1148 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1148 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Opus encoder
 | 
						|
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "opus_celt.h"
 | 
						|
#include "opus_pvq.h"
 | 
						|
#include "opustab.h"
 | 
						|
 | 
						|
#include "libavutil/float_dsp.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "bytestream.h"
 | 
						|
#include "audio_frame_queue.h"
 | 
						|
 | 
						|
/* Determines the maximum delay the psychoacoustic system will use for lookahead */
 | 
						|
#define FF_BUFQUEUE_SIZE 145
 | 
						|
#include "libavfilter/bufferqueue.h"
 | 
						|
 | 
						|
#define OPUS_MAX_LOOKAHEAD ((FF_BUFQUEUE_SIZE - 1)*2.5f)
 | 
						|
 | 
						|
#define OPUS_MAX_CHANNELS 2
 | 
						|
 | 
						|
/* 120 ms / 2.5 ms = 48 frames (extremely improbable, but the encoder'll work) */
 | 
						|
#define OPUS_MAX_FRAMES_PER_PACKET 48
 | 
						|
 | 
						|
#define OPUS_BLOCK_SIZE(x) (2 * 15 * (1 << ((x) + 2)))
 | 
						|
 | 
						|
#define OPUS_SAMPLES_TO_BLOCK_SIZE(x) (ff_log2((x) / (2 * 15)) - 2)
 | 
						|
 | 
						|
typedef struct OpusEncOptions {
 | 
						|
    float max_delay_ms;
 | 
						|
} OpusEncOptions;
 | 
						|
 | 
						|
typedef struct OpusEncContext {
 | 
						|
    AVClass *av_class;
 | 
						|
    OpusEncOptions options;
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    AudioFrameQueue afq;
 | 
						|
    AVFloatDSPContext *dsp;
 | 
						|
    MDCT15Context *mdct[CELT_BLOCK_NB];
 | 
						|
    CeltPVQ *pvq;
 | 
						|
    struct FFBufQueue bufqueue;
 | 
						|
 | 
						|
    enum OpusMode mode;
 | 
						|
    enum OpusBandwidth bandwidth;
 | 
						|
    int pkt_framesize;
 | 
						|
    int pkt_frames;
 | 
						|
 | 
						|
    int channels;
 | 
						|
 | 
						|
    CeltFrame *frame;
 | 
						|
    OpusRangeCoder *rc;
 | 
						|
 | 
						|
    /* Actual energy the decoder will have */
 | 
						|
    float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS];
 | 
						|
 | 
						|
    DECLARE_ALIGNED(32, float, scratch)[2048];
 | 
						|
} OpusEncContext;
 | 
						|
 | 
						|
static void opus_write_extradata(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    uint8_t *bs = avctx->extradata;
 | 
						|
 | 
						|
    bytestream_put_buffer(&bs, "OpusHead", 8);
 | 
						|
    bytestream_put_byte  (&bs, 0x1);
 | 
						|
    bytestream_put_byte  (&bs, avctx->channels);
 | 
						|
    bytestream_put_le16  (&bs, avctx->initial_padding);
 | 
						|
    bytestream_put_le32  (&bs, avctx->sample_rate);
 | 
						|
    bytestream_put_le16  (&bs, 0x0);
 | 
						|
    bytestream_put_byte  (&bs, 0x0); /* Default layout */
 | 
						|
}
 | 
						|
 | 
						|
static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
 | 
						|
{
 | 
						|
    int i, tmp = 0x0, extended_toc = 0;
 | 
						|
    static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = {
 | 
						|
        /*  Silk                    Hybrid                  Celt                    Layer     */
 | 
						|
        /*  NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      NB  MB  WB SWB  FB      Bandwidth */
 | 
						|
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, /* 2.5 ms */
 | 
						|
        { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, /*   5 ms */
 | 
						|
        { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, /*  10 ms */
 | 
						|
        { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, /*  20 ms */
 | 
						|
        { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  40 ms */
 | 
						|
        { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, /*  60 ms */
 | 
						|
    };
 | 
						|
    int cfg = toc_cfg[s->pkt_framesize][s->mode][s->bandwidth];
 | 
						|
    *fsize_needed = 0;
 | 
						|
    if (!cfg)
 | 
						|
        return 1;
 | 
						|
    if (s->pkt_frames == 2) {                                          /* 2 packets */
 | 
						|
        if (s->frame[0].framebits == s->frame[1].framebits) {          /* same size */
 | 
						|
            tmp = 0x1;
 | 
						|
        } else {                                                  /* different size */
 | 
						|
            tmp = 0x2;
 | 
						|
            *fsize_needed = 1;                     /* put frame sizes in the packet */
 | 
						|
        }
 | 
						|
    } else if (s->pkt_frames > 2) {
 | 
						|
        tmp = 0x3;
 | 
						|
        extended_toc = 1;
 | 
						|
    }
 | 
						|
    tmp |= (s->channels > 1) << 2;                                /* Stereo or mono */
 | 
						|
    tmp |= (cfg - 1)         << 3;                           /* codec configuration */
 | 
						|
    *toc++ = tmp;
 | 
						|
    if (extended_toc) {
 | 
						|
        for (i = 0; i < (s->pkt_frames - 1); i++)
 | 
						|
            *fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits);
 | 
						|
        tmp = (*fsize_needed) << 7;                                     /* vbr flag */
 | 
						|
        tmp |= s->pkt_frames;                    /* frame number - can be 0 as well */
 | 
						|
        *toc++ = tmp;
 | 
						|
    }
 | 
						|
    *size = 1 + extended_toc;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
 | 
						|
{
 | 
						|
    int sf, ch;
 | 
						|
    AVFrame *cur = NULL;
 | 
						|
    const int subframesize = s->avctx->frame_size;
 | 
						|
    int subframes = OPUS_BLOCK_SIZE(s->pkt_framesize) / subframesize;
 | 
						|
 | 
						|
    cur = ff_bufqueue_get(&s->bufqueue);
 | 
						|
 | 
						|
    for (ch = 0; ch < f->channels; ch++) {
 | 
						|
        CeltBlock *b = &f->block[ch];
 | 
						|
        const void *input = cur->extended_data[ch];
 | 
						|
        size_t bps = av_get_bytes_per_sample(cur->format);
