1135 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1135 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * TwinVQ decoder
 | |
|  * Copyright (c) 2009 Vitor Sessak
 | |
|  *
 | |
|  * This file is part of Libav.
 | |
|  *
 | |
|  * Libav is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * Libav is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with Libav; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "get_bits.h"
 | |
| #include "dsputil.h"
 | |
| #include "fft.h"
 | |
| #include "lsp.h"
 | |
| #include "sinewin.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <stdint.h>
 | |
| 
 | |
| #include "twinvq_data.h"
 | |
| 
 | |
| enum FrameType {
 | |
|     FT_SHORT = 0,  ///< Short frame  (divided in n   sub-blocks)
 | |
|     FT_MEDIUM,     ///< Medium frame (divided in m<n sub-blocks)
 | |
|     FT_LONG,       ///< Long frame   (single sub-block + PPC)
 | |
|     FT_PPC,        ///< Periodic Peak Component (part of the long frame)
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Parameters and tables that are different for each frame type
 | |
|  */
 | |
| struct FrameMode {
 | |
|     uint8_t         sub;      ///< Number subblocks in each frame
 | |
|     const uint16_t *bark_tab;
 | |
| 
 | |
|     /** number of distinct bark scale envelope values */
 | |
|     uint8_t         bark_env_size;
 | |
| 
 | |
|     const int16_t  *bark_cb;    ///< codebook for the bark scale envelope (BSE)
 | |
|     uint8_t         bark_n_coef;///< number of BSE CB coefficients to read
 | |
|     uint8_t         bark_n_bit; ///< number of bits of the BSE coefs
 | |
| 
 | |
|     //@{
 | |
|     /** main codebooks for spectrum data */
 | |
|     const int16_t    *cb0;
 | |
|     const int16_t    *cb1;
 | |
|     //@}
 | |
| 
 | |
|     uint8_t         cb_len_read; ///< number of spectrum coefficients to read
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Parameters and tables that are different for every combination of
 | |
|  * bitrate/sample rate
 | |
|  */
 | |
| typedef struct {
 | |
|     struct FrameMode fmode[3]; ///< frame type-dependant parameters
 | |
| 
 | |
|     uint16_t     size;        ///< frame size in samples
 | |
|     uint8_t      n_lsp;       ///< number of lsp coefficients
 | |
|     const float *lspcodebook;
 | |
| 
 | |
|     /* number of bits of the different LSP CB coefficients */
 | |
|     uint8_t      lsp_bit0;
 | |
|     uint8_t      lsp_bit1;
 | |
|     uint8_t      lsp_bit2;
 | |
| 
 | |
|     uint8_t      lsp_split;      ///< number of CB entries for the LSP decoding
 | |
|     const int16_t *ppc_shape_cb; ///< PPC shape CB
 | |
| 
 | |
|     /** number of the bits for the PPC period value */
 | |
|     uint8_t      ppc_period_bit;
 | |
| 
 | |
|     uint8_t      ppc_shape_bit;  ///< number of bits of the PPC shape CB coeffs
 | |
|     uint8_t      ppc_shape_len;  ///< size of PPC shape CB
 | |
|     uint8_t      pgain_bit;      ///< bits for PPC gain
 | |
| 
 | |
|     /** constant for peak period to peak width conversion */
 | |
|     uint16_t     peak_per2wid;
 | |
| } ModeTab;
 | |
| 
 | |
| static const ModeTab mode_08_08 = {
 | |
|     {
 | |
|         { 8, bark_tab_s08_64,  10, tab.fcb08s  , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
 | |
|         { 2, bark_tab_m08_256, 20, tab.fcb08m  , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
 | |
|         { 1, bark_tab_l08_512, 30, tab.fcb08l  , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
 | |
|     },
 | |
|     512 , 12, tab.lsp08,   1, 5, 3, 3, tab.shape08  , 8, 28, 20, 6, 40
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_11_08 = {
 | |
|     {
 | |
|         { 8, bark_tab_s11_64,  10, tab.fcb11s  , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
 | |
|         { 2, bark_tab_m11_256, 20, tab.fcb11m  , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
 | |
|         { 1, bark_tab_l11_512, 30, tab.fcb11l  , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
 | |
|     },
 | |
|     512 , 16, tab.lsp11,   1, 6, 4, 3, tab.shape11  , 9, 36, 30, 7, 90
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_11_10 = {
 | |
|     {
 | |
|         { 8, bark_tab_s11_64,  10, tab.fcb11s  , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
 | |
|         { 2, bark_tab_m11_256, 20, tab.fcb11m  , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
 | |
|         { 1, bark_tab_l11_512, 30, tab.fcb11l  , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
 | |
|     },
 | |
|     512 , 16, tab.lsp11,   1, 6, 4, 3, tab.shape11  , 9, 36, 30, 7, 90
