656 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2001-2003 The ffmpeg Project
 | 
						|
 *
 | 
						|
 * This file is part of Libav.
 | 
						|
 *
 | 
						|
 * Libav is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libav is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with Libav; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "bytestream.h"
 | 
						|
#include "adpcm.h"
 | 
						|
#include "adpcm_data.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * ADPCM encoders
 | 
						|
 * First version by Francois Revol (revol@free.fr)
 | 
						|
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
 | 
						|
 *   by Mike Melanson (melanson@pcisys.net)
 | 
						|
 *
 | 
						|
 * Reference documents:
 | 
						|
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
 | 
						|
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
 | 
						|
 * http://openquicktime.sourceforge.net/plugins.htm
 | 
						|
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
 | 
						|
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
 | 
						|
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct TrellisPath {
 | 
						|
    int nibble;
 | 
						|
    int prev;
 | 
						|
} TrellisPath;
 | 
						|
 | 
						|
typedef struct TrellisNode {
 | 
						|
    uint32_t ssd;
 | 
						|
    int path;
 | 
						|
    int sample1;
 | 
						|
    int sample2;
 | 
						|
    int step;
 | 
						|
} TrellisNode;
 | 
						|
 | 
						|
typedef struct ADPCMEncodeContext {
 | 
						|
    ADPCMChannelStatus status[6];
 | 
						|
    TrellisPath *paths;
 | 
						|
    TrellisNode *node_buf;
 | 
						|
    TrellisNode **nodep_buf;
 | 
						|
    uint8_t *trellis_hash;
 | 
						|
} ADPCMEncodeContext;
 | 
						|
 | 
						|
#define FREEZE_INTERVAL 128
 | 
						|
 | 
						|
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    ADPCMEncodeContext *s = avctx->priv_data;
 | 
						|
    uint8_t *extradata;
 | 
						|
    int i;
 | 
						|
    if (avctx->channels > 2)
 | 
						|
        return -1; /* only stereo or mono =) */
 | 
						|
 | 
						|
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->trellis) {
 | 
						|
        int frontier = 1 << avctx->trellis;
 | 
						|
        int max_paths =  frontier * FREEZE_INTERVAL;
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->paths,     max_paths * sizeof(*s->paths), error);
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,  2 * frontier * sizeof(*s->node_buf), error);
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error);
 | 
						|
    }
 | 
						|
 | 
						|
    switch(avctx->codec->id) {
 | 
						|
    case CODEC_ID_ADPCM_IMA_WAV:
 | 
						|
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
 | 
						|
                                                             /* and we have 4 bytes per channel overhead */
 | 
						|
        avctx->block_align = BLKSIZE;
 | 
						|
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_IMA_QT:
 | 
						|
        avctx->frame_size = 64;
 | 
						|
        avctx->block_align = 34 * avctx->channels;
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_MS:
 | 
						|
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
 | 
						|
                                                             /* and we have 7 bytes per channel overhead */
 | 
						|
        avctx->block_align = BLKSIZE;
 | 
						|
        avctx->extradata_size = 32;
 | 
						|
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
 | 
						|
        if (!extradata)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        bytestream_put_le16(&extradata, avctx->frame_size);
 | 
						|
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
 | 
						|
        for (i = 0; i < 7; i++) {
 | 
						|
            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff1[i] * 4);
 | 
						|
            bytestream_put_le16(&extradata, ff_adpcm_AdaptCoeff2[i] * 4);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_YAMAHA:
 | 
						|
        avctx->frame_size = BLKSIZE * avctx->channels;
 | 
						|
        avctx->block_align = BLKSIZE;
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_SWF:
 | 
						|
        if (avctx->sample_rate != 11025 &&
 | 
						|
            avctx->sample_rate != 22050 &&
 | 
						|
            avctx->sample_rate != 44100) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
 | 
						|
            goto error;
 | 
						|
        }
 | 
						|
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        goto error;
 | 
						|
    }
 | 
						|
 | 
						|
    avctx->coded_frame= avcodec_alloc_frame();
 | 
						|
    avctx->coded_frame->key_frame= 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
error:
 | 
						|
    av_freep(&s->paths);
 | 
						|
    av_freep(&s->node_buf);
 | 
						|
    av_freep(&s->nodep_buf);
 | 
						|
    av_freep(&s->trellis_hash);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    ADPCMEncodeContext *s = avctx->priv_data;
