* commit '41ed7ab45fc693f7d7fc35664c0233f4c32d69bb': cosmetics: Fix spelling mistakes Merged-by: Clément Bœsch <u@pkh.me>
		
			
				
	
	
		
			1147 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1147 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Indeo Video v3 compatible decoder
 | |
|  * Copyright (c) 2009 - 2011 Maxim Poliakovski
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * This is a decoder for Intel Indeo Video v3.
 | |
|  * It is based on vector quantization, run-length coding and motion compensation.
 | |
|  * Known container formats: .avi and .mov
 | |
|  * Known FOURCCs: 'IV31', 'IV32'
 | |
|  *
 | |
|  * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
 | |
|  */
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "avcodec.h"
 | |
| #include "copy_block.h"
 | |
| #include "bytestream.h"
 | |
| #include "get_bits.h"
 | |
| #include "hpeldsp.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| #include "indeo3data.h"
 | |
| 
 | |
| /* RLE opcodes. */
 | |
| enum {
 | |
|     RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
 | |
|     RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
 | |
|     RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
 | |
|     RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
 | |
|     RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
 | |
|     RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
 | |
|     RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
 | |
| };
 | |
| 
 | |
| 
 | |
| /* Some constants for parsing frame bitstream flags. */
 | |
| #define BS_8BIT_PEL     (1 << 1) ///< 8-bit pixel bitdepth indicator
 | |
| #define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
 | |
| #define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
 | |
| #define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
 | |
| #define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
 | |
| #define BS_BUFFER        9       ///< indicates which of two frame buffers should be used
 | |
| 
 | |
| 
 | |
| typedef struct Plane {
 | |
|     uint8_t         *buffers[2];
 | |
|     uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
 | |
|     uint32_t        width;
 | |
|     uint32_t        height;
 | |
|     uint32_t        pitch;
 | |
| } Plane;
 | |
| 
 | |
| #define CELL_STACK_MAX  20
 | |
| 
 | |
| typedef struct Cell {
 | |
|     int16_t         xpos;       ///< cell coordinates in 4x4 blocks
 | |
|     int16_t         ypos;
 | |
|     int16_t         width;      ///< cell width  in 4x4 blocks
 | |
|     int16_t         height;     ///< cell height in 4x4 blocks
 | |
|     uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
 | |
|     const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
 | |
| } Cell;
 | |
| 
 | |
| typedef struct Indeo3DecodeContext {
 | |
|     AVCodecContext *avctx;
 | |
|     HpelDSPContext  hdsp;
 | |
| 
 | |
|     GetBitContext   gb;
 | |
|     int             need_resync;
 | |
|     int             skip_bits;
 | |
|     const uint8_t   *next_cell_data;
 | |
|     const uint8_t   *last_byte;
 | |
|     const int8_t    *mc_vectors;
 | |
|     unsigned        num_vectors;    ///< number of motion vectors in mc_vectors
 | |
| 
 | |
|     int16_t         width, height;
 | |
|     uint32_t        frame_num;      ///< current frame number (zero-based)
 | |
|     int             data_size;      ///< size of the frame data in bytes
 | |
|     uint16_t        frame_flags;    ///< frame properties
 | |
|     uint8_t         cb_offset;      ///< needed for selecting VQ tables
 | |
|     uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
 | |
|     const uint8_t   *y_data_ptr;
 | |
|     const uint8_t   *v_data_ptr;
 | |
|     const uint8_t   *u_data_ptr;
 | |
|     int32_t         y_data_size;
 | |
|     int32_t         v_data_size;
 | |
|     int32_t         u_data_size;
 | |
|     const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
 | |
|     Plane           planes[3];
 | |
| } Indeo3DecodeContext;
 | |
| 
 | |
| 
 | |
| static uint8_t requant_tab[8][128];
 | |
| 
 | |
| /*
 | |
|  *  Build the static requantization table.
 | |
|  *  This table is used to remap pixel values according to a specific
 | |
|  *  quant index and thus avoid overflows while adding deltas.
