1175 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1175 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Ut Video decoder
 | 
						|
 * Copyright (c) 2011 Konstantin Shishkov
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * Ut Video decoder
 | 
						|
 */
 | 
						|
 | 
						|
#include <inttypes.h>
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#include "libavutil/intreadwrite.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "bswapdsp.h"
 | 
						|
#include "bytestream.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "thread.h"
 | 
						|
#include "utvideo.h"
 | 
						|
 | 
						|
static int build_huff10(const uint8_t *src, VLC *vlc, int *fsym)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    HuffEntry he[1024];
 | 
						|
    int last;
 | 
						|
    uint32_t codes[1024];
 | 
						|
    uint8_t bits[1024];
 | 
						|
    uint16_t syms[1024];
 | 
						|
    uint32_t code;
 | 
						|
 | 
						|
    *fsym = -1;
 | 
						|
    for (i = 0; i < 1024; i++) {
 | 
						|
        he[i].sym = i;
 | 
						|
        he[i].len = *src++;
 | 
						|
    }
 | 
						|
    qsort(he, 1024, sizeof(*he), ff_ut10_huff_cmp_len);
 | 
						|
 | 
						|
    if (!he[0].len) {
 | 
						|
        *fsym = he[0].sym;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    last = 1023;
 | 
						|
    while (he[last].len == 255 && last)
 | 
						|
        last--;
 | 
						|
 | 
						|
    if (he[last].len > 32) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    code = 1;
 | 
						|
    for (i = last; i >= 0; i--) {
 | 
						|
        codes[i] = code >> (32 - he[i].len);
 | 
						|
        bits[i]  = he[i].len;
 | 
						|
        syms[i]  = he[i].sym;
 | 
						|
        code += 0x80000000u >> (he[i].len - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 11), last + 1,
 | 
						|
                              bits,  sizeof(*bits),  sizeof(*bits),
 | 
						|
                              codes, sizeof(*codes), sizeof(*codes),
 | 
						|
                              syms,  sizeof(*syms),  sizeof(*syms), 0);
 | 
						|
}
 | 
						|
 | 
						|
static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    HuffEntry he[256];
 | 
						|
    int last;
 | 
						|
    uint32_t codes[256];
 | 
						|
    uint8_t bits[256];
 | 
						|
    uint8_t syms[256];
 | 
						|
    uint32_t code;
 | 
						|
 | 
						|
    *fsym = -1;
 | 
						|
    for (i = 0; i < 256; i++) {
 | 
						|
        he[i].sym = i;
 | 
						|
        he[i].len = *src++;
 | 
						|
    }
 | 
						|
    qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
 | 
						|
 | 
						|
    if (!he[0].len) {
 | 
						|
        *fsym = he[0].sym;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    last = 255;
 | 
						|
    while (he[last].len == 255 && last)
 | 
						|
        last--;
 | 
						|
 | 
						|
    if (he[last].len > 32)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    code = 1;
 | 
						|
    for (i = last; i >= 0; i--) {
 | 
						|
        codes[i] = code >> (32 - he[i].len);
 | 
						|
        bits[i]  = he[i].len;
 | 
						|
        syms[i]  = he[i].sym;
 | 
						|
        code += 0x80000000u >> (he[i].len - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 11), last + 1,
 | 
						|
                              bits,  sizeof(*bits),  sizeof(*bits),
 | 
						|
                              codes, sizeof(*codes), sizeof(*codes),
 | 
						|
                              syms,  sizeof(*syms),  sizeof(*syms), 0);
 | 
						|
}
 | 
						|
 | 
						|
static int decode_plane10(UtvideoContext *c, int plane_no,
 | 
						|
                          uint16_t *dst, int step, ptrdiff_t stride,
 | 
						|
                          int width, int height,
 | 
						|
                          const uint8_t *src, const uint8_t *huff,
 | 
						|
                          int use_pred)
 | 
						|
{
 | 
						|
    int i, j, slice, pix, ret;
 | 
						|
    int sstart, send;
 | 
						|
    VLC vlc;
 | 
						|
    GetBitContext gb;
 | 
						|
    int prev, fsym;
 | 
						|
 | 
						|
    if ((ret = build_huff10(huff, &vlc, &fsym)) < 0) {
 | 
						|
        av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    if (fsym >= 0) { // build_huff reported a symbol to fill slices with
 | 
						|
        send = 0;
 | 
						|
        for (slice = 0; slice < c->slices; slice++) {
 | 
						|
            uint16_t *dest;
 | 
						|
 | 
						|
            sstart = send;
 | 
						|
            send   = (height * (slice + 1) / c->slices);
 | 
						|
            dest   = dst + sstart * stride;
 | 
						|
 | 
						|
            prev = 0x200;
 | 
						|
            for (j = sstart; j < send; j++) {
 | 
						|
                for (i = 0; i < width * step; i += step) {
 | 
						|
                    pix = fsym;
 | 