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_16_16 = {
 | |
|     {
 | |
|         { 8, bark_tab_s16_128, 10, tab.fcb16s  , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
 | |
|         { 2, bark_tab_m16_512, 20, tab.fcb16m  , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
 | |
|         { 1, bark_tab_l16_1024,30, tab.fcb16l  , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
 | |
|     },
 | |
|     1024, 16, tab.lsp16,   1, 6, 4, 3, tab.shape16  , 9, 56, 60, 7, 180
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_22_20 = {
 | |
|     {
 | |
|         { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
 | |
|         { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
 | |
|         { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
 | |
|     },
 | |
|     1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_22_24 = {
 | |
|     {
 | |
|         { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
 | |
|         { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
 | |
|         { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
 | |
|     },
 | |
|     1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_22_32 = {
 | |
|     {
 | |
|         { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
 | |
|         { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
 | |
|         { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
 | |
|     },
 | |
|     512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_44_40 = {
 | |
|     {
 | |
|         {16, bark_tab_s44_128, 10, tab.fcb44s  , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
 | |
|         { 4, bark_tab_m44_512, 20, tab.fcb44m  , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
 | |
|         { 1, bark_tab_l44_2048,40, tab.fcb44l  , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
 | |
|     },
 | |
|     2048, 20, tab.lsp44,   1, 6, 4, 4, tab.shape44  , 9, 84, 54, 7, 432
 | |
| };
 | |
| 
 | |
| static const ModeTab mode_44_48 = {
 | |
|     {
 | |
|         {16, bark_tab_s44_128, 10, tab.fcb44s  , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
 | |
|         { 4, bark_tab_m44_512, 20, tab.fcb44m  , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
 | |
|         { 1, bark_tab_l44_2048,40, tab.fcb44l  , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
 | |
|     },
 | |
|     2048, 20, tab.lsp44,   1, 6, 4, 4, tab.shape44  , 9, 84, 54, 7, 432
 | |
| };
 | |
| 
 | |
| typedef struct TwinContext {
 | |
|     AVCodecContext *avctx;
 | |
|     DSPContext      dsp;
 | |
|     FFTContext mdct_ctx[3];
 | |
| 
 | |
|     const ModeTab *mtab;
 | |
| 
 | |
|     // history
 | |
|     float lsp_hist[2][20];           ///< LSP coefficients of the last frame
 | |
|     float bark_hist[3][2][40];       ///< BSE coefficients of last frame
 | |
| 
 | |
|     // bitstream parameters
 | |
|     int16_t permut[4][4096];
 | |
|     uint8_t length[4][2];            ///< main codebook stride
 | |
|     uint8_t length_change[4];
 | |
|     uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
 | |
|     int bits_main_spec_change[4];
 | |
|     int n_div[4];
 | |
| 
 | |
|     float *spectrum;
 | |
|     float *curr_frame;               ///< non-interleaved output
 | |
|     float *prev_frame;               ///< non-interleaved previous frame
 | |
|     int last_block_pos[2];
 | |
| 
 | |
|     float *cos_tabs[3];
 | |
| 
 | |
|     // scratch buffers
 | |
|     float *tmp_buf;
 | |
| } TwinContext;
 | |
| 
 | |
| #define PPC_SHAPE_CB_SIZE 64
 | |
| #define PPC_SHAPE_LEN_MAX 60
 | |
| #define SUB_AMP_MAX       4500.0
 | |
| #define MULAW_MU          100.0
 | |
| #define GAIN_BITS         8
 | |
| #define AMP_MAX           13000.0
 | |
| #define SUB_GAIN_BITS     5
 | |
| #define WINDOW_TYPE_BITS  4
 | |
| #define PGAIN_MU          200
 | |
| #define LSP_COEFS_MAX     20
 | |
| #define LSP_SPLIT_MAX     4
 | |
| #define CHANNELS_MAX      2
 | |
| #define SUBBLOCKS_MAX     16
 | |
| #define BARK_N_COEF_MAX   4
 | |
| 
 | |
| /** @note not speed critical, hence not optimized */
 | |
| static void memset_float(float *buf, float val, int size)
 | |
| {
 | |
|     while (size--)
 | |
|         *buf++ = val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
 | |
|  * spectrum pairs.
 | |
|  *
 | |
|  * @param lsp a vector of the cosinus of the LSP values
 | |
|  * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
 | |
|  * @param order the order of the LSP (and the size of the *lsp buffer). Must
 | |
|  *        be a multiple of four.