 | 
						|
        memcpy(b->overlap, input, bps*cur->nb_samples);
 | 
						|
    }
 | 
						|
 | 
						|
    av_frame_free(&cur);
 | 
						|
 | 
						|
    for (sf = 0; sf < subframes; sf++) {
 | 
						|
        if (sf != (subframes - 1))
 | 
						|
            cur = ff_bufqueue_get(&s->bufqueue);
 | 
						|
        else
 | 
						|
            cur = ff_bufqueue_peek(&s->bufqueue, 0);
 | 
						|
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *b = &f->block[ch];
 | 
						|
            const void *input = cur->extended_data[ch];
 | 
						|
            const size_t bps  = av_get_bytes_per_sample(cur->format);
 | 
						|
            const size_t left = (subframesize - cur->nb_samples)*bps;
 | 
						|
            const size_t len  = FFMIN(subframesize, cur->nb_samples)*bps;
 | 
						|
            memcpy(&b->samples[sf*subframesize], input, len);
 | 
						|
            memset(&b->samples[cur->nb_samples], 0, left);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Last frame isn't popped off and freed yet - we need it for overlap */
 | 
						|
        if (sf != (subframes - 1))
 | 
						|
            av_frame_free(&cur);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Apply the pre emphasis filter */
 | 
						|
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, sf, ch;
 | 
						|
    const int subframesize = s->avctx->frame_size;
 | 
						|
    const int subframes = OPUS_BLOCK_SIZE(s->pkt_framesize) / subframesize;
 | 
						|
 | 
						|
    /* Filter overlap */
 | 
						|
    for (ch = 0; ch < f->channels; ch++) {
 | 
						|
        CeltBlock *b = &f->block[ch];
 | 
						|
        float m = b->emph_coeff;
 | 
						|
        for (i = 0; i < CELT_OVERLAP; i++) {
 | 
						|
            float sample = b->overlap[i];
 | 
						|
            b->overlap[i] = sample - m;
 | 
						|
            m = sample * CELT_EMPH_COEFF;
 | 
						|
        }
 | 
						|
        b->emph_coeff = m;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */
 | 
						|
    for (sf = 0; sf < subframes; sf++) {
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *b = &f->block[ch];
 | 
						|
            float m = b->emph_coeff;
 | 
						|
            for (i = 0; i < subframesize; i++) {
 | 
						|
                float sample = b->samples[sf*subframesize + i];
 | 
						|
                b->samples[sf*subframesize + i] = sample - m;
 | 
						|
                m = sample * CELT_EMPH_COEFF;
 | 
						|
            }
 | 
						|
            if (sf != (subframes - 1))
 | 
						|
                b->emph_coeff = m;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Create the window and do the mdct */
 | 
						|
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, t, ch;
 | 
						|
    float *win = s->scratch;
 | 
						|
 | 
						|
    /* I think I can use s->dsp->vector_fmul_window for transients at least */
 | 
						|
    if (f->transient) {
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *b = &f->block[ch];
 | 
						|
            float *src1 = b->overlap;
 | 
						|
            for (t = 0; t < f->blocks; t++) {
 | 
						|
                float *src2 = &b->samples[CELT_OVERLAP*t];
 | 
						|
                for (i = 0; i < CELT_OVERLAP; i++) {
 | 
						|
                    win[               i] = src1[i]*ff_celt_window[i];
 | 
						|
                    win[CELT_OVERLAP + i] = src2[i]*ff_celt_window[CELT_OVERLAP - i - 1];
 | 
						|
                }
 | 
						|
                src1 = src2;
 | 
						|
                s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1);
 | 
						|
        int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1;
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *b = &f->block[ch];
 | 
						|
 | 
						|
            memset(win, 0, wlen*sizeof(float));
 | 
						|
 | 
						|
            memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float));
 | 
						|
 | 
						|
            /* Alignment fucks me over */
 | 
						|
            //s->dsp->vector_fmul(&dst[lap_dst], b->overlap, ff_celt_window, CELT_OVERLAP);
 | 
						|
            //s->dsp->vector_fmul_reverse(&dst[lap_dst + blk_len - CELT_OVERLAP], b->samples, ff_celt_window, CELT_OVERLAP);
 | 
						|
 | 
						|
            for (i = 0; i < CELT_OVERLAP; i++) {
 | 
						|
                win[lap_dst           + i] = b->overlap[i]       *ff_celt_window[i];
 | 
						|
                win[lap_dst + blk_len + i] = b->samples[rwin + i]*ff_celt_window[CELT_OVERLAP - i - 1];
 | 
						|
            }
 | 
						|
 | 
						|
            s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Fills the bands and normalizes them */
 | 
						|
static void celt_frame_map_norm_bands(OpusEncContext *s, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, j, ch;
 | 
						|
 | 
						|
    for (ch = 0; ch < f->channels; ch++) {
 | 
						|
        CeltBlock *block = &f->block[ch];
 | 
						|
        for (i = 0; i < CELT_MAX_BANDS; i++) {
 | 
						|
            float ener = 0.0f;
 | 
						|
            int band_offset = ff_celt_freq_bands[i] << f->size;
 | 
						|
            int band_size   = ff_celt_freq_range[i] << f->size;
 | 
						|
            float *coeffs   = &block->coeffs[band_offset];
 | 
						|
 | 
						|
            for (j = 0; j < band_size; j++)
 | 
						|
                ener += coeffs[j]*coeffs[j];
 | 
						|
 | 
						|
            block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON;
 | 
						|
            ener = 1.0f/block->lin_energy[i];
 | 
						|
 | 
						|
            for (j = 0; j < band_size; j++)
 | 
						|
                coeffs[j] *= ener;
 | 
						|
 | 
						|
            block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i];
 | 
						|
 | 
						|
            /* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */
 | 
						|
            block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_enc_tf(OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed;
 | 
						|
    int bits = f->transient ? 2 : 4;
 | 
						|
 | 
						|
    tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits));
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) {
 | 
						|
            const int tbit = (diff ^ 1) == f->tf_change[i];
 | 
						|
            ff_opus_rc_enc_log(rc, tbit, bits);
 | 
						|
            diff ^= tbit;
 | 
						|
            tf_changed |= diff;
 | 
						|
        }
 | 
						|
        bits = f->transient ? 4 : 5;
 | 
						|
    }
 | 
						|
 | 
						|
    if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
 | 
						|
                            ff_celt_tf_select[f->size][f->transient][1][tf_changed]) {
 | 
						|
        ff_opus_rc_enc_log(rc, f->tf_select, 1);
 | 
						|
        tf_select = f->tf_select;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++)
 | 
						|
        f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
 | 
						|
}
 | 
						|
 | 
						|
static void ff_celt_enc_bitalloc(OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
 | 
						|
    int skip_startband      = f->start_band;
 | 
						|
    int skip_bit            = 0;
 | 
						|
    int intensitystereo_bit = 0;
 | 
						|
    int dualstereo_bit      = 0;
 | 
						|
    int dynalloc            = 6;
 | 
						|
    int extrabits           = 0;
 | 
						|
 | 
						|
    int *cap = f->caps;
 | 
						|
    int boost[CELT_MAX_BANDS];
 | 
						|
    int trim_offset[CELT_MAX_BANDS];
 | 
						|
    int threshold[CELT_MAX_BANDS];
 | 
						|
    int bits1[CELT_MAX_BANDS];
 | 
						|
    int bits2[CELT_MAX_BANDS];
 | 
						|
 | 
						|
    /* Tell the spread to the decoder */
 | 
						|
    if (opus_rc_tell(rc) + 4 <= f->framebits)
 | 
						|
        ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
 | 
						|
 | 
						|
    /* Generate static allocation caps */
 | 
						|
    for (i = 0; i < CELT_MAX_BANDS; i++) {
 | 
						|
        cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
 | 
						|
                 * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Band boosts */
 | 
						|
    tbits_8ths = f->framebits << 3;
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int quanta, b_dynalloc, boost_amount = f->alloc_boost[i];
 | 
						|
 | 
						|
        boost[i] = 0;
 | 
						|
 | 
						|
        quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
 | 
						|
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | 
						|
        b_dynalloc = dynalloc;
 | 
						|
 | 
						|
        while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < cap[i]) {
 | 
						|
            int is_boost = boost_amount--;
 | 
						|
 | 
						|
            ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
 | 
						|
            if (!is_boost)
 | 
						|
                break;
 | 
						|
 | 
						|
            boost[i]   += quanta;
 | 
						|
            tbits_8ths -= quanta;
 | 
						|
 | 
						|
            b_dynalloc = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        if (boost[i])
 | 
						|
            dynalloc = FFMAX(2, dynalloc - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Put allocation trim */
 | 
						|
    if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
 | 
						|
        ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
 | 
						|
 | 
						|
    /* Anti-collapse bit reservation */
 | 
						|
    tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | 
						|
    f->anticollapse_needed = 0;
 | 
						|
    if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
 | 
						|
        f->anticollapse_needed = 1 << 3;
 | 
						|
    tbits_8ths -= f->anticollapse_needed;
 | 
						|
 | 
						|
    /* Band skip bit reservation */
 | 
						|
    if (tbits_8ths >= 1 << 3)
 | 
						|
        skip_bit = 1 << 3;
 | 
						|
    tbits_8ths -= skip_bit;
 | 
						|
 | 
						|
    /* Intensity/dual stereo bit reservation */
 | 
						|
    if (f->channels == 2) {
 | 
						|
        intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
 | 
						|
        if (intensitystereo_bit <= tbits_8ths) {
 | 
						|
            tbits_8ths -= intensitystereo_bit;
 | 
						|
            if (tbits_8ths >= 1 << 3) {
 | 
						|
                dualstereo_bit = 1 << 3;
 | 
						|
                tbits_8ths -= 1 << 3;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            intensitystereo_bit = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Trim offsets */
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int trim     = f->alloc_trim - 5 - f->size;
 | 
						|
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
 | 
						|
        int duration = f->size + 3;
 | 
						|
        int scale    = duration + f->channels - 1;
 | 
						|
 | 
						|
        /* PVQ minimum allocation threshold, below this value the band is
 | 
						|
         * skipped */
 | 
						|
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
 | 
						|
                             f->channels << 3);
 | 
						|
 | 
						|
        trim_offset[i] = trim * (band << scale) >> 6;
 | 
						|
 | 
						|
        if (ff_celt_freq_range[i] << f->size == 1)
 | 
						|
            trim_offset[i] -= f->channels << 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    low  = 1;
 | 
						|
    high = CELT_VECTORS - 1;
 | 
						|
    while (low <= high) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
            bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
 | 
						|
                       << (f->channels - 1) << f->size >> 2;
 | 
						|
 | 
						|
            if (bandbits)
 | 
						|