						|
                    if (use_pred) {
 | 
						|
                        prev += pix;
 | 
						|
                        prev &= 0x3FF;
 | 
						|
                        pix   = prev;
 | 
						|
                    }
 | 
						|
                    dest[i] = pix;
 | 
						|
                }
 | 
						|
                dest += stride;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    send = 0;
 | 
						|
    for (slice = 0; slice < c->slices; slice++) {
 | 
						|
        uint16_t *dest;
 | 
						|
        int slice_data_start, slice_data_end, slice_size;
 | 
						|
 | 
						|
        sstart = send;
 | 
						|
        send   = (height * (slice + 1) / c->slices);
 | 
						|
        dest   = dst + sstart * stride;
 | 
						|
 | 
						|
        // slice offset and size validation was done earlier
 | 
						|
        slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
 | 
						|
        slice_data_end   = AV_RL32(src + slice * 4);
 | 
						|
        slice_size       = slice_data_end - slice_data_start;
 | 
						|
 | 
						|
        if (!slice_size) {
 | 
						|
            av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
 | 
						|
                   "yet a slice has a length of zero.\n");
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
 | 
						|
        memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
 | 
						|
               slice_size);
 | 
						|
        memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
 | 
						|
        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
 | 
						|
                          (uint32_t *) c->slice_bits,
 | 
						|
                          (slice_data_end - slice_data_start + 3) >> 2);
 | 
						|
        init_get_bits(&gb, c->slice_bits, slice_size * 8);
 | 
						|
 | 
						|
        prev = 0x200;
 | 
						|
        for (j = sstart; j < send; j++) {
 | 
						|
            for (i = 0; i < width * step; i += step) {
 | 
						|
                if (get_bits_left(&gb) <= 0) {
 | 
						|
                    av_log(c->avctx, AV_LOG_ERROR,
 | 
						|
                           "Slice decoding ran out of bits\n");
 | 
						|
                    goto fail;
 | 
						|
                }
 | 
						|
                pix = get_vlc2(&gb, vlc.table, vlc.bits, 3);
 | 
						|
                if (pix < 0) {
 | 
						|
                    av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
 | 
						|
                    goto fail;
 | 
						|
                }
 | 
						|
                if (use_pred) {
 | 
						|
                    prev += pix;
 | 
						|
                    prev &= 0x3FF;
 | 
						|
                    pix   = prev;
 | 
						|
                }
 | 
						|
                dest[i] = pix;
 | 
						|
            }
 | 
						|
            dest += stride;
 | 
						|
        }
 | 
						|
        if (get_bits_left(&gb) > 32)
 | 
						|
            av_log(c->avctx, AV_LOG_WARNING,
 | 
						|
                   "%d bits left after decoding slice\n", get_bits_left(&gb));
 | 
						|
    }
 | 
						|
 | 
						|
    ff_free_vlc(&vlc);
 | 
						|
 | 
						|
    return 0;
 | 
						|
fail:
 | 
						|
    ff_free_vlc(&vlc);
 | 
						|
    return AVERROR_INVALIDDATA;
 | 
						|
}
 | 
						|
 | 
						|
static int decode_plane(UtvideoContext *c, int plane_no,
 | 
						|
                        uint8_t *dst, int step, ptrdiff_t stride,
 | 
						|
                        int width, int height,
 | 
						|
                        const uint8_t *src, int use_pred)
 | 
						|
{
 | 
						|
    int i, j, slice, pix;
 | 
						|
    int sstart, send;
 | 
						|
    VLC vlc;
 | 
						|
    GetBitContext gb;
 | 
						|
    int prev, fsym;
 | 
						|
    const int cmask = c->interlaced ? ~(1 + 2 * (!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P)) : ~(!plane_no && c->avctx->pix_fmt == AV_PIX_FMT_YUV420P);
 | 
						|
 | 
						|
    if (build_huff(src, &vlc, &fsym)) {
 | 
						|
        av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    if (fsym >= 0) { // build_huff reported a symbol to fill slices with
 | 
						|
        send = 0;
 | 
						|
        for (slice = 0; slice < c->slices; slice++) {
 | 
						|
            uint8_t *dest;
 | 
						|
 | 
						|
            sstart = send;
 | 
						|
            send   = (height * (slice + 1) / c->slices) & cmask;
 | 
						|
            dest   = dst + sstart * stride;
 | 
						|
 | 
						|
            prev = 0x80;
 | 
						|
            for (j = sstart; j < send; j++) {
 | 
						|
                for (i = 0; i < width * step; i += step) {
 | 
						|
                    pix = fsym;
 | 
						|
                    if (use_pred) {
 | 
						|
                        prev += pix;
 | 
						|
                        pix   = prev;
 | 
						|
                    }
 | 