 | |
|  * @return the LPC value
 | |
|  *
 | |
|  * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
 | |
|  */
 | |
| static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
 | |
| {
 | |
|     int j;
 | |
|     float p = 0.5f;
 | |
|     float q = 0.5f;
 | |
|     float two_cos_w = 2.0f*cos_val;
 | |
| 
 | |
|     for (j = 0; j + 1 < order; j += 2*2) {
 | |
|         // Unroll the loop once since order is a multiple of four
 | |
|         q *= lsp[j  ] - two_cos_w;
 | |
|         p *= lsp[j+1] - two_cos_w;
 | |
| 
 | |
|         q *= lsp[j+2] - two_cos_w;
 | |
|         p *= lsp[j+3] - two_cos_w;
 | |
|     }
 | |
| 
 | |
|     p *= p * (2.0f - two_cos_w);
 | |
|     q *= q * (2.0f + two_cos_w);
 | |
| 
 | |
|     return 0.5 / (p + q);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
 | |
|  */
 | |
| static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
 | |
| {
 | |
|     int i;
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
 | |
| 
 | |
|     for (i = 0; i < size_s/2; i++) {
 | |
|         float cos_i = tctx->cos_tabs[0][i];
 | |
|         lpc[i]          = eval_lpc_spectrum(cos_vals,  cos_i, mtab->n_lsp);
 | |
|         lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void interpolate(float *out, float v1, float v2, int size)
 | |
| {
 | |
|     int i;
 | |
|     float step = (v1 - v2)/(size + 1);
 | |
| 
 | |
|     for (i = 0; i < size; i++) {
 | |
|         v2 += step;
 | |
|         out[i] = v2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline float get_cos(int idx, int part, const float *cos_tab, int size)
 | |
| {
 | |
|     return part ? -cos_tab[size - idx - 1] :
 | |
|                    cos_tab[       idx    ];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
 | |
|  * Probably for speed reasons, the coefficients are evaluated as
 | |
|  * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
 | |
|  * where s is an evaluated value, i is a value interpolated from the others
 | |
|  * and b might be either calculated or interpolated, depending on an
 | |
|  * unexplained condition.
 | |
|  *
 | |
|  * @param step the size of a block "siiiibiiii"
 | |
|  * @param in the cosinus of the LSP data
 | |
|  * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
 | |
|           (negative cossinus values)
 | |
|  * @param size the size of the whole output
 | |
|  */
 | |
| static inline void eval_lpcenv_or_interp(TwinContext *tctx,
 | |
|                                          enum FrameType ftype,
 | |
|                                          float *out, const float *in,
 | |
|                                          int size, int step, int part)
 | |
| {
 | |
|     int i;
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     const float *cos_tab = tctx->cos_tabs[ftype];
 | |
| 
 | |
|     // Fill the 's'
 | |
|     for (i = 0; i < size; i += step)
 | |
|         out[i] =
 | |
|             eval_lpc_spectrum(in,
 | |
|                               get_cos(i, part, cos_tab, size),
 | |
|                               mtab->n_lsp);
 | |
| 
 | |
|     // Fill the 'iiiibiiii'
 | |
|     for (i = step; i <= size - 2*step; i += step) {
 | |
|         if (out[i + step] + out[i - step] >  1.95*out[i] ||
 | |
|             out[i + step]                 >=  out[i - step]) {
 | |
|             interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
 | |
|         } else {
 | |
|             out[i - step/2] =
 | |
|                 eval_lpc_spectrum(in,
 | |
|                                   get_cos(i-step/2, part, cos_tab, size),
 | |
|                                   mtab->n_lsp);
 | |
|             interpolate(out + i - step   + 1, out[i-step/2], out[i-step  ], step/2 - 1);
 | |
|             interpolate(out + i - step/2 + 1, out[i       ], out[i-step/2], step/2 - 1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
 | |
| }
 | |
| 
 | |
| static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
 | |
|                                const float *buf, float *lpc,
 | |
|                                int size, int step)
 | |
| {
 | |
|     eval_lpcenv_or_interp(tctx, ftype, lpc         , buf, size/2,   step, 0);
 | |
|     eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
 | |
| 
 | |
|     interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
 | |
| 
 | |
|     memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
 | |
|  * bitstream, sum the corresponding vectors and write the result to *out
 | |
|  * after permutation.
 | |
|  */
 | |
| static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
 | |
|                     enum FrameType ftype,
 | |
|                     const int16_t *cb0, const int16_t *cb1, int cb_len)
 | |
| {
 | |
|     int pos = 0;
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < tctx->n_div[ftype]; i++) {
 | |
|         int tmp0, tmp1;
 | |
|         int sign0 = 1;
 | |
|         int sign1 = 1;
 | |
|         const int16_t *tab0, *tab1;
 | |
|         int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
 | |
|         int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
 | |
| 
 | |
|         int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
 | |
|         if (bits == 7) {
 | |
|             if (get_bits1(gb))
 | |
|                 sign0 = -1;
 | |
|             bits = 6;
 | |
|         }
 | |
|         tmp0 = get_bits(gb, bits);
 | |
| 
 | |
|         bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
 | |
| 
 | |
|         if (bits == 7) {
 | |
|             if (get_bits1(gb))
 | |
|                 sign1 = -1;
 | |
| 
 | |
|             bits = 6;
 | |
|         }
 | |
|         tmp1 = get_bits(gb, bits);
 | |
| 
 | |
|         tab0 = cb0 + tmp0*cb_len;
 | |
|         tab1 = cb1 + tmp1*cb_len;
 | |
| 
 | |
|         for (j = 0; j < length; j++)
 | |
|             out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
 | |
| 
 | |
|         pos += length;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline float mulawinv(float y, float clip, float mu)
 | |
| {
 | |
|     y = av_clipf(y/clip, -1, 1);
 | |
|     return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Evaluate a*b/400 rounded to the nearest integer. When, for example,
 | |
|  * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
 | |
|  * the following broken float-based implementation used by the binary decoder:
 | |
|  *
 | |
|  * @code
 | |
|  * static int very_broken_op(int a, int b)
 | |
|  * {
 | |
|  *    static float test; // Ugh, force gcc to do the division first...