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    av_freep(&s->paths);
 | 
						|
    av_freep(&s->node_buf);
 | 
						|
    av_freep(&s->nodep_buf);
 | 
						|
    av_freep(&s->trellis_hash);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
 | 
						|
{
 | 
						|
    int delta = sample - c->prev_sample;
 | 
						|
    int nibble = FFMIN(7, abs(delta)*4/ff_adpcm_step_table[c->step_index]) + (delta<0)*8;
 | 
						|
    c->prev_sample += ((ff_adpcm_step_table[c->step_index] * ff_adpcm_yamaha_difflookup[nibble]) / 8);
 | 
						|
    c->prev_sample = av_clip_int16(c->prev_sample);
 | 
						|
    c->step_index = av_clip(c->step_index + ff_adpcm_index_table[nibble], 0, 88);
 | 
						|
    return nibble;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
 | 
						|
{
 | 
						|
    int predictor, nibble, bias;
 | 
						|
 | 
						|
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
 | 
						|
 | 
						|
    nibble= sample - predictor;
 | 
						|
    if(nibble>=0) bias= c->idelta/2;
 | 
						|
    else          bias=-c->idelta/2;
 | 
						|
 | 
						|
    nibble= (nibble + bias) / c->idelta;
 | 
						|
    nibble= av_clip(nibble, -8, 7)&0x0F;
 | 
						|
 | 
						|
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
 | 
						|
 | 
						|
    c->sample2 = c->sample1;
 | 
						|
    c->sample1 = av_clip_int16(predictor);
 | 
						|
 | 
						|
    c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
 | 
						|
    if (c->idelta < 16) c->idelta = 16;
 | 
						|
 | 
						|
    return nibble;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
 | 
						|
{
 | 
						|
    int nibble, delta;
 | 
						|
 | 
						|
    if(!c->step) {
 | 
						|
        c->predictor = 0;
 | 
						|
        c->step = 127;
 | 
						|
    }
 | 
						|
 | 
						|
    delta = sample - c->predictor;
 | 
						|
 | 
						|
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
 | 
						|
 | 
						|
    c->predictor += ((c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8);
 | 
						|
    c->predictor = av_clip_int16(c->predictor);
 | 
						|
    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
 | 
						|
    c->step = av_clip(c->step, 127, 24567);
 | 
						|
 | 
						|
    return nibble;
 | 
						|
}
 | 
						|
 | 
						|
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
 | 
						|
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
 | 
						|
{
 | 
						|
    //FIXME 6% faster if frontier is a compile-time constant
 | 
						|
    ADPCMEncodeContext *s = avctx->priv_data;
 | 
						|
    const int frontier = 1 << avctx->trellis;
 | 
						|
    const int stride = avctx->channels;
 | 
						|
    const int version = avctx->codec->id;
 | 
						|
    TrellisPath *paths = s->paths, *p;
 | 
						|
    TrellisNode *node_buf = s->node_buf;
 | 
						|
    TrellisNode **nodep_buf = s->nodep_buf;
 | 
						|
    TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
 | 
						|
    TrellisNode **nodes_next = nodep_buf + frontier;
 | 
						|
    int pathn = 0, froze = -1, i, j, k, generation = 0;
 | 
						|
    uint8_t *hash = s->trellis_hash;
 | 
						|
    memset(hash, 0xff, 65536 * sizeof(*hash));
 | 
						|
 | 
						|
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
 | 
						|
    nodes[0] = node_buf + frontier;
 | 
						|
    nodes[0]->ssd = 0;
 | 
						|
    nodes[0]->path = 0;
 | 
						|
    nodes[0]->step = c->step_index;
 | 
						|
    nodes[0]->sample1 = c->sample1;
 | 
						|
    nodes[0]->sample2 = c->sample2;
 | 
						|
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
 | 
						|
        nodes[0]->sample1 = c->prev_sample;
 | 
						|
    if(version == CODEC_ID_ADPCM_MS)
 | 
						|
        nodes[0]->step = c->idelta;
 | 
						|
    if(version == CODEC_ID_ADPCM_YAMAHA) {
 | 
						|
        if(c->step == 0) {
 | 
						|
            nodes[0]->step = 127;
 | 
						|
            nodes[0]->sample1 = 0;
 | 
						|
        } else {
 | 
						|
            nodes[0]->step = c->step;
 | 
						|
            nodes[0]->sample1 = c->predictor;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for(i=0; i<n; i++) {
 | 
						|
        TrellisNode *t = node_buf + frontier*(i&1);
 | 
						|
        TrellisNode **u;
 | 
						|
        int sample = samples[i*stride];
 | 
						|
        int heap_pos = 0;
 | 
						|
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
 | 
						|
        for(j=0; j<frontier && nodes[j]; j++) {
 | 
						|
            // higher j have higher ssd already, so they're likely to yield a suboptimal next sample too
 | 
						|
            const int range = (j < frontier/2) ? 1 : 0;
 | 
						|
            const int step = nodes[j]->step;
 | 
						|
            int nidx;
 | 
						|
            if(version == CODEC_ID_ADPCM_MS) {
 | 
						|
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
 | 
						|
                const int div = (sample - predictor) / step;
 | 
						|
