1623 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1623 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018 Gregor Richards
 | |
|  * Copyright (c) 2017 Mozilla
 | |
|  * Copyright (c) 2005-2009 Xiph.Org Foundation
 | |
|  * Copyright (c) 2007-2008 CSIRO
 | |
|  * Copyright (c) 2008-2011 Octasic Inc.
 | |
|  * Copyright (c) Jean-Marc Valin
 | |
|  * Copyright (c) 2019 Paul B Mahol
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * - Redistributions of source code must retain the above copyright
 | |
|  *   notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * - Redistributions in binary form must reproduce the above copyright
 | |
|  *   notice, this list of conditions and the following disclaimer in the
 | |
|  *   documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
 | |
|  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <float.h>
 | |
| 
 | |
| #include "libavutil/avassert.h"
 | |
| #include "libavutil/avstring.h"
 | |
| #include "libavutil/float_dsp.h"
 | |
| #include "libavutil/mem_internal.h"
 | |
| #include "libavutil/opt.h"
 | |
| #include "libavutil/tx.h"
 | |
| #include "avfilter.h"
 | |
| #include "audio.h"
 | |
| #include "filters.h"
 | |
| #include "formats.h"
 | |
| 
 | |
| #define FRAME_SIZE_SHIFT 2
 | |
| #define FRAME_SIZE (120<<FRAME_SIZE_SHIFT)
 | |
| #define WINDOW_SIZE (2*FRAME_SIZE)
 | |
| #define FREQ_SIZE (FRAME_SIZE + 1)
 | |
| 
 | |
| #define PITCH_MIN_PERIOD 60
 | |
| #define PITCH_MAX_PERIOD 768
 | |
| #define PITCH_FRAME_SIZE 960
 | |
| #define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)
 | |
| 
 | |
| #define SQUARE(x) ((x)*(x))
 | |
| 
 | |
| #define NB_BANDS 22
 | |
| 
 | |
| #define CEPS_MEM 8
 | |
| #define NB_DELTA_CEPS 6
 | |
| 
 | |
| #define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2)
 | |
| 
 | |
| #define WEIGHTS_SCALE (1.f/256)
 | |
| 
 | |
| #define MAX_NEURONS 128
 | |
| 
 | |
| #define ACTIVATION_TANH    0
 | |
| #define ACTIVATION_SIGMOID 1
 | |
| #define ACTIVATION_RELU    2
 | |
| 
 | |
| #define Q15ONE 1.0f
 | |
| 
 | |
| typedef struct DenseLayer {
 | |
|     const float *bias;
 | |
|     const float *input_weights;
 | |
|     int nb_inputs;
 | |
|     int nb_neurons;
 | |
|     int activation;
 | |
| } DenseLayer;
 | |
| 
 | |
| typedef struct GRULayer {
 | |
|     const float *bias;
 | |
|     const float *input_weights;
 | |
|     const float *recurrent_weights;
 | |
|     int nb_inputs;
 | |
|     int nb_neurons;
 | |
|     int activation;
 | |
| } GRULayer;
 | |
| 
 | |
| typedef struct RNNModel {
 | |
|     int input_dense_size;
 | |
|     const DenseLayer *input_dense;
 | |
| 
 | |
|     int vad_gru_size;
 | |
|     const GRULayer *vad_gru;
 | |
| 
 | |
|     int noise_gru_size;
 | |
|     const GRULayer *noise_gru;
 | |
| 
 | |
|     int denoise_gru_size;
 | |
|     const GRULayer *denoise_gru;
 | |
| 
 | |
|     int denoise_output_size;
 | |
|     const DenseLayer *denoise_output;
 | |
| 
 | |
|     int vad_output_size;
 | |
|     const DenseLayer *vad_output;
 | |
| } RNNModel;
 | |
| 
 | |
| typedef struct RNNState {
 | |
|     float *vad_gru_state;
 | |
|     float *noise_gru_state;
 | |
|     float *denoise_gru_state;
 | |
|     RNNModel *model;
 | |
| } RNNState;
 | |
| 
 | |
| typedef struct DenoiseState {
 | |
|     float analysis_mem[FRAME_SIZE];
 | |
|     float cepstral_mem[CEPS_MEM][NB_BANDS];
 | |
|     int memid;
 | |
|     DECLARE_ALIGNED(32, float, synthesis_mem)[FRAME_SIZE];
 | |
|     float pitch_buf[PITCH_BUF_SIZE];
 | |
|     float pitch_enh_buf[PITCH_BUF_SIZE];
 | |
|     float last_gain;
 | |
|     int last_period;
 | |
|     float mem_hp_x[2];
 | |
|     float lastg[NB_BANDS];
 | |
|     float history[FRAME_SIZE];
 | |
|     RNNState rnn[2];
 | |
|     AVTXContext *tx, *txi;
 | |
|     av_tx_fn tx_fn, txi_fn;
 | |
| } DenoiseState;
 | |
| 
 | |
| typedef struct AudioRNNContext {
 | |
|     const AVClass *class;
 | |
| 
 | |
|     char *model_name;
 | |
|     float mix;
 | |
| 
 | |
|     int channels;
 | |
|     DenoiseState *st;
 | |
| 
 | |
|     DECLARE_ALIGNED(32, float, window)[WINDOW_SIZE];
 | |
|     DECLARE_ALIGNED(32, float, dct_table)[FFALIGN(NB_BANDS, 4)][FFALIGN(NB_BANDS, 4)];
 | |
| 
 | |
|     RNNModel *model[2];
 | |
| 
 | |
|     AVFloatDSPContext *fdsp;
 | |
| } AudioRNNContext;
 | |
| 
 | |
| #define F_ACTIVATION_TANH       0
 | |
| #define F_ACTIVATION_SIGMOID    1
 | |
| #define F_ACTIVATION_RELU       2
 | |
| 
 | |
| static void rnnoise_model_free(RNNModel *model)
 | |
| {
 | |
| #define FREE_MAYBE(ptr) do { if (ptr) free(ptr); } while (0)
 | |
| #define FREE_DENSE(name) do { \
 | |
|     if (model->name) { \
 | |
|         av_free((void *) model->name->input_weights); \
 | |
|         av_free((void *) model->name->bias); \
 | |
|         av_free((void *) model->name); \
 | |
|     } \
 | |
|     } while (0)
 | |
| #define FREE_GRU(name) do { \
 | |
|     if (model->name) { \
 | |
|         av_free((void *) model->name->input_weights); \
 | |
|         av_free((void *) model->name->recurrent_weights); \
 | |
|         av_free((void *) model->name->bias); \
 | |
|         av_free((void *) model->name); \
 | |
|     } \
 | |
|     } while (0)
 | |
| 
 | |
|     if (!model)
 | |
|         return;
 | |
|     FREE_DENSE(input_dense);
 | |
|     FREE_GRU(vad_gru);
 | |
|     FREE_GRU(noise_gru);
 | |
|     FREE_GRU(denoise_gru);
 | |
|     FREE_DENSE(denoise_output);
 | |
|     FREE_DENSE(vad_output);
 | |
|     av_free(model);
 | |
| }
 | |
| 
 | |
| static int rnnoise_model_from_file(FILE *f, RNNModel **rnn)
 | |
| {
 | |
|     RNNModel *ret = NULL;
 | |
|     DenseLayer *input_dense;
 | |
|     GRULayer *vad_gru;
 | |
|     GRULayer *noise_gru;
 | |
|     GRULayer *denoise_gru;
 | |
|     DenseLayer *denoise_output;
 | |
|     DenseLayer *vad_output;
 | |
|     int in;
 | |
| 
 | |
|     if (fscanf(f, "rnnoise-nu model file version %d\n", &in) != 1 || in != 1)
 | |
|         return AVERROR_INVALIDDATA;
 | |
| 
 | |
|     ret = av_calloc(1, sizeof(RNNModel));
 | |
|     if (!ret)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
| #define ALLOC_LAYER(type, name) \
 | |
|     name = av_calloc(1, sizeof(type)); \
 | |
|     if (!name) { \
 | |
|         rnnoise_model_free(ret); \
 | |
|         return AVERROR(ENOMEM); \
 | |
|     } \
 | |
|     ret->name = name
 | |
| 
 | |
|     ALLOC_LAYER(DenseLayer, input_dense);
 | |
|     ALLOC_LAYER(GRULayer, vad_gru);
 | |
|     ALLOC_LAYER(GRULayer, noise_gru);
 | |
|     ALLOC_LAYER(GRULayer, denoise_gru);
 | |
|     ALLOC_LAYER(DenseLayer, denoise_output);
 | |
|     ALLOC_LAYER(DenseLayer, vad_output);
 | |
| 
 | |
| #define INPUT_VAL(name) do { \
 | |
|     if (fscanf(f, "%d", &in) != 1 || in < 0 || in > 128) { \
 | |
|         rnnoise_model_free(ret); \
 | |
|         return AVERROR(EINVAL); \
 | |
|     } \
 | |
|     name = in; \
 | |
|     } while (0)
 | |
| 
 | |
| #define INPUT_ACTIVATION(name) do { \
 | |
|     int activation; \
 | |
|     INPUT_VAL(activation); \
 | |
|     switch (activation) { \
 | |
|     case F_ACTIVATION_SIGMOID: \
 | |
|         name = ACTIVATION_SIGMOID; \
 | |
|         break; \
