Condition 'sum==2' is always true, so remove the check logic to make the code clean. Signed-off-by: Jun Zhao <barryjzhao@tencent.com>
		
			
				
	
	
		
			237 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * AAC encoder long term prediction extension
 | 
						|
 * Copyright (C) 2015 Rostislav Pehlivanov
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * AAC encoder long term prediction extension
 | 
						|
 * @author Rostislav Pehlivanov ( atomnuker gmail com )
 | 
						|
 */
 | 
						|
 | 
						|
#include "aacenc_ltp.h"
 | 
						|
#include "aacenc_quantization.h"
 | 
						|
#include "aacenc_utils.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * Encode LTP data.
 | 
						|
 */
 | 
						|
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
 | 
						|
                            int common_window)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    IndividualChannelStream *ics = &sce->ics;
 | 
						|
    if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
 | 
						|
        return;
 | 
						|
    if (common_window)
 | 
						|
        put_bits(&s->pb, 1, 0);
 | 
						|
    put_bits(&s->pb, 1, ics->ltp.present);
 | 
						|
    if (!ics->ltp.present)
 | 
						|
        return;
 | 
						|
    put_bits(&s->pb, 11, ics->ltp.lag);
 | 
						|
    put_bits(&s->pb, 3,  ics->ltp.coef_idx);
 | 
						|
    for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
 | 
						|
        put_bits(&s->pb, 1, ics->ltp.used[i]);
 | 
						|
}
 | 
						|
 | 
						|
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
 | 
						|
{
 | 
						|
    int i, ch, tag, chans, cur_channel, start_ch = 0;
 | 
						|
    ChannelElement *cpe;
 | 
						|
    SingleChannelElement *sce;
 | 
						|
    for (i = 0; i < s->chan_map[0]; i++) {
 | 
						|
        cpe = &s->cpe[i];
 | 
						|
        tag      = s->chan_map[i+1];
 | 
						|
        chans    = tag == TYPE_CPE ? 2 : 1;
 | 
						|
        for (ch = 0; ch < chans; ch++) {
 | 
						|
            sce = &cpe->ch[ch];
 | 
						|
            cur_channel = start_ch + ch;
 | 
						|
            /* New sample + overlap */
 | 
						|
            memcpy(&sce->ltp_state[0],    &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
 | 
						|
            memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
 | 
						|
            memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
 | 
						|
            sce->ics.ltp.lag = 0;
 | 
						|
        }
 | 
						|
        start_ch += chans;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void get_lag(float *buf, const float *new, LongTermPrediction *ltp)
 | 
						|
{
 | 
						|
    int i, j, lag = 0, max_corr = 0;
 | 
						|
    float max_ratio = 0.0f;
 | 
						|
    for (i = 0; i < 2048; i++) {
 | 
						|
        float corr, s0 = 0.0f, s1 = 0.0f;
 | 
						|
        const int start = FFMAX(0, i - 1024);
 | 
						|
        for (j = start; j < 2048; j++) {
 | 
						|
            const int idx = j - i + 1024;
 | 
						|
            s0 += new[j]*buf[idx];
 | 
						|
            s1 += buf[idx]*buf[idx];
 | 
						|
        }
 | 
						|
        corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
 | 
						|
        if (corr > max_corr) {
 | 
						|
            max_corr = corr;
 | 
						|
            lag = i;
 | 
						|
            max_ratio = corr/(2048-start);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0);
 | 
						|
    ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
 | 
						|
    ltp->coef = ltp_coef[ltp->coef_idx];
 | 
						|
}
 | 
						|
 | 
						|
static void generate_samples(float *buf, LongTermPrediction *ltp)
 | 
						|
{
 | 
						|
    int i, samples_num = 2048;
 | 
						|
    if (!ltp->lag) {
 | 
						|
        ltp->present = 0;
 | 
						|
        return;
 | 
						|
    } else if (ltp->lag < 1024) {
 | 
						|
        samples_num = ltp->lag + 1024;
 | 
						|
    }
 | 
						|
    for (i = 0; i < samples_num; i++)
 | 
						|
        buf[i] = ltp->coef*buf[i + 2048 - ltp->lag];
 | 
						|
    memset(&buf[i], 0, (2048 - i)*sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Process LTP parameters
 | 
						|
 * @see Patent WO2006070265A1
 | 
						|
 */
 | 
						|
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
 | 
						|
{
 | 
						|
    float *pred_signal = &sce->ltp_state[0];
 | 
						|
    const float *samples = &s->planar_samples[s->cur_channel][1024];
 | 
						|
 | 
						|
    if (s->profile != FF_PROFILE_AAC_LTP)
 | 
						|
        return;
 | 
						|
 | 
						|
    /* Calculate lag */
 | 
						|
    get_lag(pred_signal, samples, &sce->ics.ltp);
 | 
						|
    generate_samples(pred_signal, &sce->ics.ltp);
 | 
						|
}
 | 
						|
 | 
						|
