664 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			664 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Ut Video encoder
 | |
|  * Copyright (c) 2012 Jan Ekström
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * Ut Video encoder
 | |
|  */
 | |
| 
 | |
| #include "libavutil/imgutils.h"
 | |
| #include "libavutil/intreadwrite.h"
 | |
| #include "libavutil/opt.h"
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "codec_internal.h"
 | |
| #include "encode.h"
 | |
| #include "bswapdsp.h"
 | |
| #include "bytestream.h"
 | |
| #include "put_bits.h"
 | |
| #include "mathops.h"
 | |
| #include "utvideo.h"
 | |
| #include "huffman.h"
 | |
| 
 | |
| typedef struct HuffEntry {
 | |
|     uint16_t sym;
 | |
|     uint8_t  len;
 | |
|     uint32_t code;
 | |
| } HuffEntry;
 | |
| 
 | |
| /* Compare huffman tree nodes */
 | |
| static int ut_huff_cmp_len(const void *a, const void *b)
 | |
| {
 | |
|     const HuffEntry *aa = a, *bb = b;
 | |
|     return (aa->len - bb->len)*256 + aa->sym - bb->sym;
 | |
| }
 | |
| 
 | |
| /* Compare huffentry symbols */
 | |
| static int huff_cmp_sym(const void *a, const void *b)
 | |
| {
 | |
|     const HuffEntry *aa = a, *bb = b;
 | |
|     return aa->sym - bb->sym;
 | |
| }
 | |
| 
 | |
| static av_cold int utvideo_encode_close(AVCodecContext *avctx)
 | |
| {
 | |
|     UtvideoContext *c = avctx->priv_data;
 | |
|     int i;
 | |
| 
 | |
|     av_freep(&c->slice_bits);
 | |
|     for (i = 0; i < 4; i++)
 | |
|         av_freep(&c->slice_buffer[i]);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static av_cold int utvideo_encode_init(AVCodecContext *avctx)
 | |
| {
 | |
|     UtvideoContext *c = avctx->priv_data;
 | |
|     int i, subsampled_height;
 | |
|     uint32_t original_format;
 | |
| 
 | |
|     c->avctx           = avctx;
 | |
|     c->frame_info_size = 4;
 | |
|     c->slice_stride    = FFALIGN(avctx->width, 32);
 | |
| 
 | |
|     switch (avctx->pix_fmt) {
 | |
|     case AV_PIX_FMT_GBRP:
 | |
|         c->planes        = 3;
 | |
|         avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
 | |
|         original_format  = UTVIDEO_RGB;
 | |
|         break;
 | |
|     case AV_PIX_FMT_GBRAP:
 | |
|         c->planes        = 4;
 | |
|         avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
 | |
|         original_format  = UTVIDEO_RGBA;
 | |
|         avctx->bits_per_coded_sample = 32;
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV420P:
 | |
|         if (avctx->width & 1 || avctx->height & 1) {
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "4:2:0 video requires even width and height.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         c->planes        = 3;
 | |
|         if (avctx->colorspace == AVCOL_SPC_BT709)
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
 | |
|         else
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
 | |
|         original_format  = UTVIDEO_420;
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV422P:
 | |
|         if (avctx->width & 1) {
 | |
|             av_log(avctx, AV_LOG_ERROR,
 | |
|                    "4:2:2 video requires even width.\n");
 | |
|             return AVERROR_INVALIDDATA;
 | |
|         }
 | |
|         c->planes        = 3;
 | |
|         if (avctx->colorspace == AVCOL_SPC_BT709)
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
 | |
|         else
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
 | |
|         original_format  = UTVIDEO_422;
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV444P:
 | |
|         c->planes        = 3;
 | |
|         if (avctx->colorspace == AVCOL_SPC_BT709)
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'H', '4');
 | |
|         else
 | |
|             avctx->codec_tag = MKTAG('U', 'L', 'Y', '4');
 | |
|         original_format  = UTVIDEO_444;
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
 | |
|                avctx->pix_fmt);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     ff_bswapdsp_init(&c->bdsp);
 | |
|     ff_llvidencdsp_init(&c->llvidencdsp);
 | |
| 
 | |
|     if (c->frame_pred == PRED_GRADIENT) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
 | |
|         return AVERROR_OPTION_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check the asked slice count for obviously invalid
 | |
|      * values (> 256 or negative).