 | |
|     case F_ACTIVATION_RELU: \
 | |
|         name = ACTIVATION_RELU; \
 | |
|         break; \
 | |
|     default: \
 | |
|         name = ACTIVATION_TANH; \
 | |
|     } \
 | |
|     } while (0)
 | |
| 
 | |
| #define INPUT_ARRAY(name, len) do { \
 | |
|     float *values = av_calloc((len), sizeof(float)); \
 | |
|     if (!values) { \
 | |
|         rnnoise_model_free(ret); \
 | |
|         return AVERROR(ENOMEM); \
 | |
|     } \
 | |
|     name = values; \
 | |
|     for (int i = 0; i < (len); i++) { \
 | |
|         if (fscanf(f, "%d", &in) != 1) { \
 | |
|             rnnoise_model_free(ret); \
 | |
|             return AVERROR(EINVAL); \
 | |
|         } \
 | |
|         values[i] = in; \
 | |
|     } \
 | |
|     } while (0)
 | |
| 
 | |
| #define INPUT_ARRAY3(name, len0, len1, len2) do { \
 | |
|     float *values = av_calloc(FFALIGN((len0), 4) * FFALIGN((len1), 4) * (len2), sizeof(float)); \
 | |
|     if (!values) { \
 | |
|         rnnoise_model_free(ret); \
 | |
|         return AVERROR(ENOMEM); \
 | |
|     } \
 | |
|     name = values; \
 | |
|     for (int k = 0; k < (len0); k++) { \
 | |
|         for (int i = 0; i < (len2); i++) { \
 | |
|             for (int j = 0; j < (len1); j++) { \
 | |
|                 if (fscanf(f, "%d", &in) != 1) { \
 | |
|                     rnnoise_model_free(ret); \
 | |
|                     return AVERROR(EINVAL); \
 | |
|                 } \
 | |
|                 values[j * (len2) * FFALIGN((len0), 4) + i * FFALIGN((len0), 4) + k] = in; \
 | |
|             } \
 | |
|         } \
 | |
|     } \
 | |
|     } while (0)
 | |
| 
 | |
| #define NEW_LINE() do { \
 | |
|     int c; \
 | |
|     while ((c = fgetc(f)) != EOF) { \
 | |
|         if (c == '\n') \
 | |
|         break; \
 | |
|     } \
 | |
|     } while (0)
 | |
| 
 | |
| #define INPUT_DENSE(name) do { \
 | |
|     INPUT_VAL(name->nb_inputs); \
 | |
|     INPUT_VAL(name->nb_neurons); \
 | |
|     ret->name ## _size = name->nb_neurons; \
 | |
|     INPUT_ACTIVATION(name->activation); \
 | |
|     NEW_LINE(); \
 | |
|     INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons); \
 | |
|     NEW_LINE(); \
 | |
|     INPUT_ARRAY(name->bias, name->nb_neurons); \
 | |
|     NEW_LINE(); \
 | |
|     } while (0)
 | |
| 
 | |
| #define INPUT_GRU(name) do { \
 | |
|     INPUT_VAL(name->nb_inputs); \
 | |
|     INPUT_VAL(name->nb_neurons); \
 | |
|     ret->name ## _size = name->nb_neurons; \
 | |
|     INPUT_ACTIVATION(name->activation); \
 | |
|     NEW_LINE(); \
 | |
|     INPUT_ARRAY3(name->input_weights, name->nb_inputs, name->nb_neurons, 3); \
 | |
|     NEW_LINE(); \
 | |
|     INPUT_ARRAY3(name->recurrent_weights, name->nb_neurons, name->nb_neurons, 3); \
 | |
|     NEW_LINE(); \
 | |
|     INPUT_ARRAY(name->bias, name->nb_neurons * 3); \
 | |
|     NEW_LINE(); \
 | |
|     } while (0)
 | |
| 
 | |
|     INPUT_DENSE(input_dense);
 | |
|     INPUT_GRU(vad_gru);
 | |
|     INPUT_GRU(noise_gru);
 | |
|     INPUT_GRU(denoise_gru);
 | |
|     INPUT_DENSE(denoise_output);
 | |
|     INPUT_DENSE(vad_output);
 | |
| 
 | |
|     if (vad_output->nb_neurons != 1) {
 | |
|         rnnoise_model_free(ret);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     *rnn = ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int query_formats(AVFilterContext *ctx)
 | |
| {
 | |
|     static const enum AVSampleFormat sample_fmts[] = {
 | |
|         AV_SAMPLE_FMT_FLTP,
 | |
|         AV_SAMPLE_FMT_NONE
 | |
|     };
 | |
|     int ret, sample_rates[] = { 48000, -1 };
 | |
| 
 | |
|     ret = ff_set_common_formats_from_list(ctx, sample_fmts);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = ff_set_common_all_channel_counts(ctx);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return ff_set_common_samplerates_from_list(ctx, sample_rates);
 | |
| }
 | |
| 
 | |
| static int config_input(AVFilterLink *inlink)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
|     int ret = 0;
 | |
| 
 | |
|     s->channels = inlink->ch_layout.nb_channels;
 | |
| 
 | |
|     if (!s->st)
 | |
|         s->st = av_calloc(s->channels, sizeof(DenoiseState));
 | |
|     if (!s->st)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     for (int i = 0; i < s->channels; i++) {
 | |
|         DenoiseState *st = &s->st[i];
 | |
| 
 | |
|         st->rnn[0].model = s->model[0];
 | |
|         st->rnn[0].vad_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->vad_gru_size, 16));
 | |
|         st->rnn[0].noise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->noise_gru_size, 16));
 | |
|         st->rnn[0].denoise_gru_state = av_calloc(sizeof(float), FFALIGN(s->model[0]->denoise_gru_size, 16));
 | |
|         if (!st->rnn[0].vad_gru_state ||
 | |
|             !st->rnn[0].noise_gru_state ||
 | |
|             !st->rnn[0].denoise_gru_state)
 | |
|             return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < s->channels; i++) {
 | |
|         DenoiseState *st = &s->st[i];
 | |
| 
 | |
|         if (!st->tx)
 | |
|             ret = av_tx_init(&st->tx, &st->tx_fn, AV_TX_FLOAT_FFT, 0, WINDOW_SIZE, NULL, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
| 
 | |
|         if (!st->txi)
 | |
|             ret = av_tx_init(&st->txi, &st->txi_fn, AV_TX_FLOAT_FFT, 1, WINDOW_SIZE, NULL, 0);
 | |
|         if (ret < 0)
 | |
|             return ret;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void biquad(float *y, float mem[2], const float *x,
 | |
|                    const float *b, const float *a, int N)
 | |
| {
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         float xi, yi;
 | |
| 
 | |
|         xi = x[i];
 | |
|         yi = x[i] + mem[0];
 | |
|         mem[0] = mem[1] + (b[0]*xi - a[0]*yi);
 | |
|         mem[1] = (b[1]*xi - a[1]*yi);
 | |
|         y[i] = yi;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define RNN_MOVE(dst, src, n) (memmove((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
 | |
| #define RNN_CLEAR(dst, n) (memset((dst), 0, (n)*sizeof(*(dst))))
 | |
| #define RNN_COPY(dst, src, n) (memcpy((dst), (src), (n)*sizeof(*(dst)) + 0*((dst)-(src)) ))
 | |
| 
 | |
| static void forward_transform(DenoiseState *st, AVComplexFloat *out, const float *in)
 | |
| {
 | |
|     AVComplexFloat x[WINDOW_SIZE];
 | |
|     AVComplexFloat y[WINDOW_SIZE];
 | |
| 
 | |
|     for (int i = 0; i < WINDOW_SIZE; i++) {
 | |
|         x[i].re = in[i];
 | |
|         x[i].im = 0;
 | |
|     }
 | |
| 
 | |
|     st->tx_fn(st->tx, y, x, sizeof(float));
 | |
| 
 | |
|     RNN_COPY(out, y, FREQ_SIZE);
 | |
| }
 | |
| 
 | |
| static void inverse_transform(DenoiseState *st, float *out, const AVComplexFloat *in)
 | |
| {
 | |
|     AVComplexFloat x[WINDOW_SIZE];
 | |
|     AVComplexFloat y[WINDOW_SIZE];
 | |
| 
 | |
|     RNN_COPY(x, in, FREQ_SIZE);
 | |
| 
 | |
|     for (int i = FREQ_SIZE; i < WINDOW_SIZE; i++) {
 | |
|         x[i].re =  x[WINDOW_SIZE - i].re;
 | |
|         x[i].im = -x[WINDOW_SIZE - i].im;
 | |
|     }
 | |
| 
 | |
|     st->txi_fn(st->txi, y, x, sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < WINDOW_SIZE; i++)
 | |
|         out[i] = y[i].re / WINDOW_SIZE;
