
						|
                if (level < 0) {
 | 
						|
                    level = level * qmul - qadd;
 | 
						|
                } else {
 | 
						|
                    level = level * qmul + qadd;
 | 
						|
                }
 | 
						|
                block[j] = level;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (i == 1) {
 | 
						|
            // cheat. this avoid special-casing the first iteration
 | 
						|
            block[0] = backup_0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void MPV_common_init_altivec(MpegEncContext *s)
 | 
						|
{
 | 
						|
    if ((mm_flags & FF_MM_ALTIVEC) == 0) return;
 | 
						|
 | 
						|
    if (s->avctx->lowres==0) {
 | 
						|
        if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
 | 
						|
            (s->avctx->idct_algo == FF_IDCT_ALTIVEC)) {
 | 
						|
            s->dsp.idct_put = idct_put_altivec;
 | 
						|
            s->dsp.idct_add = idct_add_altivec;
 | 
						|
            s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Test to make sure that the dct required alignments are met.
 | 
						|
    if ((((long)(s->q_intra_matrix) & 0x0f) != 0) ||
 | 
						|
        (((long)(s->q_inter_matrix) & 0x0f) != 0)) {
 | 
						|
        av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
 | 
						|
                "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) {
 | 
						|
        av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
 | 
						|
                "to use AltiVec DCT. Reverting to non-AltiVec version.\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
 | 
						|
            (s->avctx->dct_algo == FF_DCT_ALTIVEC)) {
 | 
						|
#if 0 /* seems to cause trouble under some circumstances */
 | 
						|
        s->dct_quantize = dct_quantize_altivec;
 | 
						|
#endif
 | 
						|
        s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec;
 | 
						|
        s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec;
 | 
						|
    }
 | 
						|
}
 |