0th order modified bessel function of the first kind are used in multiple places, lets avoid having 3+ different implementations I picked this one as its accurate and quite fast, it can be replaced if a better one is found Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
		
			
				
	
	
		
			320 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * miscellaneous math routines and tables
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include "avutil.h"
 | |
| #include "mathematics.h"
 | |
| #include "libavutil/intmath.h"
 | |
| #include "libavutil/common.h"
 | |
| #include "avassert.h"
 | |
| 
 | |
| /* Stein's binary GCD algorithm:
 | |
|  * https://en.wikipedia.org/wiki/Binary_GCD_algorithm */
 | |
| int64_t av_gcd(int64_t a, int64_t b) {
 | |
|     int za, zb, k;
 | |
|     int64_t u, v;
 | |
|     if (a == 0)
 | |
|         return b;
 | |
|     if (b == 0)
 | |
|         return a;
 | |
|     za = ff_ctzll(a);
 | |
|     zb = ff_ctzll(b);
 | |
|     k  = FFMIN(za, zb);
 | |
|     u = llabs(a >> za);
 | |
|     v = llabs(b >> zb);
 | |
|     while (u != v) {
 | |
|         if (u > v)
 | |
|             FFSWAP(int64_t, v, u);
 | |
|         v -= u;
 | |
|         v >>= ff_ctzll(v);
 | |
|     }
 | |
|     return (uint64_t)u << k;
 | |
| }
 | |
| 
 | |
| int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
 | |
| {
 | |
|     int64_t r = 0;
 | |
|     av_assert2(c > 0);
 | |
|     av_assert2(b >=0);
 | |
|     av_assert2((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4);
 | |
| 
 | |
|     if (c <= 0 || b < 0 || !((unsigned)(rnd&~AV_ROUND_PASS_MINMAX)<=5 && (rnd&~AV_ROUND_PASS_MINMAX)!=4))
 | |
|         return INT64_MIN;
 | |
| 
 | |
|     if (rnd & AV_ROUND_PASS_MINMAX) {
 | |
|         if (a == INT64_MIN || a == INT64_MAX)
 | |
|             return a;
 | |
|         rnd -= AV_ROUND_PASS_MINMAX;
 | |
|     }
 | |
| 
 | |
|     if (a < 0)
 | |
|         return -(uint64_t)av_rescale_rnd(-FFMAX(a, -INT64_MAX), b, c, rnd ^ ((rnd >> 1) & 1));
 | |
| 
 | |
|     if (rnd == AV_ROUND_NEAR_INF)
 | |
|         r = c / 2;
 | |
|     else if (rnd & 1)
 | |
|         r = c - 1;
 | |
| 
 | |
|     if (b <= INT_MAX && c <= INT_MAX) {
 | |
|         if (a <= INT_MAX)
 | |
|             return (a * b + r) / c;
 | |
|         else {
 | |
|             int64_t ad = a / c;
 | |
|             int64_t a2 = (a % c * b + r) / c;
 | |
|             if (ad >= INT32_MAX && b && ad > (INT64_MAX - a2) / b)
 | |
|                 return INT64_MIN;
 | |
|             return ad * b + a2;
 | |
|         }
 | |
|     } else {
 | |
| #if 1
 | |
|         uint64_t a0  = a & 0xFFFFFFFF;
 | |
|         uint64_t a1  = a >> 32;
 | |
|         uint64_t b0  = b & 0xFFFFFFFF;
 | |
|         uint64_t b1  = b >> 32;
 | |
|         uint64_t t1  = a0 * b1 + a1 * b0;
 | |
|         uint64_t t1a = t1 << 32;
 | |
|         int i;
 | |
| 
 | |
|         a0  = a0 * b0 + t1a;
 | |
|         a1  = a1 * b1 + (t1 >> 32) + (a0 < t1a);
 | |
|         a0 += r;
 | |
|         a1 += a0 < r;
 | |
| 
 | |
|         for (i = 63; i >= 0; i--) {
 | |
|             a1 += a1 + ((a0 >> i) & 1);
 | |
|             t1 += t1;
 | |
|             if (c <= a1) {
 | |
|                 a1 -= c;
 | |
|                 t1++;
 | |
|             }
 | |
|         }
 | |
|         if (t1 > INT64_MAX)
 | |
|             return INT64_MIN;
 | |
|         return t1;
 | |
| #else
 | |
|         /* reference code doing (a*b + r) / c, requires libavutil/integer.h */
 | |
|         AVInteger ai;
 | |
|         ai = av_mul_i(av_int2i(a), av_int2i(b));