 | |
|  */
 | |
| static av_cold void build_requant_tab(void)
 | |
| {
 | |
|     static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
 | |
|     static const int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };
 | |
| 
 | |
|     int i, j, step;
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         step = i + 2;
 | |
|         for (j = 0; j < 128; j++)
 | |
|                 requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
 | |
|     }
 | |
| 
 | |
|     /* some last elements calculated above will have values >= 128 */
 | |
|     /* pixel values shall never exceed 127 so set them to non-overflowing values */
 | |
|     /* according with the quantization step of the respective section */
 | |
|     requant_tab[0][127] = 126;
 | |
|     requant_tab[1][119] = 118;
 | |
|     requant_tab[1][120] = 118;
 | |
|     requant_tab[2][126] = 124;
 | |
|     requant_tab[2][127] = 124;
 | |
|     requant_tab[6][124] = 120;
 | |
|     requant_tab[6][125] = 120;
 | |
|     requant_tab[6][126] = 120;
 | |
|     requant_tab[6][127] = 120;
 | |
| 
 | |
|     /* Patch for compatibility with the Intel's binary decoders */
 | |
|     requant_tab[1][7] = 10;
 | |
|     requant_tab[4][8] = 10;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
 | |
| {
 | |
|     int p;
 | |
| 
 | |
|     ctx->width = ctx->height = 0;
 | |
| 
 | |
|     for (p = 0; p < 3; p++) {
 | |
|         av_freep(&ctx->planes[p].buffers[0]);
 | |
|         av_freep(&ctx->planes[p].buffers[1]);
 | |
|         ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
 | |
|                                           AVCodecContext *avctx, int luma_width, int luma_height)
 | |
| {
 | |
|     int p, chroma_width, chroma_height;
 | |
|     int luma_pitch, chroma_pitch, luma_size, chroma_size;
 | |
| 
 | |
|     if (luma_width  < 16 || luma_width  > 640 ||
 | |
|         luma_height < 16 || luma_height > 480 ||
 | |
|         luma_width  &  3 || luma_height &   3) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
 | |
|                luma_width, luma_height);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     ctx->width  = luma_width ;
 | |
|     ctx->height = luma_height;
 | |
| 
 | |
|     chroma_width  = FFALIGN(luma_width  >> 2, 4);
 | |
|     chroma_height = FFALIGN(luma_height >> 2, 4);
 | |
| 
 | |
|     luma_pitch   = FFALIGN(luma_width,   16);
 | |
|     chroma_pitch = FFALIGN(chroma_width, 16);
 | |
| 
 | |
|     /* Calculate size of the luminance plane.  */
 | |
|     /* Add one line more for INTRA prediction. */
 | |
|     luma_size = luma_pitch * (luma_height + 1);
 | |
| 
 | |
|     /* Calculate size of a chrominance planes. */
 | |
|     /* Add one line more for INTRA prediction. */
 | |
|     chroma_size = chroma_pitch * (chroma_height + 1);
 | |
| 
 | |
|     /* allocate frame buffers */
 | |
|     for (p = 0; p < 3; p++) {
 | |
|         ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
 | |
|         ctx->planes[p].width  = !p ? luma_width  : chroma_width;
 | |
|         ctx->planes[p].height = !p ? luma_height : chroma_height;
 | |
| 
 | |
|         ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
 | |
|         ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
 | |
| 
 | |
|         if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
 | |
|             free_frame_buffers(ctx);
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
| 
 | |
|         /* fill the INTRA prediction lines with the middle pixel value = 64 */
 | |
|         memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
 | |
|         memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
 | |
| 
 | |
|         /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
 | |
|         ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
 | |
|         ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
 | |
|         memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
 | |
|         memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
 | |
|  *  the cell(x, y) in the current frame.
 | |
|  *
 | |
|  *  @param ctx      pointer to the decoder context
 | |
|  *  @param plane    pointer to the plane descriptor
 | |
|  *  @param cell     pointer to the cell  descriptor
 | |
|  */
 | |
| static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
 | |
| {
 | |
|     int     h, w, mv_x, mv_y, offset, offset_dst;
 | |
|     uint8_t *src, *dst;
 | |
| 
 | |
|     /* setup output and reference pointers */
 | |
|     offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
 | |
|     dst         = plane->pixels[ctx->buf_sel] + offset_dst;
 | |
|     if(cell->mv_ptr){
 | |
|     mv_y        = cell->mv_ptr[0];
 | |
|     mv_x        = cell->mv_ptr[1];
 | |
|     }else
 | |
|         mv_x= mv_y= 0;
 | |
| 
 | |
|     /* -1 because there is an extra line on top for prediction */
 | |
|     if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
 | |
|         ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
 | |
|         ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
 | |
|         av_log(ctx->avctx, AV_LOG_ERROR,
 | |
|                "Motion vectors point out of the frame.\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     offset      = offset_dst + mv_y * plane->pitch + mv_x;
 | |
|     src         = plane->pixels[ctx->buf_sel ^ 1] + offset;
 | |
| 
 | |
|     h = cell->height << 2;
 | |
| 
 | |
|     for (w = cell->width; w > 0;) {
 | |
|         /* copy using 16xH blocks */
 | |
|         if (!((cell->xpos << 2) & 15) && w >= 4) {
 | |
|             for (; w >= 4; src += 16, dst += 16, w -= 4)
 | |
|                 ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
 | |
|         }
 | |
| 
 | |
|         /* copy using 8xH blocks */
 | |
|         if (!((cell->xpos << 2) & 7) && w >= 2) {
 | |
|             ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
 | |
|             w -= 2;
 | |
|             src += 8;
 | |
|             dst += 8;
 | |
|         } else if (w >= 1) {
 | |
|             ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
 | |
|             w--;
 | |
|             src += 4;
 | |
|             dst += 4;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Average 4/8 pixels at once without rounding using SWAR */
