264 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * FFT/IFFT transforms
 | 
						|
 * Copyright (c) 2002 Fabrice Bellard.
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file fft.c
 | 
						|
 * FFT/IFFT transforms.
 | 
						|
 */
 | 
						|
 | 
						|
#include "dsputil.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
 | 
						|
 * done
 | 
						|
 */
 | 
						|
int ff_fft_init(FFTContext *s, int nbits, int inverse)
 | 
						|
{
 | 
						|
    int i, j, m, n;
 | 
						|
    float alpha, c1, s1, s2;
 | 
						|
    int shuffle = 0;
 | 
						|
    int av_unused has_vectors;
 | 
						|
 | 
						|
    s->nbits = nbits;
 | 
						|
    n = 1 << nbits;
 | 
						|
 | 
						|
    s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
 | 
						|
    if (!s->exptab)
 | 
						|
        goto fail;
 | 
						|
    s->revtab = av_malloc(n * sizeof(uint16_t));
 | 
						|
    if (!s->revtab)
 | 
						|
        goto fail;
 | 
						|
    s->inverse = inverse;
 | 
						|
 | 
						|
    s2 = inverse ? 1.0 : -1.0;
 | 
						|
 | 
						|
    for(i=0;i<(n/2);i++) {
 | 
						|
        alpha = 2 * M_PI * (float)i / (float)n;
 | 
						|
        c1 = cos(alpha);
 | 
						|
        s1 = sin(alpha) * s2;
 | 
						|
        s->exptab[i].re = c1;
 | 
						|
        s->exptab[i].im = s1;
 | 
						|
    }
 | 
						|
    s->fft_calc = ff_fft_calc_c;
 | 
						|
    s->imdct_calc = ff_imdct_calc;
 | 
						|
    s->exptab1 = NULL;
 | 
						|
 | 
						|
#ifdef HAVE_MMX
 | 
						|
    has_vectors = mm_support();
 | 
						|
    shuffle = 1;
 | 
						|
    if (has_vectors & MM_3DNOWEXT) {
 | 
						|
        /* 3DNowEx for K7/K8 */
 | 
						|
        s->imdct_calc = ff_imdct_calc_3dn2;
 | 
						|
        s->fft_calc = ff_fft_calc_3dn2;
 | 
						|
    } else if (has_vectors & MM_3DNOW) {
 | 
						|
        /* 3DNow! for K6-2/3 */
 | 
						|
        s->fft_calc = ff_fft_calc_3dn;
 | 
						|
    } else if (has_vectors & MM_SSE) {
 | 
						|
        /* SSE for P3/P4 */
 | 
						|
        s->imdct_calc = ff_imdct_calc_sse;
 | 
						|
        s->fft_calc = ff_fft_calc_sse;
 | 
						|
    } else {
 | 
						|
        shuffle = 0;
 | 
						|
    }
 | 
						|
#elif defined HAVE_ALTIVEC && !defined ALTIVEC_USE_REFERENCE_C_CODE
 | 
						|
    has_vectors = mm_support();
 | 
						|
    if (has_vectors & MM_ALTIVEC) {
 | 
						|
        s->fft_calc = ff_fft_calc_altivec;
 | 
						|
        shuffle = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    /* compute constant table for HAVE_SSE version */
 | 
						|
    if (shuffle) {
 | 
						|
        int np, nblocks, np2, l;
 | 
						|
        FFTComplex *q;
 | 
						|
 | 
						|
        np = 1 << nbits;
 | 
						|
        nblocks = np >> 3;
 | 
						|
        np2 = np >> 1;
 | 
						|
        s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
 | 
						|
        if (!s->exptab1)
 | 
						|
            goto fail;
 | 
						|
        q = s->exptab1;
 | 
						|
        do {
 | 
						|
            for(l = 0; l < np2; l += 2 * nblocks) {
 | 
						|
                *q++ = s->exptab[l];
 | 
						|
                *q++ = s->exptab[l + nblocks];
 | 
						|
 | 
						|
                q->re = -s->exptab[l].im;
 | 
						|
                q->im = s->exptab[l].re;
 | 
						|
                q++;
 | 
						|
                q->re = -s->exptab[l + nblocks].im;
 | 
						|
                q->im = s->exptab[l + nblocks].re;
 | 
						|
                q++;
 | 
						|
            }
 | 
						|
            nblocks = nblocks >> 1;
 | 
						|
        } while (nblocks != 0);
 | 
						|
        av_freep(&s->exptab);
 | 
						|
    }
 | 
						|
 | 
						|
    /* compute bit reverse table */
 | 
						|
 | 
						|
    for(i=0;i<n;i++) {
 | 
						|
        m=0;
 | 
						|
        for(j=0;j<nbits;j++) {
 | 
						|
            m |= ((i >> j) & 1) << (nbits-j-1);
 | 
						|
        }
 | 
						|
        s->revtab[i]=m;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 fail:
 | 
						|
    av_freep(&s->revtab);
 | 
						|
    av_freep(&s->exptab);
 | 
						|
    av_freep(&s->exptab1);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* butter fly op */
 | 
						|
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
 | 
						|
{\
 | 
						|
  FFTSample ax, ay, bx, by;\
 | 
						|
  bx=pre1;\
 | 
						|
  by=pim1;\
 | 
						|
  ax=qre1;\
 | 
						|
  ay=qim1;\
 | 
						|
  pre = (bx + ax);\
 | 
						|
  pim = (by + ay);\
 | 
						|
  qre = (bx - ax);\
 | 
						|
  qim = (by - ay);\
 | 
						|
}
 | 
						|
 | 
						|
#define MUL16(a,b) ((a) * (b))
 | 
						|
 | 
						|
#define CMUL(pre, pim, are, aim, bre, bim) \
 | 
						|
{\
 | 
						|
   pre = (MUL16(are, bre) - MUL16(aim, bim));\
 | 
						|
   pim = (MUL16(are, bim) + MUL16(bre, aim));\
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
 | 
						|
 * input data must be permuted before with s->revtab table. No
 | 
						|
 * 1.0/sqrt(n) normalization is done.