 | |
|      */
 | |
|     if (avctx->slices > 256 || avctx->slices < 0) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
 | |
|                avctx->slices);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* Check that the slice count is not larger than the subsampled height */
 | |
|     subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
 | |
|     if (avctx->slices > subsampled_height) {
 | |
|         av_log(avctx, AV_LOG_ERROR,
 | |
|                "Slice count %d is larger than the subsampling-applied height %d.\n",
 | |
|                avctx->slices, subsampled_height);
 | |
|         return AVERROR(EINVAL);
 | |
|     }
 | |
| 
 | |
|     /* extradata size is 4 * 32 bits */
 | |
|     avctx->extradata_size = 16;
 | |
| 
 | |
|     avctx->extradata = av_mallocz(avctx->extradata_size +
 | |
|                                   AV_INPUT_BUFFER_PADDING_SIZE);
 | |
| 
 | |
|     if (!avctx->extradata) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < c->planes; i++) {
 | |
|         c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
 | |
|                                        AV_INPUT_BUFFER_PADDING_SIZE);
 | |
|         if (!c->slice_buffer[i]) {
 | |
|             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
 | |
|             return AVERROR(ENOMEM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set the version of the encoder.
 | |
|      * Last byte is "implementation ID", which is
 | |
|      * obtained from the creator of the format.
 | |
|      * Libavcodec has been assigned with the ID 0xF0.
 | |
|      */
 | |
|     AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
 | |
| 
 | |
|     /*
 | |
|      * Set the "original format"
 | |
|      * Not used for anything during decoding.
 | |
|      */
 | |
|     AV_WL32(avctx->extradata + 4, original_format);
 | |
| 
 | |
|     /* Write 4 as the 'frame info size' */
 | |
|     AV_WL32(avctx->extradata + 8, c->frame_info_size);
 | |
| 
 | |
|     /*
 | |
|      * Set how many slices are going to be used.
 | |
|      * By default uses multiple slices depending on the subsampled height.
 | |
|      * This enables multithreading in the official decoder.
 | |
|      */
 | |
|     if (!avctx->slices) {
 | |
|         c->slices = subsampled_height / 120;
 | |
| 
 | |
|         if (!c->slices)
 | |
|             c->slices = 1;
 | |
|         else if (c->slices > 256)
 | |
|             c->slices = 256;
 | |
|     } else {
 | |
|         c->slices = avctx->slices;
 | |
|     }
 | |
| 
 | |
|     /* Set compression mode */
 | |
|     c->compression = COMP_HUFF;
 | |
| 
 | |
|     /*
 | |
|      * Set the encoding flags:
 | |
|      * - Slice count minus 1
 | |
|      * - Interlaced encoding mode flag, set to zero for now.
 | |
|      * - Compression mode (none/huff)
 | |
|      * And write the flags.
 | |
|      */
 | |
|     c->flags  = (c->slices - 1) << 24;
 | |
|     c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
 | |
|     c->flags |= c->compression;
 | |
| 
 | |
|     AV_WL32(avctx->extradata + 12, c->flags);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void mangle_rgb_planes(uint8_t *dst[4], ptrdiff_t dst_stride,
 | |
|                               uint8_t *const src[4], int planes, const int stride[4],
 | |
|                               int width, int height)
 | |
| {
 | |
|     int i, j;
 | |
|     int k = 2 * dst_stride;
 | |
|     const uint8_t *sg = src[0];
 | |
|     const uint8_t *sb = src[1];
 | |
|     const uint8_t *sr = src[2];
 | |
|     const uint8_t *sa = src[3];
 | |
|     unsigned int g;
 | |
| 
 | |
|     for (j = 0; j < height; j++) {
 | |
|         if (planes == 3) {
 | |
|             for (i = 0; i < width; i++) {
 | |
|                 g         = sg[i];
 | |
|                 dst[0][k] = g;
 | |
|                 g        += 0x80;
 | |
|                 dst[1][k] = sb[i] - g;
 | |
|                 dst[2][k] = sr[i] - g;
 | |
|                 k++;
 | |
|             }
 | |
|         } else {
 | |
|             for (i = 0; i < width; i++) {
 | |
|                 g         = sg[i];
 | |
|                 dst[0][k] = g;
 | |
|                 g        += 0x80;
 | |
|                 dst[1][k] = sb[i] - g;
 | |
|                 dst[2][k] = sr[i] - g;
 | |
|                 dst[3][k] = sa[i];
 | |
|                 k++;
 | |
|             }
 | |
|             sa += stride[3];
 | |
|         }
 | |
|         k += dst_stride - width;
 | |
|         sg += stride[0];
 | |
|         sb += stride[1];
 | |
|         sr += stride[2];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #undef A
 | |
| #undef B
 | |
| 
 | |
| /* Write data to a plane with median prediction */
 | |
| static void median_predict(UtvideoContext *c, const uint8_t *src, uint8_t *dst,
 | |
|                            ptrdiff_t stride, int width, int height)
 | |
| {
 | |
|     int i, j;
 | |
|     int A, B;
 | |
|     uint8_t prev;
 | |
| 
 | |
|     /* First line uses left neighbour prediction */
 | |
|     prev = 0x80; /* Set the initial value */
 | |
|     for (i = 0; i < width; i++) {
 | |
|         *dst++ = src[i] - prev;
 | |
|         prev   = src[i];
 | |
|     }
 | |
| 
 | |
|     if (height == 1)
 | |
|         return;
 | |
| 
 | |
|     src += stride;
 | |
| 
 | |
|     /*
 | |
|      * Second line uses top prediction for the first sample,
 | |
|      * and median for the rest.