 | |
| #define AVG_32(dst, src, ref) \
 | |
|     AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
 | |
| 
 | |
| #define AVG_64(dst, src, ref) \
 | |
|     AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  Replicate each even pixel as follows:
 | |
|  *  ABCDEFGH -> AACCEEGG
 | |
|  */
 | |
| static inline uint64_t replicate64(uint64_t a) {
 | |
| #if HAVE_BIGENDIAN
 | |
|     a &= 0xFF00FF00FF00FF00ULL;
 | |
|     a |= a >> 8;
 | |
| #else
 | |
|     a &= 0x00FF00FF00FF00FFULL;
 | |
|     a |= a << 8;
 | |
| #endif
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static inline uint32_t replicate32(uint32_t a) {
 | |
| #if HAVE_BIGENDIAN
 | |
|     a &= 0xFF00FF00UL;
 | |
|     a |= a >> 8;
 | |
| #else
 | |
|     a &= 0x00FF00FFUL;
 | |
|     a |= a << 8;
 | |
| #endif
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Fill n lines with 64-bit pixel value pix */
 | |
| static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
 | |
|                            int32_t row_offset)
 | |
| {
 | |
|     for (; n > 0; dst += row_offset, n--)
 | |
|         AV_WN64A(dst, pix);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Error codes for cell decoding. */
 | |
| enum {
 | |
|     IV3_NOERR       = 0,
 | |
|     IV3_BAD_RLE     = 1,
 | |
|     IV3_BAD_DATA    = 2,
 | |
|     IV3_BAD_COUNTER = 3,
 | |
|     IV3_UNSUPPORTED = 4,
 | |
|     IV3_OUT_OF_DATA = 5
 | |
| };
 | |
| 
 | |
| 
 | |
| #define BUFFER_PRECHECK \
 | |
| if (*data_ptr >= last_ptr) \
 | |
|     return IV3_OUT_OF_DATA; \
 | |
| 
 | |
| #define RLE_BLOCK_COPY \
 | |
|     if (cell->mv_ptr || !skip_flag) \
 | |
|         copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
 | |
| 
 | |
| #define RLE_BLOCK_COPY_8 \
 | |
|     pix64 = AV_RN64(ref);\
 | |
|     if (is_first_row) {/* special prediction case: top line of a cell */\
 | |
|         pix64 = replicate64(pix64);\
 | |
|         fill_64(dst + row_offset, pix64, 7, row_offset);\
 | |
|         AVG_64(dst, ref, dst + row_offset);\
 | |
|     } else \
 | |
|         fill_64(dst, pix64, 8, row_offset)
 | |
| 
 | |
| #define RLE_LINES_COPY \
 | |
|     copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
 | |
| 
 | |
| #define RLE_LINES_COPY_M10 \
 | |
|     pix64 = AV_RN64(ref);\
 | |
|     if (is_top_of_cell) {\
 | |
|         pix64 = replicate64(pix64);\
 | |
|         fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
 | |
|         AVG_64(dst, ref, dst + row_offset);\
 | |
|     } else \
 | |
|         fill_64(dst, pix64, num_lines << 1, row_offset)
 | |
| 
 | |
| #define APPLY_DELTA_4 \
 | |
|     AV_WN16A(dst + line_offset    ,\
 | |
|              (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
 | |
|     AV_WN16A(dst + line_offset + 2,\
 | |
|              (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
 | |
|     if (mode >= 3) {\
 | |
|         if (is_top_of_cell && !cell->ypos) {\
 | |
|             AV_COPY32U(dst, dst + row_offset);\
 | |
|         } else {\
 | |
|             AVG_32(dst, ref, dst + row_offset);\
 | |
|         }\
 | |
|     }
 | |
| 
 | |
| #define APPLY_DELTA_8 \
 | |
|     /* apply two 32-bit VQ deltas to next even line */\
 | |
|     if (is_top_of_cell) { \
 | |
|         AV_WN32A(dst + row_offset    , \
 | |
|                  (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
 | |
|         AV_WN32A(dst + row_offset + 4, \
 | |
|                  (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
 | |
|     } else { \
 | |
|         AV_WN32A(dst + row_offset    , \
 | |
|                  (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
 | |
|         AV_WN32A(dst + row_offset + 4, \
 | |
|                  (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
 | |
|     } \
 | |
|     /* odd lines are not coded but rather interpolated/replicated */\
 | |
|     /* first line of the cell on the top of image? - replicate */\
 | |
|     /* otherwise - interpolate */\
 | |
|     if (is_top_of_cell && !cell->ypos) {\
 | |
|         AV_COPY64U(dst, dst + row_offset);\
 | |
|     } else \
 | |
|         AVG_64(dst, ref, dst + row_offset);
 | |
| 
 | |
| 
 | |
| #define APPLY_DELTA_1011_INTER \
 | |
|     if (mode == 10) { \
 | |
|         AV_WN32A(dst                 , \
 | |
|                  (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
 | |
|         AV_WN32A(dst + 4             , \
 | |
|                  (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
 | |
|         AV_WN32A(dst + row_offset    , \
 | |
|                  (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
 | |
|         AV_WN32A(dst + row_offset + 4, \
 | |
|                  (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
 | |
|     } else { \
 | |
|         AV_WN16A(dst                 , \
 | |
|                  (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
 | |
|         AV_WN16A(dst + 2             , \
 | |
|                  (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
 | |
|         AV_WN16A(dst + row_offset    , \
 | |
|                  (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
 | |
|         AV_WN16A(dst + row_offset + 2, \
 | |
|                  (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
 | |
|     }
 | |
| 
 | |
| 
 | |
| static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
 | |
|                             uint8_t *block, uint8_t *ref_block,
 | |
|                             int pitch, int h_zoom, int v_zoom, int mode,
 | |
|                             const vqEntry *delta[2], int swap_quads[2],
 | |
|                             const uint8_t **data_ptr, const uint8_t *last_ptr)
 | |
| {
 | |
|     int           x, y, line, num_lines;
 | |
|     int           rle_blocks = 0;
 | |
|     uint8_t       code, *dst, *ref;
 | |
|     const vqEntry *delta_tab;
 | |
|     unsigned int  dyad1, dyad2;
 | |
|     uint64_t      pix64;
 | |
|     int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
 | |
|     int           row_offset, blk_row_offset, line_offset;
 | |
| 
 | |
|     row_offset     =  pitch;
 | |
|     blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