 | |
|  *
 | |
|  *    test = a/400.;
 | |
|  *    return b * test +  0.5;
 | |
|  * }
 | |
|  * @endcode
 | |
|  *
 | |
|  * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
 | |
|  * between the original file (before encoding with Yamaha encoder) and the
 | |
|  * decoded output increases, which leads one to believe that the encoder expects
 | |
|  * exactly this broken calculation.
 | |
|  */
 | |
| static int very_broken_op(int a, int b)
 | |
| {
 | |
|     int x = a*b + 200;
 | |
|     int size;
 | |
|     const uint8_t *rtab;
 | |
| 
 | |
|     if (x%400 || b%5)
 | |
|         return x/400;
 | |
| 
 | |
|     x /= 400;
 | |
| 
 | |
|     size = tabs[b/5].size;
 | |
|     rtab = tabs[b/5].tab;
 | |
|     return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Sum to data a periodic peak of a given period, width and shape.
 | |
|  *
 | |
|  * @param period the period of the peak divised by 400.0
 | |
|  */
 | |
| static void add_peak(int period, int width, const float *shape,
 | |
|                      float ppc_gain, float *speech, int len)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     const float *shape_end = shape + len;
 | |
|     int center;
 | |
| 
 | |
|     // First peak centered around zero
 | |
|     for (i = 0; i < width/2; i++)
 | |
|         speech[i] += ppc_gain * *shape++;
 | |
| 
 | |
|     for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
 | |
|         center = very_broken_op(period, i);
 | |
|         for (j = -width/2; j < (width+1)/2; j++)
 | |
|             speech[j+center] += ppc_gain * *shape++;
 | |
|     }
 | |
| 
 | |
|     // For the last block, be careful not to go beyond the end of the buffer
 | |
|     center = very_broken_op(period, i);
 | |
|     for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
 | |
|         speech[j+center] += ppc_gain * *shape++;
 | |
| }
 | |
| 
 | |
| static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
 | |
|                        float ppc_gain, float *speech)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int isampf = tctx->avctx->sample_rate/1000;
 | |
|     int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
 | |
|     int min_period = ROUNDED_DIV(  40*2*mtab->size, isampf);
 | |
|     int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
 | |
|     int period_range = max_period - min_period;
 | |
| 
 | |
|     // This is actually the period multiplied by 400. It is just linearly coded
 | |
|     // between its maximum and minimum value.
 | |
|     int period = min_period +
 | |
|         ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
 | |
|     int width;
 | |
| 
 | |
|     if (isampf == 22 && ibps == 32) {
 | |
|         // For some unknown reason, NTT decided to code this case differently...
 | |
|         width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
 | |
|     } else
 | |
|         width =             (period      )* mtab->peak_per2wid/(400*mtab->size);
 | |
| 
 | |
|     add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
 | |
| }
 | |
| 
 | |
| static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
 | |
|                      float *out)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int i, j;
 | |
|     int sub = mtab->fmode[ftype].sub;
 | |
|     float step     = AMP_MAX     / ((1 <<     GAIN_BITS) - 1);
 | |
|     float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
 | |
| 
 | |
|     if (ftype == FT_LONG) {
 | |
|         for (i = 0; i < tctx->avctx->channels; i++)
 | |
|             out[i] = (1./(1<<13)) *
 | |
|                 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
 | |
|                          AMP_MAX, MULAW_MU);
 | |
|     } else {
 | |
|         for (i = 0; i < tctx->avctx->channels; i++) {
 | |
|             float val = (1./(1<<23)) *
 | |
|                 mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
 | |
|                          AMP_MAX, MULAW_MU);
 | |
| 
 | |
|             for (j = 0; j < sub; j++) {
 | |
|                 out[i*sub + j] =
 | |
|                     val*mulawinv(sub_step* 0.5 +
 | |
|                                  sub_step* get_bits(gb, SUB_GAIN_BITS),
 | |
|                                  SUB_AMP_MAX, MULAW_MU);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Rearrange the LSP coefficients so that they have a minimum distance of
 | |
|  * min_dist. This function does it exactly as described in section of 3.2.4
 | |
|  * of the G.729 specification (but interestingly is different from what the
 | |
|  * reference decoder actually does).