						|
                    dest[i] = pix;
 | 
						|
                }
 | 
						|
                dest += stride;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    src      += 256;
 | 
						|
 | 
						|
    send = 0;
 | 
						|
    for (slice = 0; slice < c->slices; slice++) {
 | 
						|
        uint8_t *dest;
 | 
						|
        int slice_data_start, slice_data_end, slice_size;
 | 
						|
 | 
						|
        sstart = send;
 | 
						|
        send   = (height * (slice + 1) / c->slices) & cmask;
 | 
						|
        dest   = dst + sstart * stride;
 | 
						|
 | 
						|
        // slice offset and size validation was done earlier
 | 
						|
        slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
 | 
						|
        slice_data_end   = AV_RL32(src + slice * 4);
 | 
						|
        slice_size       = slice_data_end - slice_data_start;
 | 
						|
 | 
						|
        if (!slice_size) {
 | 
						|
            av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
 | 
						|
                   "yet a slice has a length of zero.\n");
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
 | 
						|
        memcpy(c->slice_bits, src + slice_data_start + c->slices * 4,
 | 
						|
               slice_size);
 | 
						|
        memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
 | 
						|
        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
 | 
						|
                          (uint32_t *) c->slice_bits,
 | 
						|
                          (slice_data_end - slice_data_start + 3) >> 2);
 | 
						|
        init_get_bits(&gb, c->slice_bits, slice_size * 8);
 | 
						|
 | 
						|
        prev = 0x80;
 | 
						|
        for (j = sstart; j < send; j++) {
 | 
						|
            for (i = 0; i < width * step; i += step) {
 | 
						|
                if (get_bits_left(&gb) <= 0) {
 | 
						|
                    av_log(c->avctx, AV_LOG_ERROR,
 | 
						|
                           "Slice decoding ran out of bits\n");
 | 
						|
                    goto fail;
 | 
						|
                }
 | 
						|
                pix = get_vlc2(&gb, vlc.table, vlc.bits, 3);
 | 
						|
                if (pix < 0) {
 | 
						|
                    av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
 | 
						|
                    goto fail;
 | 
						|
                }
 | 
						|
                if (use_pred) {
 | 
						|
                    prev += pix;
 | 
						|
                    pix   = prev;
 | 
						|
                }
 | 
						|
                dest[i] = pix;
 | 
						|
            }
 | 
						|
            dest += stride;
 | 
						|
        }
 | 
						|
        if (get_bits_left(&gb) > 32)
 | 
						|
            av_log(c->avctx, AV_LOG_WARNING,
 | 
						|
                   "%d bits left after decoding slice\n", get_bits_left(&gb));
 | 
						|
    }
 | 
						|
 | 
						|
    ff_free_vlc(&vlc);
 | 
						|
 | 
						|
    return 0;
 | 
						|
fail:
 | 
						|
    ff_free_vlc(&vlc);
 | 
						|
    return AVERROR_INVALIDDATA;
 | 
						|
}
 | 
						|
 | 
						|
static void restore_rgb_planes(uint8_t *src, int step, ptrdiff_t stride,
 | 
						|
                               int width, int height)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    uint8_t r, g, b;
 | 
						|
 | 
						|
    for (j = 0; j < height; j++) {
 | 
						|
        for (i = 0; i < width * step; i += step) {
 | 
						|
            r = src[i];
 | 
						|
            g = src[i + 1];
 | 
						|
            b = src[i + 2];
 | 
						|
            src[i]     = r + g - 0x80;
 | 
						|
            src[i + 2] = b + g - 0x80;
 | 
						|
        }
 | 
						|
        src += stride;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_rgb_planes10(AVFrame *frame, int width, int height)
 | 
						|
{
 | 
						|
    uint16_t *src_r = (uint16_t *)frame->data[2];
 | 
						|
    uint16_t *src_g = (uint16_t *)frame->data[0];
 | 
						|
    uint16_t *src_b = (uint16_t *)frame->data[1];
 | 
						|
    int r, g, b;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (j = 0; j < height; j++) {
 | 
						|
        for (i = 0; i < width; i++) {
 | 
						|
            r = src_r[i];
 | 
						|
            g = src_g[i];
 | 
						|
            b = src_b[i];
 | 
						|
            src_r[i] = (r + g - 0x200) & 0x3FF;
 | 
						|
            src_b[i] = (b + g - 0x200) & 0x3FF;
 | 
						|
        }
 | 
						|
        src_r += frame->linesize[2] / 2;
 | 
						|
        src_g += frame->linesize[0] / 2;
 | 
						|
        src_b += frame->linesize[1] / 2;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#undef A
 | 
						|
#undef B
 | 
						|
#undef C
 | 
						|
 | 
						|
static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
 | 
						|