 | |
|      */
 | |
|     A = B = 0;
 | |
| 
 | |
|     /* Rest of the coded part uses median prediction */
 | |
|     for (j = 1; j < height; j++) {
 | |
|         c->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &A, &B);
 | |
|         dst += width;
 | |
|         src += stride;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Count the usage of values in a plane */
 | |
| static void count_usage(uint8_t *src, int width,
 | |
|                         int height, uint64_t *counts)
 | |
| {
 | |
|     int i, j;
 | |
| 
 | |
|     for (j = 0; j < height; j++) {
 | |
|         for (i = 0; i < width; i++) {
 | |
|             counts[src[i]]++;
 | |
|         }
 | |
|         src += width;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Calculate the actual huffman codes from the code lengths */
 | |
| static void calculate_codes(HuffEntry *he)
 | |
| {
 | |
|     int last, i;
 | |
|     uint32_t code;
 | |
| 
 | |
|     qsort(he, 256, sizeof(*he), ut_huff_cmp_len);
 | |
| 
 | |
|     last = 255;
 | |
|     while (he[last].len == 255 && last)
 | |
|         last--;
 | |
| 
 | |
|     code = 0;
 | |
|     for (i = last; i >= 0; i--) {
 | |
|         he[i].code  = code >> (32 - he[i].len);
 | |
|         code       += 0x80000000u >> (he[i].len - 1);
 | |
|     }
 | |
| 
 | |
|     qsort(he, 256, sizeof(*he), huff_cmp_sym);
 | |
| }
 | |
| 
 | |
| /* Write huffman bit codes to a memory block */
 | |
| static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
 | |
|                             int width, int height, HuffEntry *he)
 | |
| {
 | |
|     PutBitContext pb;
 | |
|     int i, j;
 | |
|     int count;
 | |
| 
 | |
|     init_put_bits(&pb, dst, dst_size);
 | |
| 
 | |
|     /* Write the codes */
 | |
|     for (j = 0; j < height; j++) {
 | |
|         for (i = 0; i < width; i++)
 | |
|             put_bits(&pb, he[src[i]].len, he[src[i]].code);
 | |
| 
 | |
|         src += width;
 | |
|     }
 | |
| 
 | |
|     /* Pad output to a 32-bit boundary */
 | |
|     count = put_bits_count(&pb) & 0x1F;
 | |
| 
 | |
|     if (count)
 | |
|         put_bits(&pb, 32 - count, 0);
 | |
| 
 | |
|     /* Flush the rest with zeroes */
 | |
|     flush_put_bits(&pb);
 | |
| 
 | |
|     /* Return the amount of bytes written */
 | |
|     return put_bytes_output(&pb);
 | |
| }
 | |
| 
 | |
| static int encode_plane(AVCodecContext *avctx, const uint8_t *src,
 | |
|                         uint8_t *dst, ptrdiff_t stride, int plane_no,
 | |
|                         int width, int height, PutByteContext *pb)
 | |
| {
 | |
|     UtvideoContext *c        = avctx->priv_data;
 | |
|     uint8_t  lengths[256];
 | |
|     uint64_t counts[256]     = { 0 };
 | |
| 
 | |
|     HuffEntry he[256];
 | |
| 
 | |
|     uint32_t offset = 0, slice_len = 0;
 | |
|     const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
 | |
|     int      i, sstart, send = 0;
 | |
|     int      symbol;
 | |
|     int      ret;
 | |
| 
 | |
|     /* Do prediction / make planes */
 | |
|     switch (c->frame_pred) {
 | |
|     case PRED_NONE:
 | |
|         for (i = 0; i < c->slices; i++) {
 | |
|             sstart = send;
 | |
|             send   = height * (i + 1) / c->slices & cmask;
 | |