                bandbits = FFMAX(0, bandbits + trim_offset[i]);
 | 
						|
            bandbits += boost[i];
 | 
						|
 | 
						|
            if (bandbits >= threshold[i] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, cap[i]);
 | 
						|
            } else if (bandbits >= f->channels << 3)
 | 
						|
                total += f->channels << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        if (total > tbits_8ths)
 | 
						|
            high = center - 1;
 | 
						|
        else
 | 
						|
            low = center + 1;
 | 
						|
    }
 | 
						|
    high = low--;
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
 | 
						|
                   << (f->channels - 1) << f->size >> 2;
 | 
						|
        bits2[i] = high >= CELT_VECTORS ? cap[i] :
 | 
						|
                   ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
 | 
						|
                   << (f->channels - 1) << f->size >> 2;
 | 
						|
 | 
						|
        if (bits1[i])
 | 
						|
            bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
 | 
						|
        if (bits2[i])
 | 
						|
            bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
 | 
						|
        if (low)
 | 
						|
            bits1[i] += boost[i];
 | 
						|
        bits2[i] += boost[i];
 | 
						|
 | 
						|
        if (boost[i])
 | 
						|
            skip_startband = i;
 | 
						|
        bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    low  = 0;
 | 
						|
    high = 1 << CELT_ALLOC_STEPS;
 | 
						|
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (j = f->end_band - 1; j >= f->start_band; j--) {
 | 
						|
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
            if (bandbits >= threshold[j] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, cap[j]);
 | 
						|
            } else if (bandbits >= f->channels << 3)
 | 
						|
                total += f->channels << 3;
 | 
						|
        }
 | 
						|
        if (total > tbits_8ths)
 | 
						|
            high = center;
 | 
						|
        else
 | 
						|
            low = center;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Bisection */
 | 
						|
    done = total = 0;
 | 
						|
    for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
        if (bandbits >= threshold[i] || done)
 | 
						|
            done = 1;
 | 
						|
        else
 | 
						|
            bandbits = (bandbits >= f->channels << 3) ?
 | 
						|
                       f->channels << 3 : 0;
 | 
						|
 | 
						|
        bandbits     = FFMIN(bandbits, cap[i]);
 | 
						|
        f->pulses[i] = bandbits;
 | 
						|
        total      += bandbits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Band skipping */
 | 
						|
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
 | 
						|
        int allocation;
 | 
						|
        j = f->coded_bands - 1;
 | 
						|
 | 
						|
        if (j == skip_startband) {
 | 
						|
            /* all remaining bands are not skipped */
 | 
						|
            tbits_8ths += skip_bit;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* determine the number of bits available for coding "do not skip" markers */
 | 
						|
        remaining   = tbits_8ths - total;
 | 
						|
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]
 | 
						|
                      + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
 | 
						|
 | 
						|
        /* a "do not skip" marker is only coded if the allocation is
 | 
						|
           above the chosen threshold */
 | 
						|
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
 | 
						|
            const int do_not_skip = f->coded_bands <= f->skip_band_floor;
 | 
						|
            ff_opus_rc_enc_log(rc, do_not_skip, 1);
 | 
						|
            if (do_not_skip)
 | 
						|
                break;
 | 
						|
 | 
						|
            total      += 1 << 3;
 | 
						|
            allocation -= 1 << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        /* the band is skipped, so reclaim its bits */
 | 
						|
        total -= f->pulses[j];
 | 
						|
        if (intensitystereo_bit) {
 | 
						|
            total -= intensitystereo_bit;
 | 
						|
            intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
 | 
						|
            total += intensitystereo_bit;
 | 
						|
        }
 | 
						|
 | 
						|
        total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Encode stereo flags */
 | 
						|
    if (intensitystereo_bit) {
 | 
						|
        f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
 | 
						|
        ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
 | 
						|
    }
 | 
						|
    if (f->intensity_stereo <= f->start_band)
 | 
						|
        tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
 | 
						|
    else if (dualstereo_bit)
 | 
						|
        ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
 | 
						|
 | 
						|
    /* Supply the remaining bits in this frame to lower bands */
 | 
						|
    remaining = tbits_8ths - total;
 | 
						|
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        int bits = FFMIN(remaining, ff_celt_freq_range[i]);
 | 
						|
 | 
						|
        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
 | 
						|
        remaining    -= bits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Finally determine the allocation */
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        int N = ff_celt_freq_range[i] << f->size;
 | 
						|
        int prev_extra = extrabits;
 | 
						|
        f->pulses[i] += extrabits;
 | 
						|
 | 
						|
        if (N > 1) {
 | 
						|
            int dof;        // degrees of freedom
 | 
						|
            int temp;       // dof * channels * log(dof)
 | 
						|
            int offset;     // fine energy quantization offset, i.e.