 | |
| }
 | |
| 
 | |
| static const uint8_t eband5ms[] = {
 | |
| /*0  200 400 600 800  1k 1.2 1.4 1.6  2k 2.4 2.8 3.2  4k 4.8 5.6 6.8  8k 9.6 12k 15.6 20k*/
 | |
|   0,  1,  2,  3,  4,   5, 6,  7,  8,  10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
 | |
| };
 | |
| 
 | |
| static void compute_band_energy(float *bandE, const AVComplexFloat *X)
 | |
| {
 | |
|     float sum[NB_BANDS] = {0};
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS - 1; i++) {
 | |
|         int band_size;
 | |
| 
 | |
|         band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
 | |
|         for (int j = 0; j < band_size; j++) {
 | |
|             float tmp, frac = (float)j / band_size;
 | |
| 
 | |
|             tmp         = SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].re);
 | |
|             tmp        += SQUARE(X[(eband5ms[i] << FRAME_SIZE_SHIFT) + j].im);
 | |
|             sum[i]     += (1.f - frac) * tmp;
 | |
|             sum[i + 1] +=        frac  * tmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sum[0] *= 2;
 | |
|     sum[NB_BANDS - 1] *= 2;
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++)
 | |
|         bandE[i] = sum[i];
 | |
| }
 | |
| 
 | |
| static void compute_band_corr(float *bandE, const AVComplexFloat *X, const AVComplexFloat *P)
 | |
| {
 | |
|     float sum[NB_BANDS] = { 0 };
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS - 1; i++) {
 | |
|         int band_size;
 | |
| 
 | |
|         band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
 | |
|         for (int j = 0; j < band_size; j++) {
 | |
|             float tmp, frac = (float)j / band_size;
 | |
| 
 | |
|             tmp  = X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].re;
 | |
|             tmp += X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].im;
 | |
|             sum[i]     += (1 - frac) * tmp;
 | |
|             sum[i + 1] +=      frac  * tmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     sum[0] *= 2;
 | |
|     sum[NB_BANDS-1] *= 2;
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++)
 | |
|         bandE[i] = sum[i];
 | |
| }
 | |
| 
 | |
| static void frame_analysis(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, float *Ex, const float *in)
 | |
| {
 | |
|     LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]);
 | |
| 
 | |
|     RNN_COPY(x, st->analysis_mem, FRAME_SIZE);
 | |
|     RNN_COPY(x + FRAME_SIZE, in, FRAME_SIZE);
 | |
|     RNN_COPY(st->analysis_mem, in, FRAME_SIZE);
 | |
|     s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE);
 | |
|     forward_transform(st, X, x);
 | |
|     compute_band_energy(Ex, X);
 | |
| }
 | |
| 
 | |
| static void frame_synthesis(AudioRNNContext *s, DenoiseState *st, float *out, const AVComplexFloat *y)
 | |
| {
 | |
|     LOCAL_ALIGNED_32(float, x, [WINDOW_SIZE]);
 | |
|     const float *src = st->history;
 | |
|     const float mix = s->mix;
 | |
|     const float imix = 1.f - FFMAX(mix, 0.f);
 | |
| 
 | |
|     inverse_transform(st, x, y);
 | |
|     s->fdsp->vector_fmul(x, x, s->window, WINDOW_SIZE);
 | |
|     s->fdsp->vector_fmac_scalar(x, st->synthesis_mem, 1.f, FRAME_SIZE);
 | |
|     RNN_COPY(out, x, FRAME_SIZE);
 | |
|     RNN_COPY(st->synthesis_mem, &x[FRAME_SIZE], FRAME_SIZE);
 | |
| 
 | |
|     for (int n = 0; n < FRAME_SIZE; n++)
 | |
|         out[n] = out[n] * mix + src[n] * imix;
 | |
| }
 | |
| 
 | |
| static inline void xcorr_kernel(const float *x, const float *y, float sum[4], int len)
 | |
| {
 | |
|     float y_0, y_1, y_2, y_3 = 0;
 | |
|     int j;
 | |
| 
 | |
|     y_0 = *y++;
 | |
|     y_1 = *y++;
 | |
|     y_2 = *y++;
 | |
| 
 | |
|     for (j = 0; j < len - 3; j += 4) {
 | |
|         float tmp;
 | |
| 
 | |
|         tmp = *x++;
 | |
|         y_3 = *y++;
 | |
|         sum[0] += tmp * y_0;
 | |
|         sum[1] += tmp * y_1;
 | |
|         sum[2] += tmp * y_2;
 | |
|         sum[3] += tmp * y_3;
 | |
|         tmp = *x++;
 | |
|         y_0 = *y++;
 | |
|         sum[0] += tmp * y_1;
 | |
|         sum[1] += tmp * y_2;
 | |
|         sum[2] += tmp * y_3;
 | |
|         sum[3] += tmp * y_0;
 | |
|         tmp = *x++;
 | |
|         y_1 = *y++;
 | |
|         sum[0] += tmp * y_2;
 | |
|         sum[1] += tmp * y_3;
 | |
|         sum[2] += tmp * y_0;
 | |
|         sum[3] += tmp * y_1;
 | |
|         tmp = *x++;
 | |
|         y_2 = *y++;
 | |
|         sum[0] += tmp * y_3;
 | |
|         sum[1] += tmp * y_0;
 | |
|         sum[2] += tmp * y_1;
 | |
|         sum[3] += tmp * y_2;
 | |
|     }
 | |
| 
 | |
|     if (j++ < len) {
 | |
|         float tmp = *x++;
 | |
| 
 | |
|         y_3 = *y++;
 | |
|         sum[0] += tmp * y_0;
 | |
|         sum[1] += tmp * y_1;
 | |
|         sum[2] += tmp * y_2;
 | |
|         sum[3] += tmp * y_3;
 | |
|     }
 | |
| 
 | |
|     if (j++ < len) {
 | |
|         float tmp=*x++;
 | |
| 
 | |
|         y_0 = *y++;
 | |
|         sum[0] += tmp * y_1;
 | |
|         sum[1] += tmp * y_2;
 | |
|         sum[2] += tmp * y_3;
 | |
|         sum[3] += tmp * y_0;
 | |
|     }
 | |
| 
 | |
|     if (j < len) {
 | |
|         float tmp=*x++;
 | |
| 
 | |
|         y_1 = *y++;
 | |
|         sum[0] += tmp * y_2;
 | |
|         sum[1] += tmp * y_3;
 | |
|         sum[2] += tmp * y_0;
 | |
|         sum[3] += tmp * y_1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline float celt_inner_prod(const float *x,
 | |
|                                     const float *y, int N)
 | |
| {
 | |
|     float xy = 0.f;
 | |
| 
 | |
|     for (int i = 0; i < N; i++)
 | |
|         xy += x[i] * y[i];
 | |
| 
 | |
|     return xy;
 | |
| }
 | |
| 
 | |
| static void celt_pitch_xcorr(const float *x, const float *y,
 | |
|                              float *xcorr, int len, int max_pitch)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < max_pitch - 3; i += 4) {
 | |
|         float sum[4] = { 0, 0, 0, 0};
 | |
| 
 | |
|         xcorr_kernel(x, y + i, sum, len);
 | |
| 
 | |
|         xcorr[i]     = sum[0];
 | |
|         xcorr[i + 1] = sum[1];
 | |
|         xcorr[i + 2] = sum[2];
 | |
|         xcorr[i + 3] = sum[3];
 | |
|     }
 | |
|     /* In case max_pitch isn't a multiple of 4, do non-unrolled version. */
 | |
|     for (; i < max_pitch; i++) {
 | |
|         xcorr[i] = celt_inner_prod(x, y + i, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int celt_autocorr(const float *x,   /*  in: [0...n-1] samples x   */
 | |
|                          float       *ac,  /* out: [0...lag-1] ac values */
 | |
|                          const float *window,
 | |
|                          int          overlap,
 | |
|                          int          lag,
 | |
|                          int          n)
 | |
| {
 | |
|     int fastN = n - lag;
 | |
|     int shift;
 | |
|     const float *xptr;
 | |
|     float xx[PITCH_BUF_SIZE>>1];
 | |
| 
 | |
|     if (overlap == 0) {
 | |
|         xptr = x;
 | |
|     } else {
 | |
|         for (int i = 0; i < n; i++)
 | |
|             xx[i] = x[i];
 | |
|         for (int i = 0; i < overlap; i++) {
 | |
|             xx[i] = x[i] * window[i];
 | |
|             xx[n-i-1] = x[n-i-1] * window[i];
 | |