|             av_image_copy_plane(dst + sstart * width, width,
 | |
|                                 src + sstart * stride, stride,
 | |
|                                 width, send - sstart);
 | |
|         }
 | |
|         break;
 | |
|     case PRED_LEFT:
 | |
|         for (i = 0; i < c->slices; i++) {
 | |
|             sstart = send;
 | |
|             send   = height * (i + 1) / c->slices & cmask;
 | |
|             c->llvidencdsp.sub_left_predict(dst + sstart * width, src + sstart * stride, stride, width, send - sstart);
 | |
|         }
 | |
|         break;
 | |
|     case PRED_MEDIAN:
 | |
|         for (i = 0; i < c->slices; i++) {
 | |
|             sstart = send;
 | |
|             send   = height * (i + 1) / c->slices & cmask;
 | |
|             median_predict(c, src + sstart * stride, dst + sstart * width,
 | |
|                            stride, width, send - sstart);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
 | |
|                c->frame_pred);
 | |
|         return AVERROR_OPTION_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     /* Count the usage of values */
 | |
|     count_usage(dst, width, height, counts);
 | |
| 
 | |
|     /* Check for a special case where only one symbol was used */
 | |
|     for (symbol = 0; symbol < 256; symbol++) {
 | |
|         /* If non-zero count is found, see if it matches width * height */
 | |
|         if (counts[symbol]) {
 | |
|             /* Special case if only one symbol was used */
 | |
|             if (counts[symbol] == width * (int64_t)height) {
 | |
|                 /*
 | |
|                  * Write a zero for the single symbol
 | |
|                  * used in the plane, else 0xFF.
 | |
|                  */
 | |
|                 for (i = 0; i < 256; i++) {
 | |
|                     if (i == symbol)
 | |
|                         bytestream2_put_byte(pb, 0);
 | |
|                     else
 | |
|                         bytestream2_put_byte(pb, 0xFF);
 | |
|                 }
 | |
| 
 | |
|                 /* Write zeroes for lengths */
 | |
|                 for (i = 0; i < c->slices; i++)
 | |
|                     bytestream2_put_le32(pb, 0);
 | |
| 
 | |
|                 /* And that's all for that plane folks */
 | |
|                 return 0;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Calculate huffman lengths */
 | |
|     if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
 | |
|         return ret;
 | |
| 
 | |
|     /*
 | |
|      * Write the plane's header into the output packet:
 | |
|      * - huffman code lengths (256 bytes)
 | |
|      * - slice end offsets (gotten from the slice lengths)
 | |
|      */
 | |
|     for (i = 0; i < 256; i++) {
 | |
|         bytestream2_put_byte(pb, lengths[i]);
 | |
| 
 | |
|         he[i].len = lengths[i];
 | |
|         he[i].sym = i;
 | |
|     }
 | |
| 
 | |
|     /* Calculate the huffman codes themselves */
 | |
|     calculate_codes(he);
 | |
| 
 | |
|     send = 0;
 | |
|     for (i = 0; i < c->slices; i++) {
 | |
|         sstart  = send;
 | |
|         send    = height * (i + 1) / c->slices & cmask;
 | |
| 
 | |
|         /*
 | |
|          * Write the huffman codes to a buffer,
 | |
|          * get the offset in bytes.