                const int nmin = av_clip(div-range, -8, 6);
 | 
						|
                const int nmax = av_clip(div+range, -7, 7);
 | 
						|
                for(nidx=nmin; nidx<=nmax; nidx++) {
 | 
						|
                    const int nibble = nidx & 0xf;
 | 
						|
                    int dec_sample = predictor + nidx * step;
 | 
						|
#define STORE_NODE(NAME, STEP_INDEX)\
 | 
						|
                    int d;\
 | 
						|
                    uint32_t ssd;\
 | 
						|
                    int pos;\
 | 
						|
                    TrellisNode *u;\
 | 
						|
                    uint8_t *h;\
 | 
						|
                    dec_sample = av_clip_int16(dec_sample);\
 | 
						|
                    d = sample - dec_sample;\
 | 
						|
                    ssd = nodes[j]->ssd + d*d;\
 | 
						|
                    /* Check for wraparound, skip such samples completely. \
 | 
						|
                     * Note, changing ssd to a 64 bit variable would be \
 | 
						|
                     * simpler, avoiding this check, but it's slower on \
 | 
						|
                     * x86 32 bit at the moment. */\
 | 
						|
                    if (ssd < nodes[j]->ssd)\
 | 
						|
                        goto next_##NAME;\
 | 
						|
                    /* Collapse any two states with the same previous sample value. \
 | 
						|
                     * One could also distinguish states by step and by 2nd to last
 | 
						|
                     * sample, but the effects of that are negligible.
 | 
						|
                     * Since nodes in the previous generation are iterated
 | 
						|
                     * through a heap, they're roughly ordered from better to
 | 
						|
                     * worse, but not strictly ordered. Therefore, an earlier
 | 
						|
                     * node with the same sample value is better in most cases
 | 
						|
                     * (and thus the current is skipped), but not strictly
 | 
						|
                     * in all cases. Only skipping samples where ssd >=
 | 
						|
                     * ssd of the earlier node with the same sample gives
 | 
						|
                     * slightly worse quality, though, for some reason. */ \
 | 
						|
                    h = &hash[(uint16_t) dec_sample];\
 | 
						|
                    if (*h == generation)\
 | 
						|
                        goto next_##NAME;\
 | 
						|
                    if (heap_pos < frontier) {\
 | 
						|
                        pos = heap_pos++;\
 | 
						|
                    } else {\
 | 
						|
                        /* Try to replace one of the leaf nodes with the new \
 | 
						|
                         * one, but try a different slot each time. */\
 | 
						|
                        pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\
 | 
						|
                        if (ssd > nodes_next[pos]->ssd)\
 | 
						|
                            goto next_##NAME;\
 | 
						|
                        heap_pos++;\
 | 
						|
                    }\
 | 
						|
                    *h = generation;\
 | 
						|
                    u = nodes_next[pos];\
 | 
						|
                    if(!u) {\
 | 
						|
                        assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
 | 
						|
                        u = t++;\
 | 
						|
                        nodes_next[pos] = u;\
 | 
						|
                        u->path = pathn++;\
 | 
						|
                    }\
 | 
						|
                    u->ssd = ssd;\
 | 
						|
                    u->step = STEP_INDEX;\
 | 
						|
                    u->sample2 = nodes[j]->sample1;\
 | 
						|
                    u->sample1 = dec_sample;\
 | 
						|
                    paths[u->path].nibble = nibble;\
 | 
						|
                    paths[u->path].prev = nodes[j]->path;\
 | 
						|
                    /* Sift the newly inserted node up in the heap to \
 | 
						|
                     * restore the heap property. */\
 | 
						|
                    while (pos > 0) {\
 | 
						|
                        int parent = (pos - 1) >> 1;\
 | 
						|
                        if (nodes_next[parent]->ssd <= ssd)\
 | 
						|
                            break;\
 | 
						|
                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
 | 
						|
                        pos = parent;\
 | 
						|
                    }\
 | 
						|
                    next_##NAME:;
 | 
						|
                    STORE_NODE(ms, FFMAX(16, (ff_adpcm_AdaptationTable[nibble] * step) >> 8));
 | 
						|
                }
 | 
						|
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
 | 
						|
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
 | 
						|
                const int predictor = nodes[j]->sample1;\
 | 
						|
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
 | 
						|
                int nmin = av_clip(div-range, -7, 6);\
 | 
						|
                int nmax = av_clip(div+range, -6, 7);\
 | 
						|