 | |
|     line_offset    = v_zoom ? row_offset : 0;
 | |
| 
 | |
|     if (cell->height & v_zoom || cell->width & h_zoom)
 | |
|         return IV3_BAD_DATA;
 | |
| 
 | |
|     for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
 | |
|         for (x = 0; x < cell->width; x += 1 + h_zoom) {
 | |
|             ref = ref_block;
 | |
|             dst = block;
 | |
| 
 | |
|             if (rle_blocks > 0) {
 | |
|                 if (mode <= 4) {
 | |
|                     RLE_BLOCK_COPY;
 | |
|                 } else if (mode == 10 && !cell->mv_ptr) {
 | |
|                     RLE_BLOCK_COPY_8;
 | |
|                 }
 | |
|                 rle_blocks--;
 | |
|             } else {
 | |
|                 for (line = 0; line < 4;) {
 | |
|                     num_lines = 1;
 | |
|                     is_top_of_cell = is_first_row && !line;
 | |
| 
 | |
|                     /* select primary VQ table for odd, secondary for even lines */
 | |
|                     if (mode <= 4)
 | |
|                         delta_tab = delta[line & 1];
 | |
|                     else
 | |
|                         delta_tab = delta[1];
 | |
|                     BUFFER_PRECHECK;
 | |
|                     code = bytestream_get_byte(data_ptr);
 | |
|                     if (code < 248) {
 | |
|                         if (code < delta_tab->num_dyads) {
 | |
|                             BUFFER_PRECHECK;
 | |
|                             dyad1 = bytestream_get_byte(data_ptr);
 | |
|                             dyad2 = code;
 | |
|                             if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
 | |
|                                 return IV3_BAD_DATA;
 | |
|                         } else {
 | |
|                             /* process QUADS */
 | |
|                             code -= delta_tab->num_dyads;
 | |
|                             dyad1 = code / delta_tab->quad_exp;
 | |
|                             dyad2 = code % delta_tab->quad_exp;
 | |
|                             if (swap_quads[line & 1])
 | |
|                                 FFSWAP(unsigned int, dyad1, dyad2);
 | |
|                         }
 | |
|                         if (mode <= 4) {
 | |
|                             APPLY_DELTA_4;
 | |
|                         } else if (mode == 10 && !cell->mv_ptr) {
 | |
|                             APPLY_DELTA_8;
 | |
|                         } else {
 | |
|                             APPLY_DELTA_1011_INTER;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* process RLE codes */
 | |
|                         switch (code) {
 | |
|                         case RLE_ESC_FC:
 | |
|                             skip_flag  = 0;
 | |
|                             rle_blocks = 1;
 | |
|                             code       = 253;
 | |
|                             /* FALLTHROUGH */
 | |
|                         case RLE_ESC_FF:
 | |
|                         case RLE_ESC_FE:
 | |
|                         case RLE_ESC_FD:
 | |
|                             num_lines = 257 - code - line;
 | |
|                             if (num_lines <= 0)
 | |
|                                 return IV3_BAD_RLE;
 | |
|                             if (mode <= 4) {
 | |
|                                 RLE_LINES_COPY;
 | |
|                             } else if (mode == 10 && !cell->mv_ptr) {
 | |
|                                 RLE_LINES_COPY_M10;
 | |
|                             }
 | |
|                             break;
 | |
|                         case RLE_ESC_FB:
 | |
|                             BUFFER_PRECHECK;
 | |
|                             code = bytestream_get_byte(data_ptr);
 | |
|                             rle_blocks = (code & 0x1F) - 1; /* set block counter */
 | |
|                             if (code >= 64 || rle_blocks < 0)
 | |
|                                 return IV3_BAD_COUNTER;
 | |
|                             skip_flag = code & 0x20;
 | |
|                             num_lines = 4 - line; /* enforce next block processing */
 | |
|                             if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
 | |
|                                 if (mode <= 4) {
 | |
|                                     RLE_LINES_COPY;
 | |
|                                 } else if (mode == 10 && !cell->mv_ptr) {
 | |
|                                     RLE_LINES_COPY_M10;
 | |
|                                 }
 | |
|                             }
 | |
|                             break;
 | |
|                         case RLE_ESC_F9:
 | |
|                             skip_flag  = 1;
 | |
|                             rle_blocks = 1;
 | |
|                             /* FALLTHROUGH */
 | |
|                         case RLE_ESC_FA:
 | |
|                             if (line)
 | |
|                                 return IV3_BAD_RLE;
 | |
|                             num_lines = 4; /* enforce next block processing */
 | |
|                             if (cell->mv_ptr) {
 | |
|                                 if (mode <= 4) {
 | |
|                                     RLE_LINES_COPY;
 | |
|                                 } else if (mode == 10 && !cell->mv_ptr) {
 | |
|                                     RLE_LINES_COPY_M10;
 | |
|                                 }
 | |
|                             }
 | |
|                             break;
 | |
|                         default:
 | |
|                             return IV3_UNSUPPORTED;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     line += num_lines;
 | |
|                     ref  += row_offset * (num_lines << v_zoom);
 | |
|                     dst  += row_offset * (num_lines << v_zoom);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* move to next horizontal block */
 | |
|             block     += 4 << h_zoom;
 | |
|             ref_block += 4 << h_zoom;
 | |
|         }
 | |
| 
 | |
|         /* move to next line of blocks */
 | |
|         ref_block += blk_row_offset;
 | |
|         block     += blk_row_offset;
 | |
|     }
 | |
|     return IV3_NOERR;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  Decode a vector-quantized cell.