                                  int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask = ~rmode;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start  = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                       slice_start;
 | 
						|
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
 | 
						|
        bsrc += stride;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        // second line - first element has top prediction, the rest uses median
 | 
						|
        C        = bsrc[-stride];
 | 
						|
        bsrc[0] += C;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = 1; i < width; i++) {
 | 
						|
            B        = bsrc[i - stride];
 | 
						|
            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
            C        = B;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        bsrc += stride;
 | 
						|
        // the rest of lines use continuous median prediction
 | 
						|
        for (j = 2; j < slice_height; j++) {
 | 
						|
            c->llviddsp.add_median_pred(bsrc, bsrc - stride,
 | 
						|
                                            bsrc, width, &A, &B);
 | 
						|
            bsrc += stride;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* UtVideo interlaced mode treats every two lines as a single one,
 | 
						|
 * so restoring function should take care of possible padding between
 | 
						|
 * two parts of the same "line".
 | 
						|
 */
 | 
						|
static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
 | 
						|
                                     int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask   = ~(rmode ? 3 : 1);
 | 
						|
    const ptrdiff_t stride2 = stride << 1;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start    = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                         slice_start;
 | 
						|
        slice_height >>= 1;
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
 | 
						|
        c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
 | 
						|
        bsrc += stride2;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        // second line - first element has top prediction, the rest uses median
 | 
						|
        C        = bsrc[-stride2];
 | 
						|
        bsrc[0] += C;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = 1; i < width; i++) {
 | 
						|
            B        = bsrc[i - stride2];
 | 
						|
            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
            C        = B;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
 | 
						|
                                        bsrc + stride, width, &A, &B);
 | 
						|
        bsrc += stride2;
 | 
						|
        // the rest of lines use continuous median prediction
 | 
						|
        for (j = 2; j < slice_height; j++) {
 | 
						|
            c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
 | 
						|
                                            bsrc, width, &A, &B);
 | 
						|
            c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
 | 
						|
                                            bsrc + stride, width, &A, &B);
 | 
						|
            bsrc += stride2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_median_packed(uint8_t *src, int step, ptrdiff_t stride,
 | 
						|
                                  int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask = ~rmode;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start  = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                       slice_start;
 | 
						|
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            bsrc[i] += A;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        bsrc += stride;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        // second line - first element has top prediction, the rest uses median
 | 
						|
        C        = bsrc[-stride];
 | 
						|
        bsrc[0] += C;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            B        = bsrc[i - stride];
 | 
						|
            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
            C        = B;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        bsrc += stride;
 | 
						|
        // the rest of lines use continuous median prediction
 | 
						|
        for (j = 2; j < slice_height; j++) {
 | 
						|
            for (i = 0; i < width * step; i += step) {
 | 
						|
                B        = bsrc[i - stride];
 | 
						|
                bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
                C        = B;
 | 
						|
                A        = bsrc[i];
 | 
						|
            }
 | 
						|
            bsrc += stride;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* UtVideo interlaced mode treats every two lines as a single one,
 | 
						|
 * so restoring function should take care of possible padding between
 | 
						|
 * two parts of the same "line".