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
 | 
						|
                if(nmax<0) nmax--;\
 | 
						|
                for(nidx=nmin; nidx<=nmax; nidx++) {\
 | 
						|
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
 | 
						|
                    int dec_sample = predictor + (STEP_TABLE * ff_adpcm_yamaha_difflookup[nibble]) / 8;\
 | 
						|
                    STORE_NODE(NAME, STEP_INDEX);\
 | 
						|
                }
 | 
						|
                LOOP_NODES(ima, ff_adpcm_step_table[step], av_clip(step + ff_adpcm_index_table[nibble], 0, 88));
 | 
						|
            } else { //CODEC_ID_ADPCM_YAMAHA
 | 
						|
                LOOP_NODES(yamaha, step, av_clip((step * ff_adpcm_yamaha_indexscale[nibble]) >> 8, 127, 24567));
 | 
						|
#undef LOOP_NODES
 | 
						|
#undef STORE_NODE
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        u = nodes;
 | 
						|
        nodes = nodes_next;
 | 
						|
        nodes_next = u;
 | 
						|
 | 
						|
        generation++;
 | 
						|
        if (generation == 255) {
 | 
						|
            memset(hash, 0xff, 65536 * sizeof(*hash));
 | 
						|
            generation = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // prevent overflow
 | 
						|
        if(nodes[0]->ssd > (1<<28)) {
 | 
						|
            for(j=1; j<frontier && nodes[j]; j++)
 | 
						|
                nodes[j]->ssd -= nodes[0]->ssd;
 | 
						|
            nodes[0]->ssd = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        // merge old paths to save memory
 | 
						|
        if(i == froze + FREEZE_INTERVAL) {
 | 
						|
            p = &paths[nodes[0]->path];
 | 
						|
            for(k=i; k>froze; k--) {
 | 
						|
                dst[k] = p->nibble;
 | 
						|
                p = &paths[p->prev];
 | 
						|
            }
 | 
						|
            froze = i;
 | 
						|
            pathn = 0;
 | 
						|
            // other nodes might use paths that don't coincide with the frozen one.
 | 
						|
            // checking which nodes do so is too slow, so just kill them all.
 | 
						|
            // this also slightly improves quality, but I don't know why.
 | 
						|
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    p = &paths[nodes[0]->path];
 | 
						|
    for(i=n-1; i>froze; i--) {
 | 
						|
        dst[i] = p->nibble;
 | 
						|
        p = &paths[p->prev];
 | 
						|
    }
 | 
						|
 | 
						|
    c->predictor = nodes[0]->sample1;
 | 
						|
    c->sample1 = nodes[0]->sample1;
 | 
						|
    c->sample2 = nodes[0]->sample2;
 | 
						|
    c->step_index = nodes[0]->step;
 | 
						|
    c->step = nodes[0]->step;
 | 
						|
    c->idelta = nodes[0]->step;
 | 
						|
}
 | 
						|
 | 
						|
static int adpcm_encode_frame(AVCodecContext *avctx,
 | 
						|
                            unsigned char *frame, int buf_size, void *data)
 | 
						|
{
 | 
						|
    int n, i, st;
 | 
						|
    short *samples;
 | 
						|
    unsigned char *dst;
 | 
						|
    ADPCMEncodeContext *c = avctx->priv_data;
 | 
						|
    uint8_t *buf;
 | 
						|
 | 
						|
    dst = frame;
 | 
						|
    samples = (short *)data;
 | 
						|
    st= avctx->channels == 2;
 | 
						|
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
 | 
						|
 | 
						|
    switch(avctx->codec->id) {
 | 
						|
    case CODEC_ID_ADPCM_IMA_WAV:
 | 
						|
        n = avctx->frame_size / 8;
 | 
						|
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
 | 
						|
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
 | 
						|
            bytestream_put_le16(&dst, c->status[0].prev_sample);
 | 
						|
            *dst++ = (unsigned char)c->status[0].step_index;
 | 
						|
            *dst++ = 0; /* unknown */
 | 
						|
            samples++;
 | 
						|
            if (avctx->channels == 2) {
 | 
						|
                c->status[1].prev_sample = (signed short)samples[0];
 | 
						|
/*                c->status[1].step_index = 0; */
 | 
						|
                bytestream_put_le16(&dst, c->status[1].prev_sample);
 | 
						|
                *dst++ = (unsigned char)c->status[1].step_index;
 | 
						|
                *dst++ = 0;
 | 
						|
                samples++;
 | 
						|
            }
 | 
						|
 | 
						|
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
 | 
						|
            if(avctx->trellis > 0) {
 | 
						|
                FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
 | 
						|
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
 | 
						|
                if(avctx->channels == 2)
 | 
						|
                    adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
 | 
						|
                for(i=0; i<n; i++) {
 | 
						|
                    *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
 | 
						|
                    *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
 | 
						|
                    *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
 | 
						|