 | |
|  *  It consists of several routines, each of which handles one or more "modes"
 | |
|  *  with which a cell can be encoded.
 | |
|  *
 | |
|  *  @param ctx      pointer to the decoder context
 | |
|  *  @param avctx    ptr to the AVCodecContext
 | |
|  *  @param plane    pointer to the plane descriptor
 | |
|  *  @param cell     pointer to the cell  descriptor
 | |
|  *  @param data_ptr pointer to the compressed data
 | |
|  *  @param last_ptr pointer to the last byte to catch reads past end of buffer
 | |
|  *  @return         number of consumed bytes or negative number in case of error
 | |
|  */
 | |
| static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
 | |
|                        Plane *plane, Cell *cell, const uint8_t *data_ptr,
 | |
|                        const uint8_t *last_ptr)
 | |
| {
 | |
|     int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
 | |
|     int           zoom_fac;
 | |
|     int           offset, error = 0, swap_quads[2];
 | |
|     uint8_t       code, *block, *ref_block = 0;
 | |
|     const vqEntry *delta[2];
 | |
|     const uint8_t *data_start = data_ptr;
 | |
| 
 | |
|     /* get coding mode and VQ table index from the VQ descriptor byte */
 | |
|     code     = *data_ptr++;
 | |
|     mode     = code >> 4;
 | |
|     vq_index = code & 0xF;
 | |
| 
 | |
|     /* setup output and reference pointers */
 | |
|     offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
 | |
|     block  =  plane->pixels[ctx->buf_sel] + offset;
 | |
| 
 | |
|     if (!cell->mv_ptr) {
 | |
|         /* use previous line as reference for INTRA cells */
 | |
|         ref_block = block - plane->pitch;
 | |
|     } else if (mode >= 10) {
 | |
|         /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
 | |
|         /* so we don't need to do data copying for each RLE code later */
 | |
|         int ret = copy_cell(ctx, plane, cell);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     } else {
 | |
|         /* set the pointer to the reference pixels for modes 0-4 INTER */
 | |
|         mv_y      = cell->mv_ptr[0];
 | |
|         mv_x      = cell->mv_ptr[1];
 | |
| 
 | |
|         /* -1 because there is an extra line on top for prediction */
 | |
|         if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
 | |
|             ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
 | |
|             ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
 | |
|             av_log(ctx->avctx, AV_LOG_ERROR,
 | |
|                    "Motion vectors point out of the frame.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         offset   += mv_y * plane->pitch + mv_x;
 | |
|         ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
 | |
|     }
 | |
| 
 | |
|     /* select VQ tables as follows: */
 | |
|     /* modes 0 and 3 use only the primary table for all lines in a block */
 | |
|     /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
 | |
|     if (mode == 1 || mode == 4) {
 | |
|         code        = ctx->alt_quant[vq_index];
 | |
|         prim_indx   = (code >> 4)  + ctx->cb_offset;
 | |
|         second_indx = (code & 0xF) + ctx->cb_offset;
 | |
|     } else {
 | |
|         vq_index += ctx->cb_offset;
 | |
|         prim_indx = second_indx = vq_index;
 | |
|     }
 | |
| 
 | |
|     if (prim_indx >= 24 || second_indx >= 24) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
 | |
|                prim_indx, second_indx);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     delta[0] = &vq_tab[second_indx];
 | |
|     delta[1] = &vq_tab[prim_indx];
 | |
|     swap_quads[0] = second_indx >= 16;
 | |
|     swap_quads[1] = prim_indx   >= 16;
 | |
| 
 | |
|     /* requantize the prediction if VQ index of this cell differs from VQ index */
 | |
|     /* of the predicted cell in order to avoid overflows. */
 | |
|     if (vq_index >= 8 && ref_block) {
 | |
|         for (x = 0; x < cell->width << 2; x++)
 | |
|             ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
 | |
|     }
 | |
| 
 | |
|     error = IV3_NOERR;
 | |
| 
 | |
|     switch (mode) {
 | |
|     case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
 | |
|     case 1:
 | |
|     case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
 | |
|     case 4:
 | |
|         if (mode >= 3 && cell->mv_ptr) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
| 
 | |
|         zoom_fac = mode >= 3;
 | |
|         error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
 | |
|                                  0, zoom_fac, mode, delta, swap_quads,
 | |
|                                  &data_ptr, last_ptr);
 | |
|         break;
 | |
|     case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
 | |
|     case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
 | |
|         if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
 | |
|             error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
 | |
|                                      1, 1, mode, delta, swap_quads,
 | |
|                                      &data_ptr, last_ptr);
 | |
|         } else { /* mode 10 and 11 INTER processing */
 | |
|             if (mode == 11 && !cell->mv_ptr) {
 | |
|                av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
 | |
|                return AVERROR_INVALIDDATA;
 | |
|             }
 | |
| 
 | |
|             zoom_fac = mode == 10;
 | |
|             error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
 | |
|                                      zoom_fac, 1, mode, delta, swap_quads,
 | |
|                                      &data_ptr, last_ptr);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }//switch mode
 | |
| 
 | |
|     switch (error) {
 | |
|     case IV3_BAD_RLE:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