 | 
						|
                            // extra bits assigned over the standard
 | 
						|
                            // totalbits/dof
 | 
						|
            int fine_bits, max_bits;
 | 
						|
 | 
						|
            extrabits = FFMAX(0, f->pulses[i] - cap[i]);
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
 | 
						|
            /* intensity stereo makes use of an extra degree of freedom */
 | 
						|
            dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
 | 
						|
            temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
 | 
						|
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | 
						|
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | 
						|
                offset += dof << 1;
 | 
						|
 | 
						|
            /* grant an additional bias for the first and second pulses */
 | 
						|
            if (f->pulses[i] + offset < 2 * (dof << 3))
 | 
						|
                offset += temp >> 2;
 | 
						|
            else if (f->pulses[i] + offset < 3 * (dof << 3))
 | 
						|
                offset += temp >> 3;
 | 
						|
 | 
						|
            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | 
						|
            max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
 | 
						|
 | 
						|
            max_bits  = FFMAX(max_bits, 0);
 | 
						|
 | 
						|
            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | 
						|
 | 
						|
            /* if fine_bits was rounded down or capped,
 | 
						|
               give priority for the final fine energy pass */
 | 
						|
            f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
 | 
						|
 | 
						|
            /* the remaining bits are assigned to PVQ */
 | 
						|
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
 | 
						|
        } else {
 | 
						|
            /* all bits go to fine energy except for the sign bit */
 | 
						|
            extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
            f->fine_bits[i] = 0;
 | 
						|
            f->fine_priority[i] = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* hand back a limited number of extra fine energy bits to this band */
 | 
						|
        if (extrabits > 0) {
 | 
						|
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
 | 
						|
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
 | 
						|
            f->fine_bits[i] += fineextra;
 | 
						|
 | 
						|
            fineextra <<= f->channels + 2;
 | 
						|
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | 
						|
            extrabits -= fineextra;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    f->remaining = extrabits;
 | 
						|
 | 
						|
    /* skipped bands dedicate all of their bits for fine energy */
 | 
						|
    for (; i < f->end_band; i++) {
 | 
						|
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
 | 
						|
        f->pulses[i]        = 0;
 | 
						|
        f->fine_priority[i] = f->fine_bits[i] < 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
 | 
						|
                             float last_energy[][CELT_MAX_BANDS], int intra)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
    float alpha, beta, prev[2] = { 0, 0 };
 | 
						|
    const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra];
 | 
						|
 | 
						|
    /* Inter is really just differential coding */
 | 
						|
    if (opus_rc_tell(rc) + 3 <= f->framebits)
 | 
						|
        ff_opus_rc_enc_log(rc, intra, 3);
 | 
						|
    else
 | 
						|
        intra = 0;
 | 
						|
 | 
						|
    if (intra) {
 | 
						|
        alpha = 0.0f;
 | 
						|
        beta  = 1.0f - 4915.0f/32768.0f;
 | 
						|
    } else {
 | 
						|
        alpha = ff_celt_alpha_coef[f->size];
 | 
						|
        beta  = 1.0f - ff_celt_beta_coef[f->size];
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *block = &f->block[ch];
 | 
						|
            const int left = f->framebits - opus_rc_tell(rc);
 | 
						|
            const float last = FFMAX(-9.0f, last_energy[ch][i]);
 | 
						|
            float diff = block->energy[i] - prev[ch] - last*alpha;
 | 
						|
            int q_en = lrintf(diff);
 | 
						|
            if (left >= 15) {
 | 
						|
                ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6);
 | 
						|
            } else if (left >= 2) {
 | 
						|
                q_en = av_clip(q_en, -1, 1);
 | 
						|
                ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small);
 | 
						|
            } else if (left >= 1) {
 | 
						|
                q_en = av_clip(q_en, -1, 0);
 | 
						|
                ff_opus_rc_enc_log(rc, (q_en & 1), 1);
 | 
						|
            } else q_en = -1;
 | 
						|
 | 
						|
            block->error_energy[i] = q_en - diff;
 | 
						|
            prev[ch] += beta * q_en;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_quant_coarse(OpusRangeCoder *rc, CeltFrame *f,
 | 
						|
                              float last_energy[][CELT_MAX_BANDS])
 | 
						|
{
 | 
						|
    uint32_t inter, intra;
 | 
						|
    OPUS_RC_CHECKPOINT_SPAWN(rc);
 | 
						|
 | 
						|
    exp_quant_coarse(rc, f, last_energy, 1);
 | 
						|
    intra = OPUS_RC_CHECKPOINT_BITS(rc);
 | 
						|
 | 
						|
    OPUS_RC_CHECKPOINT_ROLLBACK(rc);
 | 
						|
 | 
						|
    exp_quant_coarse(rc, f, last_energy, 0);
 | 
						|
    inter = OPUS_RC_CHECKPOINT_BITS(rc);
 | 
						|
 | 
						|
    if (inter > intra) { /* Unlikely */
 | 
						|
        OPUS_RC_CHECKPOINT_ROLLBACK(rc);
 | 
						|
        exp_quant_coarse(rc, f, last_energy, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_quant_fine(OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        if (!f->fine_bits[i])
 | 
						|
            continue;
 | 
						|
        for (ch = 0; ch < f->channels; ch++) {
 | 
						|
            CeltBlock *block = &f->block[ch];
 | 
						|
            int quant, lim = (1 << f->fine_bits[i]);
 | 
						|
            float offset, diff = 0.5f - block->error_energy[i];
 | 
						|
            quant = av_clip(floor(diff*lim), 0, lim - 1);
 | 
						|
            ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]);
 | 
						|
            offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f);
 | 
						|
            block->error_energy[i] -= offset;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, ch, priority;
 | 
						|
    for (priority = 0; priority < 2; priority++) {
 | 
						|
        for (i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) {
 | 
						|
            if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
 | 
						|
                continue;
 | 
						|
            for (ch = 0; ch < f->channels; ch++) {
 | 
						|
                CeltBlock *block = &f->block[ch];
 | 
						|
                const float err = block->error_energy[i];
 | 
						|
                const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
 | 
						|
                const int sign = FFABS(err + offset) < FFABS(err - offset);
 | 
						|
                ff_opus_rc_put_raw(rc, sign, 1);
 | 
						|
                block->error_energy[i] -= offset*(1 - 2*sign);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_quant_bands(OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    float lowband_scratch[8 * 22];
 | 
						|
    float norm[2 * 8 * 100];
 | 
						|
 | 
						|
    int totalbits = (f->framebits << 3) - f->anticollapse_needed;
 | 
						|
 | 
						|
    int update_lowband = 1;
 | 
						|
    int lowband_offset = 0;
 | 
						|
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
 | 
						|
        int band_offset = ff_celt_freq_bands[i] << f->size;
 | 
						|
        int band_size   = ff_celt_freq_range[i] << f->size;
 | 
						|
        float *X = f->block[0].coeffs + band_offset;
 | 
						|
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
 | 
						|
 | 
						|
        int consumed = opus_rc_tell_frac(rc);
 | 
						|
        float *norm2 = norm + 8 * 100;
 | 
						|
        int effective_lowband = -1;
 | 
						|
        int b = 0;
 | 
						|
 | 
						|
        /* Compute how many bits we want to allocate to this band */
 | 
						|
        if (i != f->start_band)
 | 
						|
            f->remaining -= consumed;
 | 
						|
        f->remaining2 = totalbits - consumed - 1;
 | 
						|
        if (i <= f->coded_bands - 1) {
 | 
						|
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
 | 
						|
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
 | 
						|
        }
 | 
						|
 | 
						|
        if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
 | 
						|
            (update_lowband || lowband_offset == 0))
 | 
						|
            lowband_offset = i;
 | 
						|
 | 
						|
        /* Get a conservative estimate of the collapse_mask's for the bands we're
 | 
						|
        going to be folding from. */
 | 
						|
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
 | 
						|
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
 | 
						|
            int foldstart, foldend;
 | 
						|
 | 
						|
            /* This ensures we never repeat spectral content within one band */
 | 
						|
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
 | 
						|
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
 | 
						|
            foldstart = lowband_offset;
 | 
						|
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
 | 
						|
            foldend = lowband_offset - 1;
 | 
						|
            while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
 | 
						|
 | 
						|
            cm[0] = cm[1] = 0;
 | 
						|
            for (j = foldstart; j < foldend; j++) {
 | 
						|
                cm[0] |= f->block[0].collapse_masks[j];
 | 
						|
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (f->dual_stereo && i == f->intensity_stereo) {
 | 
						|
            /* Switch off dual stereo to do intensity */
 | 
						|
            f->dual_stereo = 0;
 | 
						|
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
 | 
						|
                norm[j] = (norm[j] + norm2[j]) / 2;
 | 
						|
        }
 | 
						|
 | 
						|
        if (f->dual_stereo) {
 | 
						|
            cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
 | 
						|
 | 
						|
            cm[1] = f->pvq->encode_band(f->pvq, f, rc, i, Y, NULL, band_size, b / 2, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
 | 
						|
        } else {
 | 
						|
            cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
 | 
						|
            cm[1] = cm[0];
 | 
						|
        }
 | 
						|
 | 
						|
        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
 | 
						|
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | 
						|
        f->remaining += f->pulses[i] + consumed;
 | 
						|
 | 
						|
        /* Update the folding position only as long as we have 1 bit/sample depth */
 | 
						|
        update_lowband = (b > band_size << 3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
 | 
						|
    celt_frame_setup_input(s, f);
 | 
						|
    celt_apply_preemph_filter(s, f);
 | 
						|
    if (f->pfilter) {
 | 
						|
        /* Not implemented */
 | 
						|
    }
 | 
						|
    celt_frame_mdct(s, f);
 | 
						|
    celt_frame_map_norm_bands(s, f);
 | 
						|
 | 
						|
    ff_opus_rc_enc_log(rc, f->silence, 15);
 | 
						|
 | 
						|
    if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits)
 | 
						|
        ff_opus_rc_enc_log(rc, f->pfilter, 1);
 | 
						|
 | 
						|
    if (f->pfilter) {
 | 
						|
        /* Not implemented */
 | 
						|
    }
 | 
						|
 | 
						|
    if (f->size && opus_rc_tell(rc) + 3 <= f->framebits)
 | 
						|
        ff_opus_rc_enc_log(rc, f->transient, 3);
 | 
						|
 | 
						|
    celt_quant_coarse(rc, f, s->last_quantized_energy);
 | 
						|
    celt_enc_tf      (rc, f);
 | 
						|
    ff_celt_enc_bitalloc(rc, f);
 | 
						|
    celt_quant_fine  (rc, f);
 | 
						|
    celt_quant_bands (rc, f);
 | 
						|
 | 
						|
    if (f->anticollapse_needed)
 | 
						|
        ff_opus_rc_put_raw(rc, f->anticollapse, 1);
 | 
						|
 | 
						|
    celt_quant_final(s, rc, f);
 | 
						|
 | 
						|
    for (ch = 0; ch < f->channels; ch++) {
 | 
						|
        CeltBlock *block = &f->block[ch];
 | 
						|
        for (i = 0; i < CELT_MAX_BANDS; i++)
 | 
						|