 | |
|         ai = av_add_i(ai, av_int2i(r));
 | |
| 
 | |
|         return av_i2int(av_div_i(ai, av_int2i(c)));
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| int64_t av_rescale(int64_t a, int64_t b, int64_t c)
 | |
| {
 | |
|     return av_rescale_rnd(a, b, c, AV_ROUND_NEAR_INF);
 | |
| }
 | |
| 
 | |
| int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
 | |
|                          enum AVRounding rnd)
 | |
| {
 | |
|     int64_t b = bq.num * (int64_t)cq.den;
 | |
|     int64_t c = cq.num * (int64_t)bq.den;
 | |
|     return av_rescale_rnd(a, b, c, rnd);
 | |
| }
 | |
| 
 | |
| int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
 | |
| {
 | |
|     return av_rescale_q_rnd(a, bq, cq, AV_ROUND_NEAR_INF);
 | |
| }
 | |
| 
 | |
| int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b)
 | |
| {
 | |
|     int64_t a = tb_a.num * (int64_t)tb_b.den;
 | |
|     int64_t b = tb_b.num * (int64_t)tb_a.den;
 | |
|     if ((FFABS64U(ts_a)|a|FFABS64U(ts_b)|b) <= INT_MAX)
 | |
|         return (ts_a*a > ts_b*b) - (ts_a*a < ts_b*b);
 | |
|     if (av_rescale_rnd(ts_a, a, b, AV_ROUND_DOWN) < ts_b)
 | |
|         return -1;
 | |
|     if (av_rescale_rnd(ts_b, b, a, AV_ROUND_DOWN) < ts_a)
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod)
 | |
| {
 | |
|     int64_t c = (a - b) & (mod - 1);
 | |
|     if (c > (mod >> 1))
 | |
|         c -= mod;
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts,  AVRational fs_tb, int duration, int64_t *last, AVRational out_tb){
 | |
|     int64_t a, b, this;
 | |
| 
 | |
|     av_assert0(in_ts != AV_NOPTS_VALUE);
 | |
|     av_assert0(duration >= 0);
 | |
| 
 | |
|     if (*last == AV_NOPTS_VALUE || !duration || in_tb.num*(int64_t)out_tb.den <= out_tb.num*(int64_t)in_tb.den) {
 | |
| simple_round:
 | |
|         *last = av_rescale_q(in_ts, in_tb, fs_tb) + duration;
 | |
|         return av_rescale_q(in_ts, in_tb, out_tb);
 | |
|     }
 | |
| 
 | |
|     a =  av_rescale_q_rnd(2*in_ts-1, in_tb, fs_tb, AV_ROUND_DOWN)   >>1;
 | |
|     b = (av_rescale_q_rnd(2*in_ts+1, in_tb, fs_tb, AV_ROUND_UP  )+1)>>1;
 | |
|     if (*last < 2*a - b || *last > 2*b - a)
 | |
|         goto simple_round;
 | |
| 
 | |
|     this = av_clip64(*last, a, b);
 | |
|     *last = this + duration;
 | |
| 
 | |
|     return av_rescale_q(this, fs_tb, out_tb);
 | |
| }
 | |
| 
 | |
| int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc)
 | |
| {
 | |
|     int64_t m, d;
 | |
| 
 | |
|     if (inc != 1)
 | |
|         inc_tb = av_mul_q(inc_tb, (AVRational) {inc, 1});
 | |
| 
 | |
|     m = inc_tb.num * (int64_t)ts_tb.den;
 | |
|     d = inc_tb.den * (int64_t)ts_tb.num;
 | |
| 
 | |
|     if (m % d == 0 && ts <= INT64_MAX - m / d)
 | |
|         return ts + m / d;
 | |
|     if (m < d)
 | |
|         return ts;
 | |
| 
 | |
|     {
 | |
|         int64_t old = av_rescale_q(ts, ts_tb, inc_tb);
 | |
|         int64_t old_ts = av_rescale_q(old, inc_tb, ts_tb);
 | |
| 
 | |
|         if (old == INT64_MAX || old == AV_NOPTS_VALUE || old_ts == AV_NOPTS_VALUE)
 | |
|             return ts;
 | |
| 
 | |
|         return av_sat_add64(av_rescale_q(old + 1, inc_tb, ts_tb), ts - old_ts);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline double eval_poly(const double *coeff, int size, double x) {
 | |
|     double sum = coeff[size-1];
 | |
|     int i;
 | |
|     for (i = size-2; i >= 0; --i) {
 | |
|         sum *= x;
 | |
|         sum += coeff[i];
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * 0th order modified bessel function of the first kind.