 | |
|                mode, data_ptr[-1]);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     case IV3_BAD_DATA:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     case IV3_BAD_COUNTER:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     case IV3_UNSUPPORTED:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     case IV3_OUT_OF_DATA:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Binary tree codes. */
 | |
| enum {
 | |
|     H_SPLIT    = 0,
 | |
|     V_SPLIT    = 1,
 | |
|     INTRA_NULL = 2,
 | |
|     INTER_DATA = 3
 | |
| };
 | |
| 
 | |
| 
 | |
| #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
 | |
| 
 | |
| #define UPDATE_BITPOS(n) \
 | |
|     ctx->skip_bits  += (n); \
 | |
|     ctx->need_resync = 1
 | |
| 
 | |
| #define RESYNC_BITSTREAM \
 | |
|     if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
 | |
|         skip_bits_long(&ctx->gb, ctx->skip_bits);              \
 | |
|         ctx->skip_bits   = 0;                                  \
 | |
|         ctx->need_resync = 0;                                  \
 | |
|     }
 | |
| 
 | |
| #define CHECK_CELL \
 | |
|     if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
 | |
|         curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
 | |
|                curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
 | |
|         return AVERROR_INVALIDDATA;                                                              \
 | |
|     }
 | |
| 
 | |
| 
 | |
| static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
 | |
|                          Plane *plane, int code, Cell *ref_cell,
 | |
|                          const int depth, const int strip_width)
 | |
| {
 | |
|     Cell    curr_cell;
 | |
|     int     bytes_used, ret;
 | |
| 
 | |
|     if (depth <= 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
 | |
|         return AVERROR_INVALIDDATA; // unwind recursion
 | |
|     }
 | |
| 
 | |
|     curr_cell = *ref_cell; // clone parent cell
 | |
|     if (code == H_SPLIT) {
 | |
|         SPLIT_CELL(ref_cell->height, curr_cell.height);
 | |
|         ref_cell->ypos   += curr_cell.height;
 | |
|         ref_cell->height -= curr_cell.height;
 | |
|         if (ref_cell->height <= 0 || curr_cell.height <= 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     } else if (code == V_SPLIT) {
 | |
|         if (curr_cell.width > strip_width) {
 | |
|             /* split strip */
 | |
|             curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
 | |
|         } else
 | |
|             SPLIT_CELL(ref_cell->width, curr_cell.width);
 | |
|         ref_cell->xpos  += curr_cell.width;
 | |
|         ref_cell->width -= curr_cell.width;
 | |
|         if (ref_cell->width <= 0 || curr_cell.width <= 0)
 | |
|             return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
 | |
|         RESYNC_BITSTREAM;
 | |
|         switch (code = get_bits(&ctx->gb, 2)) {
 | |
|         case H_SPLIT:
 | |
|         case V_SPLIT:
 | |
|             if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
 | |
|                 return AVERROR_INVALIDDATA;
 | |
|             break;
 | |
|         case INTRA_NULL:
 | |
|             if (!curr_cell.tree) { /* MC tree INTRA code */
 | |
|                 curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
 | |
|                 curr_cell.tree   = 1; /* enter the VQ tree */
 | |
|             } else { /* VQ tree NULL code */
 | |
|                 RESYNC_BITSTREAM;
 | |
|                 code = get_bits(&ctx->gb, 2);
 | |
|                 if (code >= 2) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 if (code == 1)
 | |
|                     av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
 | |
| 
 | |
|                 CHECK_CELL
 | |
|                 if (!curr_cell.mv_ptr)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
| 
 | |
|                 ret = copy_cell(ctx, plane, &curr_cell);
 | |
|                 return ret;
 | |
|             }
 | |
|             break;
 | |
|         case INTER_DATA:
 | |
|             if (!curr_cell.tree) { /* MC tree INTER code */
 | |
|                 unsigned mv_idx;
 | |
|                 /* get motion vector index and setup the pointer to the mv set */
 | |
|                 if (!ctx->need_resync)
 | |
|                     ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
 | |
|                 if (ctx->next_cell_data >= ctx->last_byte) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 mv_idx = *(ctx->next_cell_data++);
 | |
|                 if (mv_idx >= ctx->num_vectors) {
 | |
|                     av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
 | |
|                     return AVERROR_INVALIDDATA;
 | |
|                 }
 | |
|                 curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
 | |
|                 curr_cell.tree   = 1; /* enter the VQ tree */
 | |
|                 UPDATE_BITPOS(8);
 | |
|             } else { /* VQ tree DATA code */
 | |
|                 if (!ctx->need_resync)
 | |
|                     ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
 | |
| 
 | |
|                 CHECK_CELL
 | |
|                 bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
 | |
|                                          ctx->next_cell_data, ctx->last_byte);
 | |
|                 if (bytes_used < 0)
 | |
|                     return AVERROR_INVALIDDATA;
 | |
| 
 | |
|                 UPDATE_BITPOS(bytes_used << 3);
 | |
|                 ctx->next_cell_data += bytes_used;
 | |
|                 return 0;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }//while
 | |
| 
 | |
|     return AVERROR_INVALIDDATA;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
 | |
|                         Plane *plane, const uint8_t *data, int32_t data_size,