|         }
 | |
|         xptr = xx;
 | |
|     }
 | |
| 
 | |
|     shift = 0;
 | |
|     celt_pitch_xcorr(xptr, xptr, ac, fastN, lag+1);
 | |
| 
 | |
|     for (int k = 0; k <= lag; k++) {
 | |
|         float d = 0.f;
 | |
| 
 | |
|         for (int i = k + fastN; i < n; i++)
 | |
|             d += xptr[i] * xptr[i-k];
 | |
|         ac[k] += d;
 | |
|     }
 | |
| 
 | |
|     return shift;
 | |
| }
 | |
| 
 | |
| static void celt_lpc(float *lpc, /* out: [0...p-1] LPC coefficients      */
 | |
|                 const float *ac,   /* in:  [0...p] autocorrelation values  */
 | |
|                           int p)
 | |
| {
 | |
|     float r, error = ac[0];
 | |
| 
 | |
|     RNN_CLEAR(lpc, p);
 | |
|     if (ac[0] != 0) {
 | |
|         for (int i = 0; i < p; i++) {
 | |
|             /* Sum up this iteration's reflection coefficient */
 | |
|             float rr = 0;
 | |
|             for (int j = 0; j < i; j++)
 | |
|                 rr += (lpc[j] * ac[i - j]);
 | |
|             rr += ac[i + 1];
 | |
|             r = -rr/error;
 | |
|             /*  Update LPC coefficients and total error */
 | |
|             lpc[i] = r;
 | |
|             for (int j = 0; j < (i + 1) >> 1; j++) {
 | |
|                 float tmp1, tmp2;
 | |
|                 tmp1 = lpc[j];
 | |
|                 tmp2 = lpc[i-1-j];
 | |
|                 lpc[j]     = tmp1 + (r*tmp2);
 | |
|                 lpc[i-1-j] = tmp2 + (r*tmp1);
 | |
|             }
 | |
| 
 | |
|             error = error - (r * r *error);
 | |
|             /* Bail out once we get 30 dB gain */
 | |
|             if (error < .001f * ac[0])
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void celt_fir5(const float *x,
 | |
|                       const float *num,
 | |
|                       float *y,
 | |
|                       int N,
 | |
|                       float *mem)
 | |
| {
 | |
|     float num0, num1, num2, num3, num4;
 | |
|     float mem0, mem1, mem2, mem3, mem4;
 | |
| 
 | |
|     num0 = num[0];
 | |
|     num1 = num[1];
 | |
|     num2 = num[2];
 | |
|     num3 = num[3];
 | |
|     num4 = num[4];
 | |
|     mem0 = mem[0];
 | |
|     mem1 = mem[1];
 | |
|     mem2 = mem[2];
 | |
|     mem3 = mem[3];
 | |
|     mem4 = mem[4];
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         float sum = x[i];
 | |
| 
 | |
|         sum += (num0*mem0);
 | |
|         sum += (num1*mem1);
 | |
|         sum += (num2*mem2);
 | |
|         sum += (num3*mem3);
 | |
|         sum += (num4*mem4);
 | |
|         mem4 = mem3;
 | |
|         mem3 = mem2;
 | |
|         mem2 = mem1;
 | |
|         mem1 = mem0;
 | |
|         mem0 = x[i];
 | |
|         y[i] = sum;
 | |
|     }
 | |
| 
 | |
|     mem[0] = mem0;
 | |
|     mem[1] = mem1;
 | |
|     mem[2] = mem2;
 | |
|     mem[3] = mem3;
 | |
|     mem[4] = mem4;
 | |
| }
 | |
| 
 | |
| static void pitch_downsample(float *x[], float *x_lp,
 | |
|                              int len, int C)
 | |
| {
 | |
|     float ac[5];
 | |
|     float tmp=Q15ONE;
 | |
|     float lpc[4], mem[5]={0,0,0,0,0};
 | |
|     float lpc2[5];
 | |
|     float c1 = .8f;
 | |
| 
 | |
|     for (int i = 1; i < len >> 1; i++)
 | |
|         x_lp[i] = .5f * (.5f * (x[0][(2*i-1)]+x[0][(2*i+1)])+x[0][2*i]);
 | |
|     x_lp[0] = .5f * (.5f * (x[0][1])+x[0][0]);
 | |
|     if (C==2) {
 | |
|         for (int i = 1; i < len >> 1; i++)
 | |
|             x_lp[i] += (.5f * (.5f * (x[1][(2*i-1)]+x[1][(2*i+1)])+x[1][2*i]));
 | |
|         x_lp[0] += .5f * (.5f * (x[1][1])+x[1][0]);
 | |
|     }
 | |
| 
 | |
|     celt_autocorr(x_lp, ac, NULL, 0, 4, len>>1);
 | |
| 
 | |
|     /* Noise floor -40 dB */
 | |
|     ac[0] *= 1.0001f;
 | |
|     /* Lag windowing */
 | |
|     for (int i = 1; i <= 4; i++) {
 | |
|         /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
 | |
|         ac[i] -= ac[i]*(.008f*i)*(.008f*i);
 | |
|     }
 | |
| 
 | |
|     celt_lpc(lpc, ac, 4);
 | |
|     for (int i = 0; i < 4; i++) {
 | |
|         tmp = .9f * tmp;
 | |
|         lpc[i] = (lpc[i] * tmp);
 | |
|     }
 | |
|     /* Add a zero */
 | |
|     lpc2[0] = lpc[0] + .8f;
 | |
|     lpc2[1] = lpc[1] + (c1 * lpc[0]);
 | |
|     lpc2[2] = lpc[2] + (c1 * lpc[1]);
 | |
|     lpc2[3] = lpc[3] + (c1 * lpc[2]);
 | |
|     lpc2[4] = (c1 * lpc[3]);
 | |
|     celt_fir5(x_lp, lpc2, x_lp, len>>1, mem);
 | |
| }
 | |
| 
 | |
| static inline void dual_inner_prod(const float *x, const float *y01, const float *y02,
 | |
|                                    int N, float *xy1, float *xy2)
 | |
| {
 | |
|     float xy01 = 0, xy02 = 0;
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         xy01 += (x[i] * y01[i]);
 | |
|         xy02 += (x[i] * y02[i]);
 | |
|     }
 | |
| 
 | |
|     *xy1 = xy01;
 | |
|     *xy2 = xy02;
 | |
| }
 | |
| 
 | |
| static float compute_pitch_gain(float xy, float xx, float yy)
 | |
| {
 | |
|     return xy / sqrtf(1.f + xx * yy);
 | |
| }
 | |
| 
 | |
| static const uint8_t second_check[16] = {0, 0, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2};
 | |
| static float remove_doubling(float *x, int maxperiod, int minperiod, int N,
 | |
|                              int *T0_, int prev_period, float prev_gain)
 | |
| {
 | |
|     int k, i, T, T0;
 | |
|     float g, g0;
 | |
|     float pg;
 | |
|     float xy,xx,yy,xy2;
 | |
|     float xcorr[3];
 | |
|     float best_xy, best_yy;
 | |
|     int offset;
 | |
|     int minperiod0;
 | |
|     float yy_lookup[PITCH_MAX_PERIOD+1];
 | |
| 
 | |
|     minperiod0 = minperiod;
 | |
|     maxperiod /= 2;
 | |
|     minperiod /= 2;
 | |
|     *T0_ /= 2;
 | |
|     prev_period /= 2;
 | |
|     N /= 2;
 | |
|     x += maxperiod;
 | |
|     if (*T0_>=maxperiod)
 | |
|         *T0_=maxperiod-1;
 | |
| 
 | |
|     T = T0 = *T0_;
 | |
|     dual_inner_prod(x, x, x-T0, N, &xx, &xy);
 | |
|     yy_lookup[0] = xx;
 | |
|     yy=xx;
 | |
|     for (i = 1; i <= maxperiod; i++) {
 | |
|         yy = yy+(x[-i] * x[-i])-(x[N-i] * x[N-i]);
 | |
|         yy_lookup[i] = FFMAX(0, yy);
 | |
|     }
 | |
|     yy = yy_lookup[T0];
 | |
|     best_xy = xy;
 | |
|     best_yy = yy;
 | |
|     g = g0 = compute_pitch_gain(xy, xx, yy);
 | |
|     /* Look for any pitch at T/k */
 | |
|     for (k = 2; k <= 15; k++) {
 | |
|         int T1, T1b;
 | |
|         float g1;
 | |
|         float cont=0;
 | |
|         float thresh;
 | |
|         T1 = (2*T0+k)/(2*k);
 | |
|         if (T1 < minperiod)
 | |
|             break;
 | |
|         /* Look for another strong correlation at T1b */
 | |
|         if (k==2)
 | |
|         {
 | |
|             if (T1+T0>maxperiod)
 | |
|                 T1b = T0;
 | |
|             else
 | |
|                 T1b = T0+T1;
 | |
|         } else
 | |
|         {
 | |
|             T1b = (2*second_check[k]*T0+k)/(2*k);
 | |
|         }
 | |
|         dual_inner_prod(x, &x[-T1], &x[-T1b], N, &xy, &xy2);
 | |
|         xy = .5f * (xy + xy2);
 | |
|         yy = .5f * (yy_lookup[T1] + yy_lookup[T1b]);
 | |
|         g1 = compute_pitch_gain(xy, xx, yy);
 | |
|         if (FFABS(T1-prev_period)<=1)
 | |
|             cont = prev_gain;
 | |
|         else if (FFABS(T1-prev_period)<=2 && 5 * k * k < T0)