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
 | 
						|
{
 | 
						|
    int sfb, count = 0;
 | 
						|
    SingleChannelElement *sce0 = &cpe->ch[0];
 | 
						|
    SingleChannelElement *sce1 = &cpe->ch[1];
 | 
						|
 | 
						|
    if (!cpe->common_window ||
 | 
						|
        sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
 | 
						|
        sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | 
						|
        sce0->ics.ltp.present = 0;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
 | 
						|
        int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
 | 
						|
        if (sum != 2) {
 | 
						|
            sce0->ics.ltp.used[sfb] = 0;
 | 
						|
        } else {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    sce0->ics.ltp.present = !!count;
 | 
						|
    sce0->ics.predictor_present = !!count;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Mark LTP sfb's
 | 
						|
 */
 | 
						|
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
 | 
						|
                           int common_window)
 | 
						|
{
 | 
						|
    int w, g, w2, i, start = 0, count = 0;
 | 
						|
    int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
 | 
						|
    float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
 | 
						|
    float *PCD34 = &s->scoefs[128*2];
 | 
						|
    const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
 | 
						|
 | 
						|
    if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
 | 
						|
        if (sce->ics.ltp.lag) {
 | 
						|
            memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0]));
 | 
						|
            memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!sce->ics.ltp.lag || s->lambda > 120.0f)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
        start = 0;
 | 
						|
        for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
            int bits1 = 0, bits2 = 0;
 | 
						|
            float dist1 = 0.0f, dist2 = 0.0f;
 | 
						|
            if (w*16+g > max_ltp) {
 | 
						|
                start += sce->ics.swb_sizes[g];
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                int bits_tmp1, bits_tmp2;
 | 
						|
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
 | 
						|
                for (i = 0; i < sce->ics.swb_sizes[g]; i++)
 | 
						|
                    PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
 | 
						|
                s->abs_pow34(C34,  &sce->coeffs[start+(w+w2)*128],  sce->ics.swb_sizes[g]);
 | 
						|
                s->abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]);
 | 
						|
                dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
 | 
						|
                                            sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
 | 
						|
                                            s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
 | 
						|
                dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
 | 
						|
                                            sce->sf_idx[(w+w2)*16+g],
 | 
						|
                                            sce->band_type[(w+w2)*16+g],
 | 
						|
                                            s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
 | 
						|
                bits1 += bits_tmp1;
 | 
						|
                bits2 += bits_tmp2;
 | 
						|
            }
 | 
						|
            if (dist2 < dist1 && bits2 < bits1) {
 | 
						|
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
 | 
						|
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++)
 | 
						|
                        sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
 | 
						|
                sce->ics.ltp.used[w*16+g] = 1;
 | 
						|
                saved_bits += bits1 - bits2;
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
            start += sce->ics.swb_sizes[g];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    sce->ics.ltp.present = !!count && (saved_bits >= 0);
 | 
						|
    sce->ics.predictor_present = !!sce->ics.ltp.present;
 | 
						|
 | 
						|
    /* Reset any marked sfbs */
 | 
						|
    if (!sce->ics.ltp.present && !!count) {
 | 
						|
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
 | 
						|
            start = 0;
 | 
						|
            for (g = 0;  g < sce->ics.num_swb; g++) {
 | 
						|
                if (sce->ics.ltp.used[w*16+g]) {
 | 
						|
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
 | 
						|
                        for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
 | 
						|
                            sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                start += sce->ics.swb_sizes[g];
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 |