 | |
|                         int32_t strip_width)
 | |
| {
 | |
|     Cell            curr_cell;
 | |
|     unsigned        num_vectors;
 | |
| 
 | |
|     /* each plane data starts with mc_vector_count field, */
 | |
|     /* an optional array of motion vectors followed by the vq data */
 | |
|     num_vectors = bytestream_get_le32(&data); data_size -= 4;
 | |
|     if (num_vectors > 256) {
 | |
|         av_log(ctx->avctx, AV_LOG_ERROR,
 | |
|                "Read invalid number of motion vectors %d\n", num_vectors);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
|     if (num_vectors * 2 > data_size)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     ctx->num_vectors = num_vectors;
 | |
|     ctx->mc_vectors  = num_vectors ? data : 0;
 | |
| 
 | |
|     /* init the bitreader */
 | |
|     init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
 | |
|     ctx->skip_bits   = 0;
 | |
|     ctx->need_resync = 0;
 | |
| 
 | |
|     ctx->last_byte = data + data_size;
 | |
| 
 | |
|     /* initialize the 1st cell and set its dimensions to whole plane */
 | |
|     curr_cell.xpos   = curr_cell.ypos = 0;
 | |
|     curr_cell.width  = plane->width  >> 2;
 | |
|     curr_cell.height = plane->height >> 2;
 | |
|     curr_cell.tree   = 0; // we are in the MC tree now
 | |
|     curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
 | |
| 
 | |
|     return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')
 | |
| 
 | |
| static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
 | |
|                                 const uint8_t *buf, int buf_size)
 | |
| {
 | |
|     GetByteContext gb;
 | |
|     const uint8_t   *bs_hdr;
 | |
|     uint32_t        frame_num, word2, check_sum, data_size;
 | |
|     int             y_offset, u_offset, v_offset;
 | |
|     uint32_t        starts[3], ends[3];
 | |
|     uint16_t        height, width;
 | |
|     int             i, j;
 | |
| 
 | |
|     bytestream2_init(&gb, buf, buf_size);
 | |
| 
 | |
|     /* parse and check the OS header */
 | |
|     frame_num = bytestream2_get_le32(&gb);
 | |
|     word2     = bytestream2_get_le32(&gb);
 | |
|     check_sum = bytestream2_get_le32(&gb);
 | |
|     data_size = bytestream2_get_le32(&gb);
 | |
| 
 | |
|     if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /* parse the bitstream header */
 | |
|     bs_hdr = gb.buffer;
 | |
| 
 | |
|     if (bytestream2_get_le16(&gb) != 32) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     ctx->frame_num   =  frame_num;
 | |
|     ctx->frame_flags =  bytestream2_get_le16(&gb);
 | |
|     ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
 | |
|     ctx->cb_offset   =  bytestream2_get_byte(&gb);
 | |
| 
 | |
|     if (ctx->data_size == 16)
 | |
|         return 4;
 | |
|     ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
 | |
| 
 | |
|     bytestream2_skip(&gb, 3); // skip reserved byte and checksum
 | |
| 
 | |
|     /* check frame dimensions */
 | |
|     height = bytestream2_get_le16(&gb);
 | |
|     width  = bytestream2_get_le16(&gb);
 | |
|     if (av_image_check_size(width, height, 0, avctx))
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     if (width != ctx->width || height != ctx->height) {
 | |
|         int res;
 | |
| 
 | |
|         ff_dlog(avctx, "Frame dimensions changed!\n");
 | |
| 
 | |
|         if (width  < 16 || width  > 640 ||
 | |
|             height < 16 || height > 480 ||
 | |
|             width  &  3 || height &   3) {
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "Invalid picture dimensions: %d x %d!\n", width, height);
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         free_frame_buffers(ctx);
 | |
|         if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
 | |
|              return res;
 | |
|         if ((res = ff_set_dimensions(avctx, width, height)) < 0)
 | |
|             return res;
 | |
|     }
 | |
| 
 | |
|     y_offset = bytestream2_get_le32(&gb);
 | |
|     v_offset = bytestream2_get_le32(&gb);
 | |
|     u_offset = bytestream2_get_le32(&gb);
 | |
|     bytestream2_skip(&gb, 4);
 | |
| 
 | |
|     /* unfortunately there is no common order of planes in the buffer */
 | |
|     /* so we use that sorting algo for determining planes data sizes  */
 | |
|     starts[0] = y_offset;
 | |
|     starts[1] = v_offset;
 | |
|     starts[2] = u_offset;
 | |
| 
 | |
|     for (j = 0; j < 3; j++) {
 | |
|         ends[j] = ctx->data_size;
 | |
|         for (i = 2; i >= 0; i--)
 | |
|             if (starts[i] < ends[j] && starts[i] > starts[j])
 | |
|                 ends[j] = starts[i];
 | |
|     }
 | |
| 
 | |
|     ctx->y_data_size = ends[0] - starts[0];
 | |
|     ctx->v_data_size = ends[1] - starts[1];
 | |
|     ctx->u_data_size = ends[2] - starts[2];
 | |
|     if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
 | |
|         FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
 | |
|         FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
 | |
|         FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     ctx->y_data_ptr = bs_hdr + y_offset;
 | |
|     ctx->v_data_ptr = bs_hdr + v_offset;
 | |
|     ctx->u_data_ptr = bs_hdr + u_offset;
 | |
|     ctx->alt_quant  = gb.buffer;
 | |
| 
 | |
|     if (ctx->data_size == 16) {
 | |
|         av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
 | |
|         return 16;
 | |
|     }
 | |
| 
 | |
|     if (ctx->frame_flags & BS_8BIT_PEL) {
 | |
|         avpriv_request_sample(avctx, "8-bit pixel format");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
 | |
|         avpriv_request_sample(avctx, "Halfpel motion vectors");
 | |
|         return AVERROR_PATCHWELCOME;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  Convert and output the current plane.