            s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ff_opus_psy_process(OpusEncContext *s, int end, int *need_more)
 | 
						|
{
 | 
						|
    int max_delay_samples = (s->options.max_delay_ms*s->avctx->sample_rate)/1000;
 | 
						|
    int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);
 | 
						|
 | 
						|
    s->pkt_frames = 1;
 | 
						|
    s->pkt_framesize = max_bsize;
 | 
						|
    s->mode = OPUS_MODE_CELT;
 | 
						|
    s->bandwidth = OPUS_BANDWIDTH_FULLBAND;
 | 
						|
 | 
						|
    *need_more = s->bufqueue.available*s->avctx->frame_size < (max_delay_samples + CELT_OVERLAP);
 | 
						|
    /* Don't request more if we start being flushed with NULL frames */
 | 
						|
    *need_more = !end && *need_more;
 | 
						|
}
 | 
						|
 | 
						|
static void ff_opus_psy_celt_frame_setup(OpusEncContext *s, CeltFrame *f, int index)
 | 
						|
{
 | 
						|
    int frame_size = OPUS_BLOCK_SIZE(s->pkt_framesize);
 | 
						|
 | 
						|
    f->avctx = s->avctx;
 | 
						|
    f->dsp = s->dsp;
 | 
						|
    f->pvq = s->pvq;
 | 
						|
    f->start_band = (s->mode == OPUS_MODE_HYBRID) ? 17 : 0;
 | 
						|
    f->end_band = ff_celt_band_end[s->bandwidth];
 | 
						|
    f->channels = s->channels;
 | 
						|
    f->size = s->pkt_framesize;
 | 
						|
 | 
						|
    /* Decisions */
 | 
						|
    f->silence = 0;
 | 
						|
    f->pfilter = 0;
 | 
						|
    f->transient = 0;
 | 
						|
    f->tf_select = 0;
 | 
						|
    f->anticollapse = 0;
 | 
						|
    f->alloc_trim = 5;
 | 
						|
    f->skip_band_floor = f->end_band;
 | 
						|
    f->intensity_stereo = f->end_band;
 | 
						|
    f->dual_stereo = 0;
 | 
						|
    f->spread = CELT_SPREAD_NORMAL;
 | 
						|
    memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
 | 
						|
    memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);
 | 
						|
 | 
						|
    f->blocks = f->transient ? frame_size/CELT_OVERLAP : 1;
 | 
						|
    f->framebits = FFALIGN(lrintf((double)s->avctx->bit_rate/(s->avctx->sample_rate/frame_size)), 8);
 | 
						|
}
 | 
						|
 | 
						|
static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    int i, offset, fsize_needed;
 | 
						|
 | 
						|
    /* Write toc */
 | 
						|
    opus_gen_toc(s, avpkt->data, &offset, &fsize_needed);
 | 
						|
 | 
						|
    for (i = 0; i < s->pkt_frames; i++) {
 | 
						|
        ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset, s->frame[i].framebits >> 3);
 | 
						|
        offset += s->frame[i].framebits >> 3;
 | 
						|
    }
 | 
						|
 | 
						|
    avpkt->size = offset;
 | 
						|
}
 | 
						|
 | 
						|
/* Used as overlap for the first frame and padding for the last encoded packet */
 | 
						|
static AVFrame *spawn_empty_frame(OpusEncContext *s)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    AVFrame *f = av_frame_alloc();
 | 
						|
    if (!f)
 | 
						|
        return NULL;
 | 
						|
    f->format         = s->avctx->sample_fmt;
 | 
						|
    f->nb_samples     = s->avctx->frame_size;
 | 
						|
    f->channel_layout = s->avctx->channel_layout;
 | 
						|
    if (av_frame_get_buffer(f, 4)) {
 | 
						|
        av_frame_free(&f);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    for (i = 0; i < s->channels; i++) {
 | 
						|
        size_t bps = av_get_bytes_per_sample(f->format);
 | 
						|
        memset(f->extended_data[i], 0, bps*f->nb_samples);
 | 
						|
    }
 | 
						|
    return f;
 | 
						|
}
 | 
						|
 | 
						|
static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | 
						|
                             const AVFrame *frame, int *got_packet_ptr)
 | 
						|
{
 | 
						|
    OpusEncContext *s = avctx->priv_data;
 | 
						|
    int i, ret, frame_size, need_more, alloc_size = 0;
 | 
						|
 | 
						|
    if (frame) { /* Add new frame to queue */
 | 
						|
        if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
 | 
						|
            return ret;
 | 
						|
        ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame));
 | 
						|
    } else {
 | 
						|
        if (!s->afq.remaining_samples)
 | 
						|
            return 0; /* We've been flushed and there's nothing left to encode */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Run the psychoacoustic system */
 | 
						|
    ff_opus_psy_process(s, !frame, &need_more);
 | 
						|
 | 
						|
    /* Get more samples for lookahead/encoding */
 | 
						|
    if (need_more)
 | 
						|
        return 0;
 | 
						|
 | 
						|
    frame_size = OPUS_BLOCK_SIZE(s->pkt_framesize);
 | 
						|
 | 
						|
    if (!frame) {
 | 
						|
        /* This can go negative, that's not a problem, we only pad if positive */
 | 
						|
        int pad_empty = s->pkt_frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1;
 | 
						|
        /* Pad with empty 2.5 ms frames to whatever framesize was decided,
 | 
						|
         * this should only happen at the very last flush frame. The frames
 | 
						|
         * allocated here will be freed (because they have no other references)
 | 
						|
         * after they get used by celt_frame_setup_input() */
 | 
						|
        for (i = 0; i < pad_empty; i++) {
 | 
						|
            AVFrame *empty = spawn_empty_frame(s);
 | 
						|
            if (!empty)
 | 
						|
                return AVERROR(ENOMEM);
 | 
						|
            ff_bufqueue_add(avctx, &s->bufqueue, empty);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < s->pkt_frames; i++) {
 | 
						|
        ff_opus_rc_enc_init(&s->rc[i]);
 | 
						|
        ff_opus_psy_celt_frame_setup(s, &s->frame[i], i);
 | 
						|
        celt_encode_frame(s, &s->rc[i], &s->frame[i]);
 | 
						|
        alloc_size += s->frame[i].framebits >> 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Worst case toc + the frame lengths if needed */
 | 
						|
    alloc_size += 2 + s->pkt_frames*2;
 | 
						|
 | 
						|
    if ((ret = ff_alloc_packet2(avctx, avpkt, alloc_size, 0)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    /* Assemble packet */
 | 
						|
    opus_packet_assembler(s, avpkt);
 | 
						|
 | 
						|
    /* Remove samples from queue and skip if needed */
 | 
						|