                    *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
 | 
						|
                    if (avctx->channels == 2) {
 | 
						|
                        uint8_t *buf1 = buf + n*8;
 | 
						|
                        *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
 | 
						|
                        *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
 | 
						|
                        *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
 | 
						|
                        *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                av_free(buf);
 | 
						|
            } else
 | 
						|
            for (; n>0; n--) {
 | 
						|
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
 | 
						|
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
 | 
						|
                dst++;
 | 
						|
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
 | 
						|
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
 | 
						|
                dst++;
 | 
						|
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
 | 
						|
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
 | 
						|
                dst++;
 | 
						|
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
 | 
						|
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
 | 
						|
                dst++;
 | 
						|
                /* right channel */
 | 
						|
                if (avctx->channels == 2) {
 | 
						|
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
 | 
						|
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
 | 
						|
                    dst++;
 | 
						|
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
 | 
						|
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
 | 
						|
                    dst++;
 | 
						|
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
 | 
						|
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
 | 
						|
                    dst++;
 | 
						|
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
 | 
						|
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
 | 
						|
                    dst++;
 | 
						|
                }
 | 
						|
                samples += 8 * avctx->channels;
 | 
						|
            }
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_IMA_QT:
 | 
						|
    {
 | 
						|
        int ch, i;
 | 
						|
        PutBitContext pb;
 | 
						|
        init_put_bits(&pb, dst, buf_size*8);
 | 
						|
 | 
						|
        for(ch=0; ch<avctx->channels; ch++){
 | 
						|
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
 | 
						|
            put_bits(&pb, 7, c->status[ch].step_index);
 | 
						|
            if(avctx->trellis > 0) {
 | 
						|
                uint8_t buf[64];
 | 
						|
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
 | 
						|
                for(i=0; i<64; i++)
 | 
						|
                    put_bits(&pb, 4, buf[i^1]);
 | 
						|
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
 | 
						|
            } else {
 | 
						|
                for (i=0; i<64; i+=2){
 | 
						|
                    int t1, t2;
 | 
						|
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
 | 
						|
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
 | 
						|
                    put_bits(&pb, 4, t2);
 | 
						|
                    put_bits(&pb, 4, t1);
 | 
						|
                }
 | 
						|
                c->status[ch].prev_sample &= ~0x7F;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        flush_put_bits(&pb);
 | 
						|
        dst += put_bits_count(&pb)>>3;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case CODEC_ID_ADPCM_SWF:
 | 
						|
    {
 | 
						|
        int i;
 | 
						|
        PutBitContext pb;
 | 
						|
        init_put_bits(&pb, dst, buf_size*8);
 | 
						|
 | 
						|
        n = avctx->frame_size-1;
 | 
						|
 | 
						|
        //Store AdpcmCodeSize
 | 
						|
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
 | 
						|
 | 
						|
        //Init the encoder state
 | 
						|
        for(i=0; i<avctx->channels; i++){
 | 
						|
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
 | 
						|
            put_sbits(&pb, 16, samples[i]);
 | 
						|
            put_bits(&pb, 6, c->status[i].step_index);
 | 
						|
            c->status[i].prev_sample = (signed short)samples[i];
 | 
						|
        }
 | 
						|
 | 
						|
        if(avctx->trellis > 0) {
 | 
						|
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
 | 
						|
            adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
 | 
						|
            if (avctx->channels == 2)
 | 
						|
                adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
 | 
						|
            for(i=0; i<n; i++) {
 | 
						|
                put_bits(&pb, 4, buf[i]);
 | 
						|
                if (avctx->channels == 2)
 | 
						|
                    put_bits(&pb, 4, buf[n+i]);
 | 
						|
            }
 | 
						|
            av_free(buf);
 | 
						|
        } else {
 | 
						|