 | |
|  */
 | |
| static void rearrange_lsp(int order, float *lsp, float min_dist)
 | |
| {
 | |
|     int i;
 | |
|     float min_dist2 = min_dist * 0.5;
 | |
|     for (i = 1; i < order; i++)
 | |
|         if (lsp[i] - lsp[i-1] < min_dist) {
 | |
|             float avg = (lsp[i] + lsp[i-1]) * 0.5;
 | |
| 
 | |
|             lsp[i-1] = avg - min_dist2;
 | |
|             lsp[i  ] = avg + min_dist2;
 | |
|         }
 | |
| }
 | |
| 
 | |
| static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
 | |
|                        int lpc_hist_idx, float *lsp, float *hist)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int i, j;
 | |
| 
 | |
|     const float *cb  =  mtab->lspcodebook;
 | |
|     const float *cb2 =  cb  + (1 << mtab->lsp_bit1)*mtab->n_lsp;
 | |
|     const float *cb3 =  cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
 | |
| 
 | |
|     const int8_t funny_rounding[4] = {
 | |
|         -2,
 | |
|         mtab->lsp_split == 4 ? -2 : 1,
 | |
|         mtab->lsp_split == 4 ? -2 : 1,
 | |
|         0
 | |
|     };
 | |
| 
 | |
|     j = 0;
 | |
|     for (i = 0; i < mtab->lsp_split; i++) {
 | |
|         int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
 | |
|         for (; j < chunk_end; j++)
 | |
|             lsp[j] = cb [lpc_idx1    * mtab->n_lsp + j] +
 | |
|                      cb2[lpc_idx2[i] * mtab->n_lsp + j];
 | |
|     }
 | |
| 
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
 | |
| 
 | |
|     for (i = 0; i < mtab->n_lsp; i++) {
 | |
|         float tmp1 = 1. -          cb3[lpc_hist_idx*mtab->n_lsp + i];
 | |
|         float tmp2 =     hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
 | |
|         hist[i] = lsp[i];
 | |
|         lsp[i]  = lsp[i] * tmp1 + tmp2;
 | |
|     }
 | |
| 
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
 | |
|     rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
 | |
|     ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
 | |
| }
 | |
| 
 | |
| static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
 | |
|                                  enum FrameType ftype, float *lpc)
 | |
| {
 | |
|     int i;
 | |
|     int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
 | |
| 
 | |
|     for (i = 0; i < tctx->mtab->n_lsp; i++)
 | |
|         lsp[i] =  2*cos(lsp[i]);
 | |
| 
 | |
|     switch (ftype) {
 | |
|     case FT_LONG:
 | |
|         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
 | |
|         break;
 | |
|     case FT_MEDIUM:
 | |
|         eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
 | |
|         break;
 | |
|     case FT_SHORT:
 | |
|         eval_lpcenv(tctx, lsp, lpc);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
 | |
|                             float *in, float *prev, int ch)
 | |
| {
 | |
|     FFTContext *mdct = &tctx->mdct_ctx[ftype];
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int bsize = mtab->size / mtab->fmode[ftype].sub;
 | |
|     int size  = mtab->size;
 | |
|     float *buf1 = tctx->tmp_buf;
 | |
|     int j;
 | |
|     int wsize; // Window size
 | |
|     float *out = tctx->curr_frame + 2*ch*mtab->size;
 | |
|     float *out2 = out;
 | |
|     float *prev_buf;
 | |
|     int first_wsize;
 | |
| 
 | |
|     static const uint8_t wtype_to_wsize[]      = {0, 0, 2, 2, 2, 1, 0, 1, 1};
 | |
|     int types_sizes[] = {
 | |
|         mtab->size /    mtab->fmode[FT_LONG  ].sub,
 | |
|         mtab->size /    mtab->fmode[FT_MEDIUM].sub,
 | |
|         mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
 | |
|     };
 | |
| 
 | |
|     wsize = types_sizes[wtype_to_wsize[wtype]];
 | |
|     first_wsize = wsize;
 | |
|     prev_buf = prev + (size - bsize)/2;
 | |
| 
 | |
|     for (j = 0; j < mtab->fmode[ftype].sub; j++) {
 | |
|         int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
 | |
| 
 | |
|         if (!j && wtype == 4)
 | |
|             sub_wtype = 4;
 | |
|         else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
 | |
|             sub_wtype = 7;
 | |
| 
 | |
|         wsize = types_sizes[wtype_to_wsize[sub_wtype]];
 | |
| 
 | |
|         mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
 | |
| 
 | |
|         tctx->dsp.vector_fmul_window(out2,
 | |
|                                      prev_buf + (bsize-wsize)/2,
 | |
|                                      buf1 + bsize*j,
 | |
|                                      ff_sine_windows[av_log2(wsize)],
 | |
|                                      wsize/2);
 | |
|         out2 += wsize;
 | |
| 
 | |
|         memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
 | |
| 
 | |
|         out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
 | |
| 
 | |
|         prev_buf = buf1 + bsize*j + bsize/2;
 | |
|     }
 | |
| 
 | |
|     tctx->last_block_pos[ch] = (size + first_wsize)/2;
 | |
| }
 | |
| 
 | |
| static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
 | |
|                          float *out)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
 | |
|     int i, j;
 | |
| 
 | |
|     for (i = 0; i < tctx->avctx->channels; i++) {
 | |
|         imdct_and_window(tctx, ftype, wtype,
 | |
|                          tctx->spectrum + i*mtab->size,
 | |
|                          prev_buf + 2*i*mtab->size,
 | |
|                          i);
 | |
|     }
 | |
| 
 | |
|     if (tctx->avctx->channels == 2) {
 | |
|         for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
 | |
|             float f1 = prev_buf[               i];
 | |
|             float f2 = prev_buf[2*mtab->size + i];
 | |
|             out[2*i    ] = f1 + f2;
 | |
|             out[2*i + 1] = f1 - f2;
 | |
|         }
 | |
|         for (j = 0; i < mtab->size; j++,i++) {
 | |
|             float f1 = tctx->curr_frame[               j];
 | |
|             float f2 = tctx->curr_frame[2*mtab->size + j];
 | |
|             out[2*i    ] = f1 + f2;
 | |
|             out[2*i + 1] = f1 - f2;
 | |
|         }
 | |
|     } else {
 | |
|         memcpy(out, prev_buf,
 | |
|                (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
 | |
| 
 | |
|         out +=  mtab->size - tctx->last_block_pos[0];
 | |
| 
 | |
|         memcpy(out, tctx->curr_frame,
 | |
|                (tctx->last_block_pos[0]) * sizeof(*out));
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
 | |
|                          int ch, float *out, float gain, enum FrameType ftype)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int i,j;
 | |
|     float *hist = tctx->bark_hist[ftype][ch];
 | |
|     float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
 | |
|     int bark_n_coef  = mtab->fmode[ftype].bark_n_coef;
 | |
|     int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
 | |
|     int idx = 0;
 | |
| 
 | |
|     for (i = 0; i < fw_cb_len; i++)
 | |
|         for (j = 0; j < bark_n_coef; j++, idx++) {
 | |
|             float tmp2 =
 | |
|                 mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
 | |
|             float st = use_hist ?