    ff_af_queue_remove(&s->afq, s->pkt_frames*frame_size, &avpkt->pts, &avpkt->duration);
 | 
						|
    if (s->pkt_frames*frame_size > avpkt->duration) {
 | 
						|
        uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10);
 | 
						|
        if (!side)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        AV_WL32(&side[4], s->pkt_frames*frame_size - avpkt->duration + 120);
 | 
						|
    }
 | 
						|
 | 
						|
    *got_packet_ptr = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int opus_encode_end(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    OpusEncContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    for (i = 0; i < CELT_BLOCK_NB; i++)
 | 
						|
        ff_mdct15_uninit(&s->mdct[i]);
 | 
						|
 | 
						|
    ff_celt_pvq_uninit(&s->pvq);
 | 
						|
    av_freep(&s->dsp);
 | 
						|
    av_freep(&s->frame);
 | 
						|
    av_freep(&s->rc);
 | 
						|
    ff_af_queue_close(&s->afq);
 | 
						|
    ff_bufqueue_discard_all(&s->bufqueue);
 | 
						|
    av_freep(&avctx->extradata);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int opus_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int i, ch, ret;
 | 
						|
    OpusEncContext *s = avctx->priv_data;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
    s->channels = avctx->channels;
 | 
						|
 | 
						|
    /* Opus allows us to change the framesize on each packet (and each packet may
 | 
						|
     * have multiple frames in it) but we can't change the codec's frame size on
 | 
						|
     * runtime, so fix it to the lowest possible number of samples and use a queue
 | 
						|
     * to accumulate AVFrames until we have enough to encode whatever the encoder
 | 
						|
     * decides is the best */
 | 
						|
    avctx->frame_size = 120;
 | 
						|
    /* Initial padding will change if SILK is ever supported */
 | 
						|
    avctx->initial_padding = 120;
 | 
						|
 | 
						|
    avctx->cutoff = !avctx->cutoff ? 20000 : avctx->cutoff;
 | 
						|
 | 
						|
    if (!avctx->bit_rate) {
 | 
						|
        int coupled = ff_opus_default_coupled_streams[s->channels - 1];
 | 
						|
        avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000);
 | 
						|
    } else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) {
 | 
						|
        int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels);
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n",
 | 
						|
               avctx->bit_rate/1000, clipped_rate/1000);
 | 
						|
        avctx->bit_rate = clipped_rate;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Frame structs and range coder buffers */
 | 
						|
    s->frame = av_malloc(OPUS_MAX_FRAMES_PER_PACKET*sizeof(CeltFrame));
 | 
						|
    if (!s->frame)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    s->rc = av_malloc(OPUS_MAX_FRAMES_PER_PACKET*sizeof(OpusRangeCoder));
 | 
						|
    if (!s->rc)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    /* Extradata */
 | 
						|
    avctx->extradata_size = 19;
 | 
						|
    avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
 | 
						|
    if (!avctx->extradata)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    opus_write_extradata(avctx);
 | 
						|
 | 
						|
    ff_af_queue_init(avctx, &s->afq);
 | 
						|
 | 
						|
    if ((ret = ff_celt_pvq_init(&s->pvq)) < 0)
 | 
						|
        return ret;
 | 
						|
 | 
						|
    if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT)))
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    /* I have no idea why a base scaling factor of 68 works, could be the twiddles */
 | 
						|
    for (i = 0; i < CELT_BLOCK_NB; i++)
 | 
						|
        if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    for (i = 0; i < OPUS_MAX_FRAMES_PER_PACKET; i++) {
 | 
						|
        s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f;
 | 
						|
        s->frame[i].seed = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Zero out previous energy (matters for inter first frame) */
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        for (i = 0; i < CELT_MAX_BANDS; i++)
 | 
						|
            s->last_quantized_energy[ch][i] = 0.0f;
 | 
						|
 | 
						|
    /* Allocate an empty frame to use as overlap for the first frame of audio */
 | 
						|
    ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s));
 | 
						|
    if (!ff_bufqueue_peek(&s->bufqueue, 0))
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | 
						|
static const AVOption opusenc_options[] = {
 | 
						|
    { "opus_delay", "Maximum delay (and lookahead) in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS },
 | 
						|
    { NULL },
 | 
						|
};
 | 
						|
 | 
						|
static const AVClass opusenc_class = {
 | 
						|
    .class_name = "Opus encoder",
 | 
						|
    .item_name  = av_default_item_name,
 | 
						|
    .option     = opusenc_options,
 | 
						|
    .version    = LIBAVUTIL_VERSION_INT,
 | 
						|
};
 | 
						|
 | 
						|
static const AVCodecDefault opusenc_defaults[] = {
 | 
						|
    { "b", "0" },
 | 
						|
    { "compression_level", "10" },
 | 
						|
    { NULL },
 | 
						|
};
 | 
						|
 | 
						|
AVCodec ff_opus_encoder = {
 | 
						|
    .name           = "opus",
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("Opus"),
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_OPUS,
 | 
						|
    .defaults       = opusenc_defaults,
 | 
						|
    .priv_class     = &opusenc_class,
 | 
						|
    .priv_data_size = sizeof(OpusEncContext),
 | 
						|
    .init           = opus_encode_init,
 | 
						|
    .encode2        = opus_encode_frame,
 | 
						|
    .close          = opus_encode_end,
 | 
						|
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
 | 
						|
    .capabilities   = AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
 | 
						|
    .supported_samplerates = (const int []){ 48000, 0 },
 | 
						|
    .channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO,
 | 
						|
                                            AV_CH_LAYOUT_STEREO, 0 },
 | 
						|
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
 | 
						|
                                                     AV_SAMPLE_FMT_NONE },
 | 
						|
};
 |