 | 
						|
 */
 | 
						|
static void restore_median_packed_il(uint8_t *src, int step, ptrdiff_t stride,
 | 
						|
                                     int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask   = ~(rmode ? 3 : 1);
 | 
						|
    const ptrdiff_t stride2 = stride << 1;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start    = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                         slice_start;
 | 
						|
        slice_height >>= 1;
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            bsrc[i] += A;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        for (i = 0; i < width * step; i += step) {
 | 
						|
            bsrc[stride + i] += A;
 | 
						|
            A                 = bsrc[stride + i];
 | 
						|
        }
 | 
						|
        bsrc += stride2;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        // second line - first element has top prediction, the rest uses median
 | 
						|
        C        = bsrc[-stride2];
 | 
						|
        bsrc[0] += C;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            B        = bsrc[i - stride2];
 | 
						|
            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
            C        = B;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        for (i = 0; i < width * step; i += step) {
 | 
						|
            B                 = bsrc[i - stride];
 | 
						|
            bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
            C                 = B;
 | 
						|
            A                 = bsrc[stride + i];
 | 
						|
        }
 | 
						|
        bsrc += stride2;
 | 
						|
        // the rest of lines use continuous median prediction
 | 
						|
        for (j = 2; j < slice_height; j++) {
 | 
						|
            for (i = 0; i < width * step; i += step) {
 | 
						|
                B        = bsrc[i - stride2];
 | 
						|
                bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
                C        = B;
 | 
						|
                A        = bsrc[i];
 | 
						|
            }
 | 
						|
            for (i = 0; i < width * step; i += step) {
 | 
						|
                B                 = bsrc[i - stride];
 | 
						|
                bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
 | 
						|
                C                 = B;
 | 
						|
                A                 = bsrc[i + stride];
 | 
						|
            }
 | 
						|
            bsrc += stride2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
 | 
						|
                                    int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask = ~rmode;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start  = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                       slice_start;
 | 
						|
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
 | 
						|
        bsrc += stride;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        for (j = 1; j < slice_height; j++) {
 | 
						|
            // second line - first element has top prediction, the rest uses gradient
 | 
						|
            bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
 | 
						|
            for (i = 1; i < width; i++) {
 | 
						|
                A = bsrc[i - stride];
 | 
						|
                B = bsrc[i - (stride + 1)];
 | 
						|
                C = bsrc[i - 1];
 | 
						|
                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
 | 
						|
            }
 | 
						|
            bsrc += stride;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
 | 
						|
                                      int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask   = ~(rmode ? 3 : 1);
 | 
						|
    const ptrdiff_t stride2 = stride << 1;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start    = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                         slice_start;
 | 
						|
        slice_height >>= 1;
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
 | 
						|
        c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
 | 
						|
        bsrc += stride2;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        for (j = 1; j < slice_height; j++) {
 | 
						|
            // second line - first element has top prediction, the rest uses gradient
 | 
						|
            bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
 | 
						|
            for (i = 1; i < width; i++) {
 | 
						|
                A = bsrc[i - stride2];
 | 
						|
                B = bsrc[i - (stride2 + 1)];
 | 
						|
                C = bsrc[i - 1];
 | 
						|
                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
 | 
						|
            }
 | 
						|
            A = bsrc[-stride];
 | 
						|
            B = bsrc[-(1 + stride + stride - width)];
 | 
						|
            C = bsrc[width - 1];
 | 
						|
            bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
 | 
						|
            for (i = 1; i < width; i++) {
 | 
						|
                A = bsrc[i - stride];
 | 
						|
                B = bsrc[i - (1 + stride)];
 | 
						|
                C = bsrc[i - 1 + stride];
 | 
						|
                bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
 | 
						|
            }
 | 
						|
            bsrc += stride2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_gradient_packed(uint8_t *src, int step, ptrdiff_t stride,
 | 
						|
                                    int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask = ~rmode;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start  = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                       slice_start;
 | 
						|
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            bsrc[i] += A;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        bsrc += stride;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        for (j = 1; j < slice_height; j++) {
 | 
						|
            // second line - first element has top prediction, the rest uses gradient
 | 
						|
            C        = bsrc[-stride];
 | 
						|
            bsrc[0] += C;
 | 
						|
            for (i = step; i < width * step; i += step) {
 | 
						|
                A = bsrc[i - stride];
 | 
						|