 | |
|                 (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
 | |
| 
 | |
|             hist[idx] = tmp2;
 | |
|             if (st < -1.) st = 1.;
 | |
| 
 | |
|             memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
 | |
|             out += mtab->fmode[ftype].bark_tab[idx];
 | |
|         }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
 | |
|                                      float *out, enum FrameType ftype)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int channels = tctx->avctx->channels;
 | |
|     int sub = mtab->fmode[ftype].sub;
 | |
|     int block_size = mtab->size / sub;
 | |
|     float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
 | |
|     float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
 | |
|     uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
 | |
|     uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
 | |
| 
 | |
|     uint8_t lpc_idx1[CHANNELS_MAX];
 | |
|     uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
 | |
|     uint8_t lpc_hist_idx[CHANNELS_MAX];
 | |
| 
 | |
|     int i, j, k;
 | |
| 
 | |
|     dequant(tctx, gb, out, ftype,
 | |
|             mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
 | |
|             mtab->fmode[ftype].cb_len_read);
 | |
| 
 | |
|     for (i = 0; i < channels; i++)
 | |
|         for (j = 0; j < sub; j++)
 | |
|             for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
 | |
|                 bark1[i][j][k] =
 | |
|                     get_bits(gb, mtab->fmode[ftype].bark_n_bit);
 | |
| 
 | |
|     for (i = 0; i < channels; i++)
 | |
|         for (j = 0; j < sub; j++)
 | |
|             bark_use_hist[i][j] = get_bits1(gb);
 | |
| 
 | |
|     dec_gain(tctx, gb, ftype, gain);
 | |
| 
 | |
|     for (i = 0; i < channels; i++) {
 | |
|         lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
 | |
|         lpc_idx1    [i] = get_bits(gb, tctx->mtab->lsp_bit1);
 | |
| 
 | |
|         for (j = 0; j < tctx->mtab->lsp_split; j++)
 | |
|             lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
 | |
|     }
 | |
| 
 | |
|     if (ftype == FT_LONG) {
 | |
|         int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
 | |
|             tctx->n_div[3];
 | |
|         dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
 | |
|                 mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < channels; i++) {
 | |
|         float *chunk = out + mtab->size * i;
 | |
|         float lsp[LSP_COEFS_MAX];
 | |
| 
 | |
|         for (j = 0; j < sub; j++) {
 | |
|             dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
 | |
|                          tctx->tmp_buf, gain[sub*i+j], ftype);
 | |
| 
 | |
|             tctx->dsp.vector_fmul(chunk + block_size*j, chunk + block_size*j, tctx->tmp_buf,
 | |
|                                   block_size);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (ftype == FT_LONG) {
 | |
|             float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
 | |
|             int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
 | |
|             int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
 | |
|             float v = 1./8192*
 | |
|                 mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
 | |
| 
 | |
|             decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
 | |
|                        chunk);
 | |
|         }
 | |
| 
 | |
|         decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
 | |
|                    tctx->lsp_hist[i]);
 | |
| 
 | |
|         dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
 | |
| 
 | |
|         for (j = 0; j < mtab->fmode[ftype].sub; j++) {
 | |
|             tctx->dsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
 | |
|             chunk += block_size;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int twin_decode_frame(AVCodecContext * avctx, void *data,
 | |
|                              int *data_size, AVPacket *avpkt)
 | |
| {
 | |
|     const uint8_t *buf = avpkt->data;
 | |
|     int buf_size = avpkt->size;
 | |
|     TwinContext *tctx = avctx->priv_data;
 | |
|     GetBitContext gb;
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     float *out = data;
 | |
|     enum FrameType ftype;
 | |
|     int window_type;
 | |
|     static const enum FrameType wtype_to_ftype_table[] = {
 | |
|         FT_LONG,   FT_LONG, FT_SHORT, FT_LONG,
 | |
|         FT_MEDIUM, FT_LONG, FT_LONG,  FT_MEDIUM, FT_MEDIUM
 | |
|     };
 | |
| 
 | |
|     if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Frame too small (%d bytes). Truncated file?\n", buf_size);
 | |
|         *data_size = 0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     init_get_bits(&gb, buf, buf_size * 8);
 | |
|     skip_bits(&gb, get_bits(&gb, 8));
 | |
|     window_type = get_bits(&gb, WINDOW_TYPE_BITS);
 | |
| 
 | |
|     if (window_type > 8) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ftype = wtype_to_ftype_table[window_type];
 | |
| 
 | |
|     read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
 | |
| 
 | |
|     imdct_output(tctx, ftype, window_type, out);