            for (i=1; i<avctx->frame_size; i++) {
 | 
						|
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
 | 
						|
                if (avctx->channels == 2)
 | 
						|
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        flush_put_bits(&pb);
 | 
						|
        dst += put_bits_count(&pb)>>3;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case CODEC_ID_ADPCM_MS:
 | 
						|
        for(i=0; i<avctx->channels; i++){
 | 
						|
            int predictor=0;
 | 
						|
 | 
						|
            *dst++ = predictor;
 | 
						|
            c->status[i].coeff1 = ff_adpcm_AdaptCoeff1[predictor];
 | 
						|
            c->status[i].coeff2 = ff_adpcm_AdaptCoeff2[predictor];
 | 
						|
        }
 | 
						|
        for(i=0; i<avctx->channels; i++){
 | 
						|
            if (c->status[i].idelta < 16)
 | 
						|
                c->status[i].idelta = 16;
 | 
						|
 | 
						|
            bytestream_put_le16(&dst, c->status[i].idelta);
 | 
						|
        }
 | 
						|
        for(i=0; i<avctx->channels; i++){
 | 
						|
            c->status[i].sample2= *samples++;
 | 
						|
        }
 | 
						|
        for(i=0; i<avctx->channels; i++){
 | 
						|
            c->status[i].sample1= *samples++;
 | 
						|
 | 
						|
            bytestream_put_le16(&dst, c->status[i].sample1);
 | 
						|
        }
 | 
						|
        for(i=0; i<avctx->channels; i++)
 | 
						|
            bytestream_put_le16(&dst, c->status[i].sample2);
 | 
						|
 | 
						|
        if(avctx->trellis > 0) {
 | 
						|
            int n = avctx->block_align - 7*avctx->channels;
 | 
						|
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
 | 
						|
            if(avctx->channels == 1) {
 | 
						|
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
 | 
						|
                for(i=0; i<n; i+=2)
 | 
						|
                    *dst++ = (buf[i] << 4) | buf[i+1];
 | 
						|
            } else {
 | 
						|
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
 | 
						|
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
 | 
						|
                for(i=0; i<n; i++)
 | 
						|
                    *dst++ = (buf[i] << 4) | buf[n+i];
 | 
						|
            }
 | 
						|
            av_free(buf);
 | 
						|
        } else
 | 
						|
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
 | 
						|
            int nibble;
 | 
						|
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
 | 
						|
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
 | 
						|
            *dst++ = nibble;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case CODEC_ID_ADPCM_YAMAHA:
 | 
						|
        n = avctx->frame_size / 2;
 | 
						|
        if(avctx->trellis > 0) {
 | 
						|
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
 | 
						|
            n *= 2;
 | 
						|
            if(avctx->channels == 1) {
 | 
						|
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
 | 
						|
                for(i=0; i<n; i+=2)
 | 
						|
                    *dst++ = buf[i] | (buf[i+1] << 4);
 | 
						|
            } else {
 | 
						|
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
 | 
						|
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
 | 
						|
                for(i=0; i<n; i++)
 | 
						|
                    *dst++ = buf[i] | (buf[n+i] << 4);
 | 
						|
            }
 | 
						|
            av_free(buf);
 | 
						|
        } else
 | 
						|
            for (n *= avctx->channels; n>0; n--) {
 | 
						|
                int nibble;
 | 
						|
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
 | 
						|
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
 | 
						|
                *dst++ = nibble;
 | 
						|
            }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
    error:
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return dst - frame;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define ADPCM_ENCODER(id,name,long_name_)       \
 | 
						|
AVCodec ff_ ## name ## _encoder = {             \
 | 
						|
    #name,                                      \
 | 
						|
    AVMEDIA_TYPE_AUDIO,                         \
 | 
						|
    id,                                         \
 | 
						|
    sizeof(ADPCMEncodeContext),                 \
 | 
						|
    adpcm_encode_init,                          \
 | 
						|
    adpcm_encode_frame,                         \
 | 
						|
    adpcm_encode_close,                         \
 | 
						|
    NULL,                                       \
 | 
						|
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
 | 
						|
}
 | 
						|
 | 
						|
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
 | 
						|
ADPCM_ENCODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
 | 
						|
ADPCM_ENCODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
 | 
						|
ADPCM_ENCODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
 | 
						|
ADPCM_ENCODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
 |