                B = bsrc[i - (stride + step)];
 | 
						|
                C = bsrc[i - step];
 | 
						|
                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
 | 
						|
            }
 | 
						|
            bsrc += stride;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void restore_gradient_packed_il(uint8_t *src, int step, ptrdiff_t stride,
 | 
						|
                                       int width, int height, int slices, int rmode)
 | 
						|
{
 | 
						|
    int i, j, slice;
 | 
						|
    int A, B, C;
 | 
						|
    uint8_t *bsrc;
 | 
						|
    int slice_start, slice_height;
 | 
						|
    const int cmask   = ~(rmode ? 3 : 1);
 | 
						|
    const ptrdiff_t stride2 = stride << 1;
 | 
						|
 | 
						|
    for (slice = 0; slice < slices; slice++) {
 | 
						|
        slice_start    = ((slice * height) / slices) & cmask;
 | 
						|
        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
 | 
						|
                         slice_start;
 | 
						|
        slice_height >>= 1;
 | 
						|
        if (!slice_height)
 | 
						|
            continue;
 | 
						|
 | 
						|
        bsrc = src + slice_start * stride;
 | 
						|
 | 
						|
        // first line - left neighbour prediction
 | 
						|
        bsrc[0] += 0x80;
 | 
						|
        A        = bsrc[0];
 | 
						|
        for (i = step; i < width * step; i += step) {
 | 
						|
            bsrc[i] += A;
 | 
						|
            A        = bsrc[i];
 | 
						|
        }
 | 
						|
        for (i = 0; i < width * step; i += step) {
 | 
						|
            bsrc[stride + i] += A;
 | 
						|
            A                 = bsrc[stride + i];
 | 
						|
        }
 | 
						|
        bsrc += stride2;
 | 
						|
        if (slice_height <= 1)
 | 
						|
            continue;
 | 
						|
        for (j = 1; j < slice_height; j++) {
 | 
						|
            // second line - first element has top prediction, the rest uses gradient
 | 
						|
            C        = bsrc[-stride2];
 | 
						|
            bsrc[0] += C;
 | 
						|
            for (i = step; i < width * step; i += step) {
 | 
						|
                A = bsrc[i - stride2];
 | 
						|
                B = bsrc[i - (stride2 + step)];
 | 
						|
                C = bsrc[i - step];
 | 
						|
                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
 | 
						|
            }
 | 
						|
            A = bsrc[-stride];
 | 
						|
            B = bsrc[-(step + stride + stride - width * step)];
 | 
						|
            C = bsrc[width * step - step];
 | 
						|
            bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
 | 
						|
            for (i = step; i < width * step; i += step) {
 | 
						|
                A = bsrc[i - stride];
 | 
						|
                B = bsrc[i - (step + stride)];
 | 
						|
                C = bsrc[i - step + stride];
 | 
						|
                bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
 | 
						|
            }
 | 
						|
            bsrc += stride2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
 | 
						|
                        AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf = avpkt->data;
 | 
						|
    int buf_size = avpkt->size;
 | 
						|
    UtvideoContext *c = avctx->priv_data;
 | 
						|
    int i, j;
 | 
						|
    const uint8_t *plane_start[5];
 | 
						|
    int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
 | 
						|
    int ret;
 | 
						|
    GetByteContext gb;
 | 
						|
    ThreadFrame frame = { .f = data };
 | 
						|
 | 
						|
    if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    /* parse plane structure to get frame flags and validate slice offsets */
 | 
						|
    bytestream2_init(&gb, buf, buf_size);
 | 
						|
    if (c->pro) {
 | 
						|
        if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        c->frame_info = bytestream2_get_le32u(&gb);
 | 
						|
        c->slices = ((c->frame_info >> 16) & 0xff) + 1;
 | 
						|
        for (i = 0; i < c->planes; i++) {
 | 
						|
            plane_start[i] = gb.buffer;
 | 
						|
            if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
            slice_start = 0;
 | 
						|
            slice_end   = 0;
 | 
						|
            for (j = 0; j < c->slices; j++) {
 | 
						|
                slice_end   = bytestream2_get_le32u(&gb);
 | 
						|
                if (slice_end < 0 || slice_end < slice_start ||
 | 
						|
                    bytestream2_get_bytes_left(&gb) < slice_end) {
 | 
						|
                    av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
                slice_size  = slice_end - slice_start;
 | 
						|
                slice_start = slice_end;
 | 
						|
                max_slice_size = FFMAX(max_slice_size, slice_size);
 | 
						|
            }
 | 
						|
            plane_size = slice_end;
 | 
						|
            bytestream2_skipu(&gb, plane_size);
 | 
						|
            bytestream2_skipu(&gb, 1024);
 | 
						|
        }
 | 
						|
        plane_start[c->planes] = gb.buffer;
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < c->planes; i++) {
 | 
						|
            plane_start[i] = gb.buffer;
 | 
						|
            if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
 | 
						|
                return AVERROR_INVALIDDATA;
 | 
						|
            }
 | 
						|
            bytestream2_skipu(&gb, 256);
 | 
						|
            slice_start = 0;
 | 
						|
            slice_end   = 0;
 | 
						|
            for (j = 0; j < c->slices; j++) {
 | 
						|
                slice_end   = bytestream2_get_le32u(&gb);
 | 
						|
                if (slice_end < 0 || slice_end < slice_start ||
 | 
						|
                    bytestream2_get_bytes_left(&gb) < slice_end) {
 | 
						|
                    av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
 | 
						|
                    return AVERROR_INVALIDDATA;
 | 
						|
                }
 | 
						|
                slice_size  = slice_end - slice_start;
 | 
						|
                slice_start = slice_end;
 | 
						|
                max_slice_size = FFMAX(max_slice_size, slice_size);
 | 
						|
            }
 | 
						|
            plane_size = slice_end;
 | 
						|
            bytestream2_skipu(&gb, plane_size);
 | 
						|
        }