 | |
| 
 | |
|     FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
 | |
| 
 | |
|     if (tctx->avctx->frame_number < 2) {
 | |
|         *data_size=0;
 | |
|         return buf_size;
 | |
|     }
 | |
| 
 | |
|     *data_size = mtab->size*avctx->channels*4;
 | |
| 
 | |
|     return buf_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Init IMDCT and windowing tables
 | |
|  */
 | |
| static av_cold void init_mdct_win(TwinContext *tctx)
 | |
| {
 | |
|     int i,j;
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
 | |
|     int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
 | |
|     int channels = tctx->avctx->channels;
 | |
|     float norm = channels == 1 ? 2. : 1.;
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
 | |
|         ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
 | |
|                      -sqrt(norm/bsize) / (1<<15));
 | |
|     }
 | |
| 
 | |
|     tctx->tmp_buf  = av_malloc(mtab->size            * sizeof(*tctx->tmp_buf));
 | |
| 
 | |
|     tctx->spectrum  = av_malloc(2*mtab->size*channels*sizeof(float));
 | |
|     tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
 | |
|     tctx->prev_frame  = av_malloc(2*mtab->size*channels*sizeof(float));
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         int m = 4*mtab->size/mtab->fmode[i].sub;
 | |
|         double freq = 2*M_PI/m;
 | |
|         tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
 | |
| 
 | |
|         for (j = 0; j <= m/8; j++)
 | |
|             tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
 | |
|         for (j = 1; j <  m/8; j++)
 | |
|             tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
 | |
|     }
 | |
| 
 | |
| 
 | |
|     ff_init_ff_sine_windows(av_log2(size_m));
 | |
|     ff_init_ff_sine_windows(av_log2(size_s/2));
 | |
|     ff_init_ff_sine_windows(av_log2(mtab->size));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
 | |
|  * each line do a cyclic permutation, i.e.
 | |
|  * abcdefghijklm -> defghijklmabc
 | |
|  * where the amount to be shifted is evaluated depending on the column.
 | |
|  */
 | |
| static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
 | |
|                               int block_size,
 | |
|                               const uint8_t line_len[2], int length_div,
 | |
|                               enum FrameType ftype)
 | |
| 
 | |
| {
 | |
|     int i,j;
 | |
| 
 | |
|     for (i = 0; i < line_len[0]; i++) {
 | |
|         int shift;
 | |
| 
 | |
|         if (num_blocks == 1 ||
 | |
|             (ftype == FT_LONG && num_vect % num_blocks) ||
 | |
|             (ftype != FT_LONG && num_vect & 1         ) ||
 | |
|             i == line_len[1]) {
 | |
|             shift = 0;
 | |
|         } else if (ftype == FT_LONG) {
 | |
|             shift = i;
 | |
|         } else
 | |
|             shift = i*i;
 | |
| 
 | |
|         for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
 | |
|             tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Interpret the input data as in the following table:
 | |
|  *
 | |
|  * @verbatim
 | |
|  *
 | |
|  * abcdefgh
 | |
|  * ijklmnop
 | |
|  * qrstuvw
 | |
|  * x123456
 | |
|  *
 | |
|  * @endverbatim
 | |
|  *
 | |
|  * and transpose it, giving the output
 | |
|  * aiqxbjr1cks2dlt3emu4fvn5gow6hp
 | |
|  */
 | |
| static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
 | |
|                            const uint8_t line_len[2], int length_div)
 | |
| {
 | |
|     int i,j;
 | |
|     int cont= 0;
 | |
|     for (i = 0; i < num_vect; i++)
 | |
|         for (j = 0; j < line_len[i >= length_div]; j++)
 | |
|             out[cont++] = in[j*num_vect + i];
 | |
| }
 | |
| 
 | |
| static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
 | |
| {
 | |
|     int block_size = size/n_blocks;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < size; i++)
 | |
|         out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
 | |
| }
 | |
| 
 | |
| static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
 | |
| {
 | |
|     int block_size;
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
 | |
|     int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
 | |
| 
 | |
|     if (ftype == FT_PPC) {
 | |
|         size  = tctx->avctx->channels;
 | |
|         block_size = mtab->ppc_shape_len;
 | |
|     } else
 | |
|         block_size = mtab->size / mtab->fmode[ftype].sub;
 | |
| 
 | |
|     permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
 | |
|                       block_size, tctx->length[ftype],
 | |
|                       tctx->length_change[ftype], ftype);
 | |
| 
 | |
|     transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
 | |
|                    tctx->length[ftype], tctx->length_change[ftype]);
 | |
| 
 | |
|     linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
 | |
|                 size*block_size);
 | |
| }
 | |
| 
 | |
| static av_cold void init_bitstream_params(TwinContext *tctx)
 | |
| {
 | |
|     const ModeTab *mtab = tctx->mtab;
 | |
|     int n_ch = tctx->avctx->channels;
 | |
|     int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
 | |