 | |
|  *  All pixel values will be upsampled by shifting right by one bit.
 | |
|  *
 | |
|  *  @param[in]  plane        pointer to the descriptor of the plane being processed
 | |
|  *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
 | |
|  *  @param[out] dst          pointer to the buffer receiving converted pixels
 | |
|  *  @param[in]  dst_pitch    pitch for moving to the next y line
 | |
|  *  @param[in]  dst_height   output plane height
 | |
|  */
 | |
| static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
 | |
|                          int dst_pitch, int dst_height)
 | |
| {
 | |
|     int             x,y;
 | |
|     const uint8_t   *src  = plane->pixels[buf_sel];
 | |
|     uint32_t        pitch = plane->pitch;
 | |
| 
 | |
|     dst_height = FFMIN(dst_height, plane->height);
 | |
|     for (y = 0; y < dst_height; y++) {
 | |
|         /* convert four pixels at once using SWAR */
 | |
|         for (x = 0; x < plane->width >> 2; x++) {
 | |
|             AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
 | |
|             src += 4;
 | |
|             dst += 4;
 | |
|         }
 | |
| 
 | |
|         for (x <<= 2; x < plane->width; x++)
 | |
|             *dst++ = *src++ << 1;
 | |
| 
 | |
|         src += pitch     - plane->width;
 | |
|         dst += dst_pitch - plane->width;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     Indeo3DecodeContext *ctx = avctx->priv_data;
 | |
| 
 | |
|     ctx->avctx     = avctx;
 | |
|     avctx->pix_fmt = AV_PIX_FMT_YUV410P;
 | |
| 
 | |
|     build_requant_tab();
 | |
| 
 | |
|     ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
 | |
| 
 | |
|     return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
 | |
|                         AVPacket *avpkt)
 | |
| {
 | |
|     Indeo3DecodeContext *ctx = avctx->priv_data;
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size       = avpkt->size;
 | |
|     AVFrame *frame     = data;
 | |
|     int res;
 | |
| 
 | |
|     res = decode_frame_headers(ctx, avctx, buf, buf_size);
 | |
|     if (res < 0)
 | |
|         return res;
 | |
| 
 | |
|     /* skip sync(null) frames */
 | |
|     if (res) {
 | |
|         // we have processed 16 bytes but no data was decoded
 | |
|         *got_frame = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     /* skip droppable INTER frames if requested */
 | |
|     if (ctx->frame_flags & BS_NONREF &&
 | |
|        (avctx->skip_frame >= AVDISCARD_NONREF))
 | |
|         return 0;
 | |
| 
 | |
|     /* skip INTER frames if requested */
 | |
|     if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
 | |
|         return 0;
 | |
| 
 | |
|     /* use BS_BUFFER flag for buffer switching */
 | |
|     ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
 | |
| 
 | |
|     if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
 | |
|         return res;
 | |
| 
 | |
|     /* decode luma plane */
 | |
|     if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
 | |
|         return res;
 | |
| 
 | |
|     /* decode chroma planes */
 | |
|     if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
 | |
|         return res;
 | |
| 
 | |
|     if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
 | |
|         return res;
 | |
| 
 | |
|     output_plane(&ctx->planes[0], ctx->buf_sel,
 | |
|                  frame->data[0], frame->linesize[0],
 | |
|                  avctx->height);
 | |
|     output_plane(&ctx->planes[1], ctx->buf_sel,
 | |
|                  frame->data[1], frame->linesize[1],
 | |
|                  (avctx->height + 3) >> 2);
 | |
|     output_plane(&ctx->planes[2], ctx->buf_sel,
 | |
|                  frame->data[2], frame->linesize[2],
 | |
|                  (avctx->height + 3) >> 2);
 | |
| 
 | |
|     *got_frame = 1;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| 
 | |
| static av_cold int decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     free_frame_buffers(avctx->priv_data);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_indeo3_decoder = {
 | |
|     .name           = "indeo3",
 | |
|     .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
 | |
|     .type           = AVMEDIA_TYPE_VIDEO,
 | |
|     .id             = AV_CODEC_ID_INDEO3,
 | |
|     .priv_data_size = sizeof(Indeo3DecodeContext),
 | |
|     .init           = decode_init,
 | |
|     .close          = decode_close,
 | |
|     .decode         = decode_frame,
 | |
|     .capabilities   = AV_CODEC_CAP_DR1,
 | |
| };
 |