 | 
						|
        plane_start[c->planes] = gb.buffer;
 | 
						|
        if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        c->frame_info = bytestream2_get_le32u(&gb);
 | 
						|
    }
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
 | 
						|
           c->frame_info);
 | 
						|
 | 
						|
    c->frame_pred = (c->frame_info >> 8) & 3;
 | 
						|
 | 
						|
    av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
 | 
						|
                   max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
 | 
						|
 | 
						|
    if (!c->slice_bits) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (c->avctx->pix_fmt) {
 | 
						|
    case AV_PIX_FMT_RGB24:
 | 
						|
    case AV_PIX_FMT_RGBA:
 | 
						|
        for (i = 0; i < c->planes; i++) {
 | 
						|
            ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i],
 | 
						|
                               c->planes, frame.f->linesize[0], avctx->width,
 | 
						|
                               avctx->height, plane_start[i],
 | 
						|
                               c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
            if (c->frame_pred == PRED_MEDIAN) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_median_packed(frame.f->data[0] + ff_ut_rgb_order[i],
 | 
						|
                                          c->planes, frame.f->linesize[0], avctx->width,
 | 
						|
                                          avctx->height, c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_median_packed_il(frame.f->data[0] + ff_ut_rgb_order[i],
 | 
						|
                                             c->planes, frame.f->linesize[0],
 | 
						|
                                             avctx->width, avctx->height, c->slices,
 | 
						|
                                             0);
 | 
						|
                }
 | 
						|
            } else if (c->frame_pred == PRED_GRADIENT) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_gradient_packed(frame.f->data[0] + ff_ut_rgb_order[i],
 | 
						|
                                            c->planes, frame.f->linesize[0], avctx->width,
 | 
						|
                                            avctx->height, c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_gradient_packed_il(frame.f->data[0] + ff_ut_rgb_order[i],
 | 
						|
                                               c->planes, frame.f->linesize[0],
 | 
						|
                                               avctx->width, avctx->height, c->slices,
 | 
						|
                                               0);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0],
 | 
						|
                           avctx->width, avctx->height);
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_GBRAP10:
 | 
						|
    case AV_PIX_FMT_GBRP10:
 | 
						|
        for (i = 0; i < c->planes; i++) {
 | 
						|
            ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], 1,
 | 
						|
                                 frame.f->linesize[i] / 2, avctx->width,
 | 
						|
                                 avctx->height, plane_start[i],
 | 
						|
                                 plane_start[i + 1] - 1024,
 | 
						|
                                 c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
        }
 | 
						|
        restore_rgb_planes10(frame.f, avctx->width, avctx->height);
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_YUV420P:
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
 | 
						|
                               avctx->width >> !!i, avctx->height >> !!i,
 | 
						|
                               plane_start[i], c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
            if (c->frame_pred == PRED_MEDIAN) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                          avctx->width >> !!i, avctx->height >> !!i,
 | 
						|
                                          c->slices, !i);
 | 
						|
                } else {
 | 
						|
                    restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                             avctx->width  >> !!i,
 | 
						|
                                             avctx->height >> !!i,
 | 
						|
                                             c->slices, !i);
 | 
						|
                }
 | 
						|
            } else if (c->frame_pred == PRED_GRADIENT) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                            avctx->width >> !!i, avctx->height >> !!i,
 | 
						|
                                            c->slices, !i);
 | 
						|
                } else {
 | 
						|
                    restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                               avctx->width  >> !!i,
 | 
						|
                                               avctx->height >> !!i,
 | 
						|
                                               c->slices, !i);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_YUV422P:
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
 | 
						|
                               avctx->width >> !!i, avctx->height,
 | 
						|
                               plane_start[i], c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
            if (c->frame_pred == PRED_MEDIAN) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                          avctx->width >> !!i, avctx->height,
 | 
						|
                                          c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                             avctx->width >> !!i, avctx->height,
 | 
						|
                                             c->slices, 0);
 | 
						|
                }
 | 
						|
            } else if (c->frame_pred == PRED_GRADIENT) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                            avctx->width >> !!i, avctx->height,
 | 
						|
                                            c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                               avctx->width  >> !!i, avctx->height,
 | 
						|
                                               c->slices, 0);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_YUV444P:
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i],
 | 
						|
                               avctx->width, avctx->height,
 | 
						|