 | |
|             cont = prev_gain * .5f;
 | |
|         else
 | |
|             cont = 0;
 | |
|         thresh = FFMAX(.3f, (.7f * g0) - cont);
 | |
|         /* Bias against very high pitch (very short period) to avoid false-positives
 | |
|            due to short-term correlation */
 | |
|         if (T1<3*minperiod)
 | |
|             thresh = FFMAX(.4f, (.85f * g0) - cont);
 | |
|         else if (T1<2*minperiod)
 | |
|             thresh = FFMAX(.5f, (.9f * g0) - cont);
 | |
|         if (g1 > thresh)
 | |
|         {
 | |
|             best_xy = xy;
 | |
|             best_yy = yy;
 | |
|             T = T1;
 | |
|             g = g1;
 | |
|         }
 | |
|     }
 | |
|     best_xy = FFMAX(0, best_xy);
 | |
|     if (best_yy <= best_xy)
 | |
|         pg = Q15ONE;
 | |
|     else
 | |
|         pg = best_xy/(best_yy + 1);
 | |
| 
 | |
|     for (k = 0; k < 3; k++)
 | |
|         xcorr[k] = celt_inner_prod(x, x-(T+k-1), N);
 | |
|     if ((xcorr[2]-xcorr[0]) > .7f * (xcorr[1]-xcorr[0]))
 | |
|         offset = 1;
 | |
|     else if ((xcorr[0]-xcorr[2]) > (.7f * (xcorr[1] - xcorr[2])))
 | |
|         offset = -1;
 | |
|     else
 | |
|         offset = 0;
 | |
|     if (pg > g)
 | |
|         pg = g;
 | |
|     *T0_ = 2*T+offset;
 | |
| 
 | |
|     if (*T0_<minperiod0)
 | |
|         *T0_=minperiod0;
 | |
|     return pg;
 | |
| }
 | |
| 
 | |
| static void find_best_pitch(float *xcorr, float *y, int len,
 | |
|                             int max_pitch, int *best_pitch)
 | |
| {
 | |
|     float best_num[2];
 | |
|     float best_den[2];
 | |
|     float Syy = 1.f;
 | |
| 
 | |
|     best_num[0] = -1;
 | |
|     best_num[1] = -1;
 | |
|     best_den[0] = 0;
 | |
|     best_den[1] = 0;
 | |
|     best_pitch[0] = 0;
 | |
|     best_pitch[1] = 1;
 | |
| 
 | |
|     for (int j = 0; j < len; j++)
 | |
|         Syy += y[j] * y[j];
 | |
| 
 | |
|     for (int i = 0; i < max_pitch; i++) {
 | |
|         if (xcorr[i]>0) {
 | |
|             float num;
 | |
|             float xcorr16;
 | |
| 
 | |
|             xcorr16 = xcorr[i];
 | |
|             /* Considering the range of xcorr16, this should avoid both underflows
 | |
|                and overflows (inf) when squaring xcorr16 */
 | |
|             xcorr16 *= 1e-12f;
 | |
|             num = xcorr16 * xcorr16;
 | |
|             if ((num * best_den[1]) > (best_num[1] * Syy)) {
 | |
|                 if ((num * best_den[0]) > (best_num[0] * Syy)) {
 | |
|                     best_num[1] = best_num[0];
 | |
|                     best_den[1] = best_den[0];
 | |
|                     best_pitch[1] = best_pitch[0];
 | |
|                     best_num[0] = num;
 | |
|                     best_den[0] = Syy;
 | |
|                     best_pitch[0] = i;
 | |
|                 } else {
 | |
|                     best_num[1] = num;
 | |
|                     best_den[1] = Syy;
 | |
|                     best_pitch[1] = i;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         Syy += y[i+len]*y[i+len] - y[i] * y[i];
 | |
|         Syy = FFMAX(1, Syy);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pitch_search(const float *x_lp, float *y,
 | |
|                          int len, int max_pitch, int *pitch)
 | |
| {
 | |
|     int lag;
 | |
|     int best_pitch[2]={0,0};
 | |
|     int offset;
 | |
| 
 | |
|     float x_lp4[WINDOW_SIZE];
 | |
|     float y_lp4[WINDOW_SIZE];
 | |
|     float xcorr[WINDOW_SIZE];
 | |
| 
 | |
|     lag = len+max_pitch;
 | |
| 
 | |
|     /* Downsample by 2 again */
 | |
|     for (int j = 0; j < len >> 2; j++)
 | |
|         x_lp4[j] = x_lp[2*j];
 | |
|     for (int j = 0; j < lag >> 2; j++)
 | |
|         y_lp4[j] = y[2*j];
 | |
| 
 | |
|     /* Coarse search with 4x decimation */
 | |
| 
 | |
|     celt_pitch_xcorr(x_lp4, y_lp4, xcorr, len>>2, max_pitch>>2);
 | |
| 
 | |
|     find_best_pitch(xcorr, y_lp4, len>>2, max_pitch>>2, best_pitch);
 | |
| 
 | |
|     /* Finer search with 2x decimation */
 | |
|     for (int i = 0; i < max_pitch >> 1; i++) {
 | |
|         float sum;
 | |
|         xcorr[i] = 0;
 | |
|         if (FFABS(i-2*best_pitch[0])>2 && FFABS(i-2*best_pitch[1])>2)
 | |
|             continue;
 | |
|         sum = celt_inner_prod(x_lp, y+i, len>>1);
 | |
|         xcorr[i] = FFMAX(-1, sum);
 | |
|     }
 | |
| 
 | |
|     find_best_pitch(xcorr, y, len>>1, max_pitch>>1, best_pitch);
 | |
| 
 | |
|     /* Refine by pseudo-interpolation */
 | |
|     if (best_pitch[0] > 0 && best_pitch[0] < (max_pitch >> 1) - 1) {
 | |
|         float a, b, c;
 | |
| 
 | |
|         a = xcorr[best_pitch[0] - 1];
 | |
|         b = xcorr[best_pitch[0]];
 | |
|         c = xcorr[best_pitch[0] + 1];
 | |
|         if (c - a > .7f * (b - a))
 | |
|             offset = 1;
 | |
|         else if (a - c > .7f * (b-c))
 | |
|             offset = -1;
 | |
|         else
 | |
|             offset = 0;
 | |
|     } else {
 | |
|         offset = 0;
 | |
|     }
 | |
| 
 | |
|     *pitch = 2 * best_pitch[0] - offset;
 | |
| }
 | |
| 
 | |
| static void dct(AudioRNNContext *s, float *out, const float *in)
 | |
| {
 | |
|     for (int i = 0; i < NB_BANDS; i++) {
 | |
|         float sum;
 | |
| 
 | |
|         sum = s->fdsp->scalarproduct_float(in, s->dct_table[i], FFALIGN(NB_BANDS, 4));
 | |
|         out[i] = sum * sqrtf(2.f / 22);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int compute_frame_features(AudioRNNContext *s, DenoiseState *st, AVComplexFloat *X, AVComplexFloat *P,
 | |
|                                   float *Ex, float *Ep, float *Exp, float *features, const float *in)
 | |
| {
 | |
|     float E = 0;
 | |
|     float *ceps_0, *ceps_1, *ceps_2;
 | |
|     float spec_variability = 0;
 | |
|     LOCAL_ALIGNED_32(float, Ly, [NB_BANDS]);
 | |
|     LOCAL_ALIGNED_32(float, p, [WINDOW_SIZE]);
 | |
|     float pitch_buf[PITCH_BUF_SIZE>>1];
 | |
|     int pitch_index;
 | |
|     float gain;
 | |
|     float *(pre[1]);
 | |
|     float tmp[NB_BANDS];
 | |
|     float follow, logMax;
 | |
| 
 | |
|     frame_analysis(s, st, X, Ex, in);
 | |
|     RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE);
 | |
|     RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE);
 | |
|     pre[0] = &st->pitch_buf[0];
 | |
|     pitch_downsample(pre, pitch_buf, PITCH_BUF_SIZE, 1);
 | |
|     pitch_search(pitch_buf+(PITCH_MAX_PERIOD>>1), pitch_buf, PITCH_FRAME_SIZE,
 | |
|             PITCH_MAX_PERIOD-3*PITCH_MIN_PERIOD, &pitch_index);
 | |
|     pitch_index = PITCH_MAX_PERIOD-pitch_index;
 | |
| 
 | |
|     gain = remove_doubling(pitch_buf, PITCH_MAX_PERIOD, PITCH_MIN_PERIOD,
 | |
|             PITCH_FRAME_SIZE, &pitch_index, st->last_period, st->last_gain);
 | |
|     st->last_period = pitch_index;
 | |
|     st->last_gain = gain;
 | |
| 
 | |
|     for (int i = 0; i < WINDOW_SIZE; i++)
 | |
|         p[i] = st->pitch_buf[PITCH_BUF_SIZE-WINDOW_SIZE-pitch_index+i];
 | |
| 
 | |
|     s->fdsp->vector_fmul(p, p, s->window, WINDOW_SIZE);
 | |
|     forward_transform(st, P, p);
 | |
|     compute_band_energy(Ep, P);
 | |
|     compute_band_corr(Exp, X, P);
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++)
 | |