|                              tctx->avctx->sample_rate;
 | |
| 
 | |
|     int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
 | |
|                                    mtab->lsp_split*mtab->lsp_bit2);
 | |
| 
 | |
|     int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
 | |
|                          mtab->ppc_period_bit);
 | |
| 
 | |
|     int bsize_no_main_cb[3];
 | |
|     int bse_bits[3];
 | |
|     int i;
 | |
|     enum FrameType frametype;
 | |
| 
 | |
|     for (i = 0; i < 3; i++)
 | |
|         // +1 for history usage switch
 | |
|         bse_bits[i] = n_ch *
 | |
|             (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
 | |
| 
 | |
|     bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
 | |
|                           WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
 | |
| 
 | |
|     for (i = 0; i < 2; i++)
 | |
|         bsize_no_main_cb[i] =
 | |
|             lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
 | |
|             mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
 | |
| 
 | |
|     // The remaining bits are all used for the main spectrum coefficients
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         int bit_size;
 | |
|         int vect_size;
 | |
|         int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
 | |
|         if (i == 3) {
 | |
|             bit_size  = n_ch * mtab->ppc_shape_bit;
 | |
|             vect_size = n_ch * mtab->ppc_shape_len;
 | |
|         } else {
 | |
|             bit_size = total_fr_bits - bsize_no_main_cb[i];
 | |
|             vect_size = n_ch * mtab->size;
 | |
|         }
 | |
| 
 | |
|         tctx->n_div[i] = (bit_size + 13) / 14;
 | |
| 
 | |
|         rounded_up   = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
 | |
|         rounded_down = (bit_size           )/tctx->n_div[i];
 | |
|         num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
 | |
|         num_rounded_up = tctx->n_div[i] - num_rounded_down;
 | |
|         tctx->bits_main_spec[0][i][0] = (rounded_up   + 1)/2;
 | |
|         tctx->bits_main_spec[1][i][0] = (rounded_up      )/2;
 | |
|         tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
 | |
|         tctx->bits_main_spec[1][i][1] = (rounded_down    )/2;
 | |
|         tctx->bits_main_spec_change[i] = num_rounded_up;
 | |
| 
 | |
|         rounded_up   = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
 | |
|         rounded_down = (vect_size                     )/tctx->n_div[i];
 | |
|         num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
 | |
|         num_rounded_up = tctx->n_div[i] - num_rounded_down;
 | |
|         tctx->length[i][0] = rounded_up;
 | |
|         tctx->length[i][1] = rounded_down;
 | |
|         tctx->length_change[i] = num_rounded_up;
 | |
|     }
 | |
| 
 | |
|     for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
 | |
|         construct_perm_table(tctx, frametype);
 | |
| }
 | |
| 
 | |
| static av_cold int twin_decode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     TwinContext *tctx = avctx->priv_data;
 | |
|     int isampf = avctx->sample_rate/1000;
 | |
|     int ibps = avctx->bit_rate/(1000 * avctx->channels);
 | |
| 
 | |
|     tctx->avctx       = avctx;
 | |
|     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
 | |
| 
 | |
|     if (avctx->channels > CHANNELS_MAX) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
 | |
|                avctx->channels);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     switch ((isampf << 8) +  ibps) {
 | |
|     case (8 <<8) +  8: tctx->mtab = &mode_08_08; break;
 | |
|     case (11<<8) +  8: tctx->mtab = &mode_11_08; break;
 | |
|     case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
 | |
|     case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
 | |
|     case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
 | |
|     case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
 | |
|     case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
 | |
|     case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
 | |
|     case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     dsputil_init(&tctx->dsp, avctx);
 | |
|     init_mdct_win(tctx);
 | |
|     init_bitstream_params(tctx);
 | |
| 
 | |
|     memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int twin_decode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     TwinContext *tctx = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         ff_mdct_end(&tctx->mdct_ctx[i]);
 | |
|         av_free(tctx->cos_tabs[i]);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     av_free(tctx->curr_frame);
 | |
|     av_free(tctx->spectrum);
 | |
|     av_free(tctx->prev_frame);
 | |
|     av_free(tctx->tmp_buf);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| AVCodec ff_twinvq_decoder =
 | |
| {
 | |
|     "twinvq",
 | |
|     AVMEDIA_TYPE_AUDIO,
 | |
|     CODEC_ID_TWINVQ,
 | |
|     sizeof(TwinContext),
 | |
|     twin_decode_init,
 | |
|     NULL,
 | |
|     twin_decode_close,
 | |
|     twin_decode_frame,
 | |
|     .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
 | |
| };
 |