                               plane_start[i], c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
            if (c->frame_pred == PRED_MEDIAN) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                          avctx->width, avctx->height,
 | 
						|
                                          c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                             avctx->width, avctx->height,
 | 
						|
                                             c->slices, 0);
 | 
						|
                }
 | 
						|
            } else if (c->frame_pred == PRED_GRADIENT) {
 | 
						|
                if (!c->interlaced) {
 | 
						|
                    restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                            avctx->width, avctx->height,
 | 
						|
                                            c->slices, 0);
 | 
						|
                } else {
 | 
						|
                    restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
 | 
						|
                                               avctx->width, avctx->height,
 | 
						|
                                               c->slices, 0);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case AV_PIX_FMT_YUV422P10:
 | 
						|
        for (i = 0; i < 3; i++) {
 | 
						|
            ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], 1, frame.f->linesize[i] / 2,
 | 
						|
                                 avctx->width >> !!i, avctx->height,
 | 
						|
                                 plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
 | 
						|
            if (ret)
 | 
						|
                return ret;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    frame.f->key_frame = 1;
 | 
						|
    frame.f->pict_type = AV_PICTURE_TYPE_I;
 | 
						|
    frame.f->interlaced_frame = !!c->interlaced;
 | 
						|
 | 
						|
    *got_frame = 1;
 | 
						|
 | 
						|
    /* always report that the buffer was completely consumed */
 | 
						|
    return buf_size;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    UtvideoContext * const c = avctx->priv_data;
 | 
						|
 | 
						|
    c->avctx = avctx;
 | 
						|
 | 
						|
    ff_bswapdsp_init(&c->bdsp);
 | 
						|
    ff_llviddsp_init(&c->llviddsp);
 | 
						|
 | 
						|
    if (avctx->extradata_size >= 16) {
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
 | 
						|
               avctx->extradata[3], avctx->extradata[2],
 | 
						|
               avctx->extradata[1], avctx->extradata[0]);
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
 | 
						|
               AV_RB32(avctx->extradata + 4));
 | 
						|
        c->frame_info_size = AV_RL32(avctx->extradata + 8);
 | 
						|
        c->flags           = AV_RL32(avctx->extradata + 12);
 | 
						|
 | 
						|
        if (c->frame_info_size != 4)
 | 
						|
            avpriv_request_sample(avctx, "Frame info not 4 bytes");
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
 | 
						|
        c->slices      = (c->flags >> 24) + 1;
 | 
						|
        c->compression = c->flags & 1;
 | 
						|
        c->interlaced  = c->flags & 0x800;
 | 
						|
    } else if (avctx->extradata_size == 8) {
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
 | 
						|
               avctx->extradata[3], avctx->extradata[2],
 | 
						|
               avctx->extradata[1], avctx->extradata[0]);
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
 | 
						|
               AV_RB32(avctx->extradata + 4));
 | 
						|
        c->interlaced  = 0;
 | 
						|
        c->pro         = 1;
 | 
						|
        c->frame_info_size = 4;
 | 
						|
    } else {
 | 
						|
        av_log(avctx, AV_LOG_ERROR,
 | 
						|
               "Insufficient extradata size %d, should be at least 16\n",
 | 
						|
               avctx->extradata_size);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    c->slice_bits_size = 0;
 | 
						|
 | 
						|
    switch (avctx->codec_tag) {
 | 
						|
    case MKTAG('U', 'L', 'R', 'G'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_RGB24;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'R', 'A'):
 | 
						|
        c->planes      = 4;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_RGBA;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'Y', '0'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT470BG;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'Y', '2'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT470BG;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'Y', '4'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT470BG;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'Q', 'Y', '2'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'Q', 'R', 'G'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_GBRP10;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'Q', 'R', 'A'):
 | 
						|
        c->planes      = 4;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'H', '0'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT709;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'H', '2'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT709;
 | 
						|
        break;
 | 
						|
    case MKTAG('U', 'L', 'H', '4'):
 | 
						|
        c->planes      = 3;
 | 
						|
        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
 | 
						|
        avctx->colorspace = AVCOL_SPC_BT709;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
 | 
						|
               avctx->codec_tag);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int decode_end(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    UtvideoContext * const c = avctx->priv_data;
 | 
						|
 | 
						|
    av_freep(&c->slice_bits);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
AVCodec ff_utvideo_decoder = {
 | 
						|
    .name           = "utvideo",
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
 | 
						|
    .type           = AVMEDIA_TYPE_VIDEO,
 | 
						|
    .id             = AV_CODEC_ID_UTVIDEO,
 | 
						|
    .priv_data_size = sizeof(UtvideoContext),
 | 
						|
    .init           = decode_init,
 | 
						|
    .close          = decode_end,
 | 
						|
    .decode         = decode_frame,
 | 
						|
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
 | 
						|
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
 | 
						|
};
 |