|         Exp[i] = Exp[i] / sqrtf(.001f+Ex[i]*Ep[i]);
 | |
| 
 | |
|     dct(s, tmp, Exp);
 | |
| 
 | |
|     for (int i = 0; i < NB_DELTA_CEPS; i++)
 | |
|         features[NB_BANDS+2*NB_DELTA_CEPS+i] = tmp[i];
 | |
| 
 | |
|     features[NB_BANDS+2*NB_DELTA_CEPS] -= 1.3;
 | |
|     features[NB_BANDS+2*NB_DELTA_CEPS+1] -= 0.9;
 | |
|     features[NB_BANDS+3*NB_DELTA_CEPS] = .01*(pitch_index-300);
 | |
|     logMax = -2;
 | |
|     follow = -2;
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++) {
 | |
|         Ly[i] = log10f(1e-2f + Ex[i]);
 | |
|         Ly[i] = FFMAX(logMax-7, FFMAX(follow-1.5, Ly[i]));
 | |
|         logMax = FFMAX(logMax, Ly[i]);
 | |
|         follow = FFMAX(follow-1.5, Ly[i]);
 | |
|         E += Ex[i];
 | |
|     }
 | |
| 
 | |
|     if (E < 0.04f) {
 | |
|         /* If there's no audio, avoid messing up the state. */
 | |
|         RNN_CLEAR(features, NB_FEATURES);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     dct(s, features, Ly);
 | |
|     features[0] -= 12;
 | |
|     features[1] -= 4;
 | |
|     ceps_0 = st->cepstral_mem[st->memid];
 | |
|     ceps_1 = (st->memid < 1) ? st->cepstral_mem[CEPS_MEM+st->memid-1] : st->cepstral_mem[st->memid-1];
 | |
|     ceps_2 = (st->memid < 2) ? st->cepstral_mem[CEPS_MEM+st->memid-2] : st->cepstral_mem[st->memid-2];
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++)
 | |
|         ceps_0[i] = features[i];
 | |
| 
 | |
|     st->memid++;
 | |
|     for (int i = 0; i < NB_DELTA_CEPS; i++) {
 | |
|         features[i] = ceps_0[i] + ceps_1[i] + ceps_2[i];
 | |
|         features[NB_BANDS+i] = ceps_0[i] - ceps_2[i];
 | |
|         features[NB_BANDS+NB_DELTA_CEPS+i] =  ceps_0[i] - 2*ceps_1[i] + ceps_2[i];
 | |
|     }
 | |
|     /* Spectral variability features. */
 | |
|     if (st->memid == CEPS_MEM)
 | |
|         st->memid = 0;
 | |
| 
 | |
|     for (int i = 0; i < CEPS_MEM; i++) {
 | |
|         float mindist = 1e15f;
 | |
|         for (int j = 0; j < CEPS_MEM; j++) {
 | |
|             float dist = 0.f;
 | |
|             for (int k = 0; k < NB_BANDS; k++) {
 | |
|                 float tmp;
 | |
| 
 | |
|                 tmp = st->cepstral_mem[i][k] - st->cepstral_mem[j][k];
 | |
|                 dist += tmp*tmp;
 | |
|             }
 | |
| 
 | |
|             if (j != i)
 | |
|                 mindist = FFMIN(mindist, dist);
 | |
|         }
 | |
| 
 | |
|         spec_variability += mindist;
 | |
|     }
 | |
| 
 | |
|     features[NB_BANDS+3*NB_DELTA_CEPS+1] = spec_variability/CEPS_MEM-2.1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void interp_band_gain(float *g, const float *bandE)
 | |
| {
 | |
|     memset(g, 0, sizeof(*g) * FREQ_SIZE);
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS - 1; i++) {
 | |
|         const int band_size = (eband5ms[i + 1] - eband5ms[i]) << FRAME_SIZE_SHIFT;
 | |
| 
 | |
|         for (int j = 0; j < band_size; j++) {
 | |
|             float frac = (float)j / band_size;
 | |
| 
 | |
|             g[(eband5ms[i] << FRAME_SIZE_SHIFT) + j] = (1.f - frac) * bandE[i] + frac * bandE[i + 1];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pitch_filter(AVComplexFloat *X, const AVComplexFloat *P, const float *Ex, const float *Ep,
 | |
|                          const float *Exp, const float *g)
 | |
| {
 | |
|     float newE[NB_BANDS];
 | |
|     float r[NB_BANDS];
 | |
|     float norm[NB_BANDS];
 | |
|     float rf[FREQ_SIZE] = {0};
 | |
|     float normf[FREQ_SIZE]={0};
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++) {
 | |
|         if (Exp[i]>g[i]) r[i] = 1;
 | |
|         else r[i] = SQUARE(Exp[i])*(1-SQUARE(g[i]))/(.001 + SQUARE(g[i])*(1-SQUARE(Exp[i])));
 | |
|         r[i]  = sqrtf(av_clipf(r[i], 0, 1));
 | |
|         r[i] *= sqrtf(Ex[i]/(1e-8+Ep[i]));
 | |
|     }
 | |
|     interp_band_gain(rf, r);
 | |
|     for (int i = 0; i < FREQ_SIZE; i++) {
 | |
|         X[i].re += rf[i]*P[i].re;
 | |
|         X[i].im += rf[i]*P[i].im;
 | |
|     }
 | |
|     compute_band_energy(newE, X);
 | |
|     for (int i = 0; i < NB_BANDS; i++) {
 | |
|         norm[i] = sqrtf(Ex[i] / (1e-8+newE[i]));
 | |
|     }
 | |
|     interp_band_gain(normf, norm);
 | |
|     for (int i = 0; i < FREQ_SIZE; i++) {
 | |
|         X[i].re *= normf[i];
 | |
|         X[i].im *= normf[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const float tansig_table[201] = {
 | |
|     0.000000f, 0.039979f, 0.079830f, 0.119427f, 0.158649f,
 | |
|     0.197375f, 0.235496f, 0.272905f, 0.309507f, 0.345214f,
 | |
|     0.379949f, 0.413644f, 0.446244f, 0.477700f, 0.507977f,
 | |
|     0.537050f, 0.564900f, 0.591519f, 0.616909f, 0.641077f,
 | |
|     0.664037f, 0.685809f, 0.706419f, 0.725897f, 0.744277f,
 | |
|     0.761594f, 0.777888f, 0.793199f, 0.807569f, 0.821040f,
 | |
|     0.833655f, 0.845456f, 0.856485f, 0.866784f, 0.876393f,
 | |
|     0.885352f, 0.893698f, 0.901468f, 0.908698f, 0.915420f,
 | |
|     0.921669f, 0.927473f, 0.932862f, 0.937863f, 0.942503f,
 | |
|     0.946806f, 0.950795f, 0.954492f, 0.957917f, 0.961090f,
 | |
|     0.964028f, 0.966747f, 0.969265f, 0.971594f, 0.973749f,
 | |
|     0.975743f, 0.977587f, 0.979293f, 0.980869f, 0.982327f,
 | |
|     0.983675f, 0.984921f, 0.986072f, 0.987136f, 0.988119f,
 | |
|     0.989027f, 0.989867f, 0.990642f, 0.991359f, 0.992020f,
 | |
|     0.992631f, 0.993196f, 0.993718f, 0.994199f, 0.994644f,
 | |
|     0.995055f, 0.995434f, 0.995784f, 0.996108f, 0.996407f,
 | |
|     0.996682f, 0.996937f, 0.997172f, 0.997389f, 0.997590f,
 | |
|     0.997775f, 0.997946f, 0.998104f, 0.998249f, 0.998384f,
 | |
|     0.998508f, 0.998623f, 0.998728f, 0.998826f, 0.998916f,
 | |
|     0.999000f, 0.999076f, 0.999147f, 0.999213f, 0.999273f,
 | |
|     0.999329f, 0.999381f, 0.999428f, 0.999472f, 0.999513f,
 | |
|     0.999550f, 0.999585f, 0.999617f, 0.999646f, 0.999673f,
 | |
|     0.999699f, 0.999722f, 0.999743f, 0.999763f, 0.999781f,
 | |
|     0.999798f, 0.999813f, 0.999828f, 0.999841f, 0.999853f,
 | |
|     0.999865f, 0.999875f, 0.999885f, 0.999893f, 0.999902f,
 | |
|     0.999909f, 0.999916f, 0.999923f, 0.999929f, 0.999934f,
 | |
|     0.999939f, 0.999944f, 0.999948f, 0.999952f, 0.999956f,
 | |
|     0.999959f, 0.999962f, 0.999965f, 0.999968f, 0.999970f,
 | |
|     0.999973f, 0.999975f, 0.999977f, 0.999978f, 0.999980f,
 | |
|     0.999982f, 0.999983f, 0.999984f, 0.999986f, 0.999987f,
 | |
|     0.999988f, 0.999989f, 0.999990f, 0.999990f, 0.999991f,
 | |
|     0.999992f, 0.999992f, 0.999993f, 0.999994f, 0.999994f,
 | |
|     0.999994f, 0.999995f, 0.999995f, 0.999996f, 0.999996f,
 | |
|     0.999996f, 0.999997f, 0.999997f, 0.999997f, 0.999997f,
 | |
|     0.999997f, 0.999998f, 0.999998f, 0.999998f, 0.999998f,
 | |
|     0.999998f, 0.999998f, 0.999999f, 0.999999f, 0.999999f,
 | |
|     0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
 | |
|     0.999999f, 0.999999f, 0.999999f, 0.999999f, 0.999999f,
 | |
|     1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
 | |
|     1.000000f, 1.000000f, 1.000000f, 1.000000f, 1.000000f,
 | |
|     1.000000f,
 | |
| };
 | |
| 
 | |
| static inline float tansig_approx(float x)
 | |
| {
 | |
|     float y, dy;
 | |