 | 
						|
 */
 | 
						|
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
 | 
						|
{
 | 
						|
    int ln = s->nbits;
 | 
						|
    int j, np, np2;
 | 
						|
    int nblocks, nloops;
 | 
						|
    register FFTComplex *p, *q;
 | 
						|
    FFTComplex *exptab = s->exptab;
 | 
						|
    int l;
 | 
						|
    FFTSample tmp_re, tmp_im;
 | 
						|
 | 
						|
    np = 1 << ln;
 | 
						|
 | 
						|
    /* pass 0 */
 | 
						|
 | 
						|
    p=&z[0];
 | 
						|
    j=(np >> 1);
 | 
						|
    do {
 | 
						|
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
 | 
						|
           p[0].re, p[0].im, p[1].re, p[1].im);
 | 
						|
        p+=2;
 | 
						|
    } while (--j != 0);
 | 
						|
 | 
						|
    /* pass 1 */
 | 
						|
 | 
						|
 | 
						|
    p=&z[0];
 | 
						|
    j=np >> 2;
 | 
						|
    if (s->inverse) {
 | 
						|
        do {
 | 
						|
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
 | 
						|
               p[0].re, p[0].im, p[2].re, p[2].im);
 | 
						|
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
 | 
						|
               p[1].re, p[1].im, -p[3].im, p[3].re);
 | 
						|
            p+=4;
 | 
						|
        } while (--j != 0);
 | 
						|
    } else {
 | 
						|
        do {
 | 
						|
            BF(p[0].re, p[0].im, p[2].re, p[2].im,
 | 
						|
               p[0].re, p[0].im, p[2].re, p[2].im);
 | 
						|
            BF(p[1].re, p[1].im, p[3].re, p[3].im,
 | 
						|
               p[1].re, p[1].im, p[3].im, -p[3].re);
 | 
						|
            p+=4;
 | 
						|
        } while (--j != 0);
 | 
						|
    }
 | 
						|
    /* pass 2 .. ln-1 */
 | 
						|
 | 
						|
    nblocks = np >> 3;
 | 
						|
    nloops = 1 << 2;
 | 
						|
    np2 = np >> 1;
 | 
						|
    do {
 | 
						|
        p = z;
 | 
						|
        q = z + nloops;
 | 
						|
        for (j = 0; j < nblocks; ++j) {
 | 
						|
            BF(p->re, p->im, q->re, q->im,
 | 
						|
               p->re, p->im, q->re, q->im);
 | 
						|
 | 
						|
            p++;
 | 
						|
            q++;
 | 
						|
            for(l = nblocks; l < np2; l += nblocks) {
 | 
						|
                CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im);
 | 
						|
                BF(p->re, p->im, q->re, q->im,
 | 
						|
                   p->re, p->im, tmp_re, tmp_im);
 | 
						|
                p++;
 | 
						|
                q++;
 | 
						|
            }
 | 
						|
 | 
						|
            p += nloops;
 | 
						|
            q += nloops;
 | 
						|
        }
 | 
						|
        nblocks = nblocks >> 1;
 | 
						|
        nloops = nloops << 1;
 | 
						|
    } while (nblocks != 0);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Do the permutation needed BEFORE calling ff_fft_calc()
 | 
						|
 */
 | 
						|
void ff_fft_permute(FFTContext *s, FFTComplex *z)
 | 
						|
{
 | 
						|
    int j, k, np;
 | 
						|
    FFTComplex tmp;
 | 
						|
    const uint16_t *revtab = s->revtab;
 | 
						|
 | 
						|
    /* reverse */
 | 
						|
    np = 1 << s->nbits;
 | 
						|
    for(j=0;j<np;j++) {
 | 
						|
        k = revtab[j];
 | 
						|
        if (k < j) {
 | 
						|
            tmp = z[k];
 | 
						|
            z[k] = z[j];
 | 
						|
            z[j] = tmp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ff_fft_end(FFTContext *s)
 | 
						|
{
 | 
						|
    av_freep(&s->revtab);
 | 
						|
    av_freep(&s->exptab);
 | 
						|
    av_freep(&s->exptab1);
 | 
						|
}
 | 
						|
 |