 | |
|  * Algorithm taken from the Boost project, source:
 | |
|  * https://searchcode.com/codesearch/view/14918379/
 | |
|  * Use, modification and distribution are subject to the
 | |
|  * Boost Software License, Version 1.0 (see notice below).
 | |
|  * Boost Software License - Version 1.0 - August 17th, 2003
 | |
| Permission is hereby granted, free of charge, to any person or organization
 | |
| obtaining a copy of the software and accompanying documentation covered by
 | |
| this license (the "Software") to use, reproduce, display, distribute,
 | |
| execute, and transmit the Software, and to prepare derivative works of the
 | |
| Software, and to permit third-parties to whom the Software is furnished to
 | |
| do so, all subject to the following:
 | |
| 
 | |
| The copyright notices in the Software and this entire statement, including
 | |
| the above license grant, this restriction and the following disclaimer,
 | |
| must be included in all copies of the Software, in whole or in part, and
 | |
| all derivative works of the Software, unless such copies or derivative
 | |
| works are solely in the form of machine-executable object code generated by
 | |
| a source language processor.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 | |
| SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 | |
| FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 | |
| ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
| DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| double av_bessel_i0(double x) {
 | |
| // Modified Bessel function of the first kind of order zero
 | |
| // minimax rational approximations on intervals, see
 | |
| // Blair and Edwards, Chalk River Report AECL-4928, 1974
 | |
|     static const double p1[] = {
 | |
|         -2.2335582639474375249e+15,
 | |
|         -5.5050369673018427753e+14,
 | |
|         -3.2940087627407749166e+13,
 | |
|         -8.4925101247114157499e+11,
 | |
|         -1.1912746104985237192e+10,
 | |
|         -1.0313066708737980747e+08,
 | |
|         -5.9545626019847898221e+05,
 | |
|         -2.4125195876041896775e+03,
 | |
|         -7.0935347449210549190e+00,
 | |
|         -1.5453977791786851041e-02,
 | |
|         -2.5172644670688975051e-05,
 | |
|         -3.0517226450451067446e-08,
 | |
|         -2.6843448573468483278e-11,
 | |
|         -1.5982226675653184646e-14,
 | |
|         -5.2487866627945699800e-18,
 | |
|     };
 | |
|     static const double q1[] = {
 | |
|         -2.2335582639474375245e+15,
 | |
|          7.8858692566751002988e+12,
 | |
|         -1.2207067397808979846e+10,
 | |
|          1.0377081058062166144e+07,
 | |
|         -4.8527560179962773045e+03,
 | |
|          1.0,
 | |
|     };
 | |
|     static const double p2[] = {
 | |
|         -2.2210262233306573296e-04,
 | |
|          1.3067392038106924055e-02,
 | |
|         -4.4700805721174453923e-01,
 | |
|          5.5674518371240761397e+00,
 | |
|         -2.3517945679239481621e+01,
 | |
|          3.1611322818701131207e+01,
 | |
|         -9.6090021968656180000e+00,
 | |
|     };
 | |
|     static const double q2[] = {
 | |
|         -5.5194330231005480228e-04,
 | |
|          3.2547697594819615062e-02,
 | |
|         -1.1151759188741312645e+00,
 | |
|          1.3982595353892851542e+01,
 | |
|         -6.0228002066743340583e+01,
 | |
|          8.5539563258012929600e+01,
 | |
|         -3.1446690275135491500e+01,
 | |
|         1.0,
 | |
|     };
 | |
|     double y, r, factor;
 | |
|     if (x == 0)
 | |
|         return 1.0;
 | |
|     x = fabs(x);
 | |
|     if (x <= 15) {
 | |
|         y = x * x;
 | |
|         return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
 | |
|     }
 | |
|     else {
 | |
|         y = 1 / x - 1.0 / 15;
 | |
|         r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
 | |
|         factor = exp(x) / sqrt(x);
 | |
|         return factor * r;
 | |
|     }
 | |
| }
 |