|     float sign=1;
 | |
|     int i;
 | |
| 
 | |
|     /* Tests are reversed to catch NaNs */
 | |
|     if (!(x<8))
 | |
|         return 1;
 | |
|     if (!(x>-8))
 | |
|         return -1;
 | |
|     /* Another check in case of -ffast-math */
 | |
| 
 | |
|     if (isnan(x))
 | |
|        return 0;
 | |
| 
 | |
|     if (x < 0) {
 | |
|        x=-x;
 | |
|        sign=-1;
 | |
|     }
 | |
|     i = (int)floor(.5f+25*x);
 | |
|     x -= .04f*i;
 | |
|     y = tansig_table[i];
 | |
|     dy = 1-y*y;
 | |
|     y = y + x*dy*(1 - y*x);
 | |
|     return sign*y;
 | |
| }
 | |
| 
 | |
| static inline float sigmoid_approx(float x)
 | |
| {
 | |
|     return .5f + .5f*tansig_approx(.5f*x);
 | |
| }
 | |
| 
 | |
| static void compute_dense(const DenseLayer *layer, float *output, const float *input)
 | |
| {
 | |
|     const int N = layer->nb_neurons, M = layer->nb_inputs, stride = N;
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         /* Compute update gate. */
 | |
|         float sum = layer->bias[i];
 | |
| 
 | |
|         for (int j = 0; j < M; j++)
 | |
|             sum += layer->input_weights[j * stride + i] * input[j];
 | |
| 
 | |
|         output[i] = WEIGHTS_SCALE * sum;
 | |
|     }
 | |
| 
 | |
|     if (layer->activation == ACTIVATION_SIGMOID) {
 | |
|         for (int i = 0; i < N; i++)
 | |
|             output[i] = sigmoid_approx(output[i]);
 | |
|     } else if (layer->activation == ACTIVATION_TANH) {
 | |
|         for (int i = 0; i < N; i++)
 | |
|             output[i] = tansig_approx(output[i]);
 | |
|     } else if (layer->activation == ACTIVATION_RELU) {
 | |
|         for (int i = 0; i < N; i++)
 | |
|             output[i] = FFMAX(0, output[i]);
 | |
|     } else {
 | |
|         av_assert0(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compute_gru(AudioRNNContext *s, const GRULayer *gru, float *state, const float *input)
 | |
| {
 | |
|     LOCAL_ALIGNED_32(float, z, [MAX_NEURONS]);
 | |
|     LOCAL_ALIGNED_32(float, r, [MAX_NEURONS]);
 | |
|     LOCAL_ALIGNED_32(float, h, [MAX_NEURONS]);
 | |
|     const int M = gru->nb_inputs;
 | |
|     const int N = gru->nb_neurons;
 | |
|     const int AN = FFALIGN(N, 4);
 | |
|     const int AM = FFALIGN(M, 4);
 | |
|     const int stride = 3 * AN, istride = 3 * AM;
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         /* Compute update gate. */
 | |
|         float sum = gru->bias[i];
 | |
| 
 | |
|         sum += s->fdsp->scalarproduct_float(gru->input_weights + i * istride, input, AM);
 | |
|         sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + i * stride, state, AN);
 | |
|         z[i] = sigmoid_approx(WEIGHTS_SCALE * sum);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         /* Compute reset gate. */
 | |
|         float sum = gru->bias[N + i];
 | |
| 
 | |
|         sum += s->fdsp->scalarproduct_float(gru->input_weights + AM + i * istride, input, AM);
 | |
|         sum += s->fdsp->scalarproduct_float(gru->recurrent_weights + AN + i * stride, state, AN);
 | |
|         r[i] = sigmoid_approx(WEIGHTS_SCALE * sum);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < N; i++) {
 | |
|         /* Compute output. */
 | |
|         float sum = gru->bias[2 * N + i];
 | |
| 
 | |
|         sum += s->fdsp->scalarproduct_float(gru->input_weights + 2 * AM + i * istride, input, AM);
 | |
|         for (int j = 0; j < N; j++)
 | |
|             sum += gru->recurrent_weights[2 * AN + i * stride + j] * state[j] * r[j];
 | |
| 
 | |
|         if (gru->activation == ACTIVATION_SIGMOID)
 | |
|             sum = sigmoid_approx(WEIGHTS_SCALE * sum);
 | |
|         else if (gru->activation == ACTIVATION_TANH)
 | |
|             sum = tansig_approx(WEIGHTS_SCALE * sum);
 | |
|         else if (gru->activation == ACTIVATION_RELU)
 | |
|             sum = FFMAX(0, WEIGHTS_SCALE * sum);
 | |
|         else
 | |
|             av_assert0(0);
 | |
|         h[i] = z[i] * state[i] + (1.f - z[i]) * sum;
 | |
|     }
 | |
| 
 | |
|     RNN_COPY(state, h, N);
 | |
| }
 | |
| 
 | |
| #define INPUT_SIZE 42
 | |
| 
 | |
| static void compute_rnn(AudioRNNContext *s, RNNState *rnn, float *gains, float *vad, const float *input)
 | |
| {
 | |
|     LOCAL_ALIGNED_32(float, dense_out,     [MAX_NEURONS]);
 | |
|     LOCAL_ALIGNED_32(float, noise_input,   [MAX_NEURONS * 3]);
 | |
|     LOCAL_ALIGNED_32(float, denoise_input, [MAX_NEURONS * 3]);
 | |
| 
 | |
|     compute_dense(rnn->model->input_dense, dense_out, input);
 | |
|     compute_gru(s, rnn->model->vad_gru, rnn->vad_gru_state, dense_out);
 | |
|     compute_dense(rnn->model->vad_output, vad, rnn->vad_gru_state);
 | |
| 
 | |
|     memcpy(noise_input, dense_out, rnn->model->input_dense_size * sizeof(float));
 | |
|     memcpy(noise_input + rnn->model->input_dense_size,
 | |
|            rnn->vad_gru_state, rnn->model->vad_gru_size * sizeof(float));
 | |
|     memcpy(noise_input + rnn->model->input_dense_size + rnn->model->vad_gru_size,
 | |
|            input, INPUT_SIZE * sizeof(float));
 | |
| 
 | |
|     compute_gru(s, rnn->model->noise_gru, rnn->noise_gru_state, noise_input);
 | |
| 
 | |
|     memcpy(denoise_input, rnn->vad_gru_state, rnn->model->vad_gru_size * sizeof(float));
 | |
|     memcpy(denoise_input + rnn->model->vad_gru_size,
 | |
|            rnn->noise_gru_state, rnn->model->noise_gru_size * sizeof(float));
 | |
|     memcpy(denoise_input + rnn->model->vad_gru_size + rnn->model->noise_gru_size,
 | |
|            input, INPUT_SIZE * sizeof(float));
 | |
| 
 | |
|     compute_gru(s, rnn->model->denoise_gru, rnn->denoise_gru_state, denoise_input);
 | |
|     compute_dense(rnn->model->denoise_output, gains, rnn->denoise_gru_state);
 | |
| }
 | |
| 
 | |
| static float rnnoise_channel(AudioRNNContext *s, DenoiseState *st, float *out, const float *in,
 | |
|                              int disabled)
 | |
| {
 | |
|     AVComplexFloat X[FREQ_SIZE];
 | |
|     AVComplexFloat P[WINDOW_SIZE];
 | |
|     float x[FRAME_SIZE];
 | |
|     float Ex[NB_BANDS], Ep[NB_BANDS];
 | |
|     LOCAL_ALIGNED_32(float, Exp, [NB_BANDS]);
 | |
|     float features[NB_FEATURES];
 | |
|     float g[NB_BANDS];
 | |
|     float gf[FREQ_SIZE];
 | |
|     float vad_prob = 0;
 | |
|     float *history = st->history;
 | |
|     static const float a_hp[2] = {-1.99599, 0.99600};
 | |
|     static const float b_hp[2] = {-2, 1};
 | |
|     int silence;
 | |
| 
 | |
|     biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE);
 | |
|     silence = compute_frame_features(s, st, X, P, Ex, Ep, Exp, features, x);
 | |
| 
 | |
|     if (!silence && !disabled) {
 | |
|         compute_rnn(s, &st->rnn[0], g, &vad_prob, features);
 | |
|         pitch_filter(X, P, Ex, Ep, Exp, g);
 | |
|         for (int i = 0; i < NB_BANDS; i++) {
 | |
|             float alpha = .6f;
 | |
| 
 | |
|             g[i] = FFMAX(g[i], alpha * st->lastg[i]);
 | |
|             st->lastg[i] = g[i];
 | |
|         }
 | |
| 
 | |
|         interp_band_gain(gf, g);
 | |
| 
 | |
|         for (int i = 0; i < FREQ_SIZE; i++) {
 | |
|             X[i].re *= gf[i];
 | |
|             X[i].im *= gf[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     frame_synthesis(s, st, out, X);
 | |
|     memcpy(history, in, FRAME_SIZE * sizeof(*history));
 | |
| 
 | |
|     return vad_prob;
 | |
| }
 | |
| 
 | |
| typedef struct ThreadData {
 | |
|     AVFrame *in, *out;
 | |
| } ThreadData;
 | |
| 
 | |
| static int rnnoise_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
|     ThreadData *td = arg;
 | |
|     AVFrame *in = td->in;
 | |
|     AVFrame *out = td->out;
 | |
|     const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs;
 | |
|     const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
 | |
| 
 | |
|     for (int ch = start; ch < end; ch++) {
 | |
|         rnnoise_channel(s, &s->st[ch],
 | |
|                         (float *)out->extended_data[ch],
 | |
|                         (const float *)in->extended_data[ch],
 | |
|                         ctx->is_disabled);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in)
 | |
| {
 | |
|     AVFilterContext *ctx = inlink->dst;
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AVFrame *out = NULL;
 | |
|     ThreadData td;
 | |
| 
 | |
|     out = ff_get_audio_buffer(outlink, FRAME_SIZE);
 | |
|     if (!out) {
 | |
|         av_frame_free(&in);
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
|     out->pts = in->pts;
 | |
| 
 | |
|     td.in = in; td.out = out;
 | |
|     ff_filter_execute(ctx, rnnoise_channels, &td, NULL,
 | |
|                       FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
 | |
| 
 | |
|     av_frame_free(&in);
 | |
|     return ff_filter_frame(outlink, out);
 | |
| }
 | |
| 
 | |
| static int activate(AVFilterContext *ctx)
 | |
| {
 | |
|     AVFilterLink *inlink = ctx->inputs[0];
 | |
|     AVFilterLink *outlink = ctx->outputs[0];
 | |
|     AVFrame *in = NULL;
 | |
|     int ret;
 | |
| 
 | |
|     FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
 | |
| 
 | |
|     ret = ff_inlink_consume_samples(inlink, FRAME_SIZE, FRAME_SIZE, &in);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (ret > 0)
 | |
|         return filter_frame(inlink, in);
 | |
| 
 | |
|     FF_FILTER_FORWARD_STATUS(inlink, outlink);
 | |
|     FF_FILTER_FORWARD_WANTED(outlink, inlink);
 | |
| 
 | |
|     return FFERROR_NOT_READY;
 | |
| }
 | |
| 
 | |
| static int open_model(AVFilterContext *ctx, RNNModel **model)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
|     int ret;
 | |
|     FILE *f;
 | |
| 
 | |
|     if (!s->model_name)
 | |
|         return AVERROR(EINVAL);
 | |
|     f = av_fopen_utf8(s->model_name, "r");
 | |
|     if (!f) {
 | |
|         av_log(ctx, AV_LOG_ERROR, "Failed to open model file: %s\n", s->model_name);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     ret = rnnoise_model_from_file(f, model);
 | |
|     fclose(f);
 | |
|     if (!*model || ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int init(AVFilterContext *ctx)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
|     int ret;
 | |
| 
 | |
|     s->fdsp = avpriv_float_dsp_alloc(0);
 | |
|     if (!s->fdsp)
 | |
|         return AVERROR(ENOMEM);
 | |
| 
 | |
|     ret = open_model(ctx, &s->model[0]);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     for (int i = 0; i < FRAME_SIZE; i++) {
 | |
|         s->window[i] = sin(.5*M_PI*sin(.5*M_PI*(i+.5)/FRAME_SIZE) * sin(.5*M_PI*(i+.5)/FRAME_SIZE));
 | |
|         s->window[WINDOW_SIZE - 1 - i] = s->window[i];
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < NB_BANDS; i++) {
 | |
|         for (int j = 0; j < NB_BANDS; j++) {
 | |
|             s->dct_table[j][i] = cosf((i + .5f) * j * M_PI / NB_BANDS);
 | |
|             if (j == 0)
 | |
|                 s->dct_table[j][i] *= sqrtf(.5);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void free_model(AVFilterContext *ctx, int n)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
| 
 | |
|     rnnoise_model_free(s->model[n]);
 | |
|     s->model[n] = NULL;
 | |
| 
 | |
|     for (int ch = 0; ch < s->channels && s->st; ch++) {
 | |
|         av_freep(&s->st[ch].rnn[n].vad_gru_state);
 | |
|         av_freep(&s->st[ch].rnn[n].noise_gru_state);
 | |
|         av_freep(&s->st[ch].rnn[n].denoise_gru_state);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
 | |
|                            char *res, int res_len, int flags)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
|     int ret;
 | |
| 
 | |
|     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     ret = open_model(ctx, &s->model[1]);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     FFSWAP(RNNModel *, s->model[0], s->model[1]);
 | |
|     for (int ch = 0; ch < s->channels; ch++)
 | |
|         FFSWAP(RNNState, s->st[ch].rnn[0], s->st[ch].rnn[1]);
 | |
| 
 | |
|     ret = config_input(ctx->inputs[0]);
 | |
|     if (ret < 0) {
 | |
|         for (int ch = 0; ch < s->channels; ch++)
 | |
|             FFSWAP(RNNState, s->st[ch].rnn[0], s->st[ch].rnn[1]);
 | |
|         FFSWAP(RNNModel *, s->model[0], s->model[1]);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     free_model(ctx, 1);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold void uninit(AVFilterContext *ctx)
 | |
| {
 | |
|     AudioRNNContext *s = ctx->priv;
 | |
| 
 | |
|     av_freep(&s->fdsp);
 | |
|     free_model(ctx, 0);
 | |
|     for (int ch = 0; ch < s->channels && s->st; ch++) {
 | |
|         av_tx_uninit(&s->st[ch].tx);
 | |
|         av_tx_uninit(&s->st[ch].txi);
 | |
|     }
 | |
|     av_freep(&s->st);
 | |
| }
 | |
| 
 | |
| static const AVFilterPad inputs[] = {
 | |
|     {
 | |
|         .name         = "default",
 | |
|         .type         = AVMEDIA_TYPE_AUDIO,
 | |
|         .config_props = config_input,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const AVFilterPad outputs[] = {
 | |
|     {
 | |
|         .name          = "default",
 | |
|         .type          = AVMEDIA_TYPE_AUDIO,
 | |
|     },
 | |
| };
 | |
| 
 | |
| #define OFFSET(x) offsetof(AudioRNNContext, x)
 | |
| #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
 | |
| 
 | |
| static const AVOption arnndn_options[] = {
 | |
|     { "model", "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF },
 | |
|     { "m",     "set model name", OFFSET(model_name), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, AF },
 | |
|     { "mix",   "set output vs input mix", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1.0},-1, 1, AF },
 | |
|     { NULL }
 | |
| };
 | |
| 
 | |
| AVFILTER_DEFINE_CLASS(arnndn);
 | |
| 
 | |
| const AVFilter ff_af_arnndn = {
 | |
|     .name          = "arnndn",
 | |
|     .description   = NULL_IF_CONFIG_SMALL("Reduce noise from speech using Recurrent Neural Networks."),
 | |
|     .priv_size     = sizeof(AudioRNNContext),
 | |
|     .priv_class    = &arnndn_class,
 | |
|     .activate      = activate,
 | |
|     .init          = init,
 | |
|     .uninit        = uninit,
 | |
|     FILTER_INPUTS(inputs),
 | |
|     FILTER_OUTPUTS(outputs),
 | |
|     FILTER_QUERY_FUNC(query_formats),
 | |
|     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
 | |
|                      AVFILTER_FLAG_SLICE_THREADS,
 | |
|     .process_command = process_command,
 | |
| };
 |