 | |
|          */
 | |
|         offset += write_huff_codes(dst + sstart * width, c->slice_bits,
 | |
|                                    width * height + 4, width,
 | |
|                                    send - sstart, he);
 | |
| 
 | |
|         slice_len = offset - slice_len;
 | |
| 
 | |
|         /* Byteswap the written huffman codes */
 | |
|         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
 | |
|                           (uint32_t *) c->slice_bits,
 | |
|                           slice_len >> 2);
 | |
| 
 | |
|         /* Write the offset to the stream */
 | |
|         bytestream2_put_le32(pb, offset);
 | |
| 
 | |
|         /* Seek to the data part of the packet */
 | |
|         bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
 | |
|                            offset - slice_len, SEEK_CUR);
 | |
| 
 | |
|         /* Write the slices' data into the output packet */
 | |
|         bytestream2_put_buffer(pb, c->slice_bits, slice_len);
 | |
| 
 | |
|         /* Seek back to the slice offsets */
 | |
|         bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
 | |
|                            SEEK_CUR);
 | |
| 
 | |
|         slice_len = offset;
 | |
|     }
 | |
| 
 | |
|     /* And at the end seek to the end of written slice(s) */
 | |
|     bytestream2_seek_p(pb, offset, SEEK_CUR);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
 | |
|                                 const AVFrame *pic, int *got_packet)
 | |
| {
 | |
|     UtvideoContext *c = avctx->priv_data;
 | |
|     PutByteContext pb;
 | |
| 
 | |
|     uint32_t frame_info;
 | |
| 
 | |
|     uint8_t *dst;
 | |
| 
 | |
|     int width = avctx->width, height = avctx->height;
 | |
|     int i, ret = 0;
 | |
| 
 | |
|     /* Allocate a new packet if needed, and set it to the pointer dst */
 | |
|     ret = ff_alloc_packet(avctx, pkt, (256 + 4 * c->slices + width * height)
 | |
|                                       * c->planes + 4);
 | |
| 
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     dst = pkt->data;
 | |
| 
 | |
|     bytestream2_init_writer(&pb, dst, pkt->size);
 | |
| 
 | |
|     av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
 | |
| 
 | |
|     if (!c->slice_bits) {
 | |
|         av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
 | |
|         return AVERROR(ENOMEM);
 | |
|     }
 | |
| 
 | |
|     /* In case of RGB, mangle the planes to Ut Video's format */
 | |
|     if (avctx->pix_fmt == AV_PIX_FMT_GBRAP || avctx->pix_fmt == AV_PIX_FMT_GBRP)
 | |
|         mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data,
 | |
|                           c->planes, pic->linesize, width, height);
 | |
| 
 | |
|     /* Deal with the planes */
 | |
|     switch (avctx->pix_fmt) {
 | |
|     case AV_PIX_FMT_GBRP:
 | |
|     case AV_PIX_FMT_GBRAP:
 | |
|         for (i = 0; i < c->planes; i++) {
 | |
|             ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
 | |
|                                c->slice_buffer[i], c->slice_stride, i,
 | |
|                                width, height, &pb);
 | |
| 
 | |
|             if (ret) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV444P:
 | |
|         for (i = 0; i < c->planes; i++) {
 | |
|             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
 | |
|                                pic->linesize[i], i, width, height, &pb);
 | |
| 
 | |
|             if (ret) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV422P:
 | |
|         for (i = 0; i < c->planes; i++) {
 | |
|             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
 | |
|                                pic->linesize[i], i, width >> !!i, height, &pb);
 | |
| 
 | |
|             if (ret) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case AV_PIX_FMT_YUV420P:
 | |
|         for (i = 0; i < c->planes; i++) {
 | |
|             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
 | |
|                                pic->linesize[i], i, width >> !!i, height >> !!i,
 | |
|                                &pb);
 | |
| 
 | |
|             if (ret) {
 | |
|                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
 | |
|                avctx->pix_fmt);
 | |
|         return AVERROR_INVALIDDATA;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Write frame information (LE 32-bit unsigned)
 | |
|      * into the output packet.
 | |
|      * Contains the prediction method.
 | |
|      */
 | |
|     frame_info = c->frame_pred << 8;
 | |
|     bytestream2_put_le32(&pb, frame_info);
 | |
| 
 | |
|     pkt->size   = bytestream2_tell_p(&pb);
 | |
| 
 | |
|     /* Packet should be done */
 | |
|     *got_packet = 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define OFFSET(x) offsetof(UtvideoContext, x)
 | |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
 | |
| static const AVOption options[] = {
 | |
| { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, { .i64 = PRED_LEFT }, PRED_NONE, PRED_MEDIAN, VE, "pred" },
 | |
|     { "none",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_NONE }, INT_MIN, INT_MAX, VE, "pred" },
 | |
|     { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_LEFT }, INT_MIN, INT_MAX, VE, "pred" },
 | |
|     { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_GRADIENT }, INT_MIN, INT_MAX, VE, "pred" },
 | |
|     { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRED_MEDIAN }, INT_MIN, INT_MAX, VE, "pred" },
 | |
| 
 | |
|     { NULL},
 | |
| };
 | |
| 
 | |
| static const AVClass utvideo_class = {
 | |
|     .class_name = "utvideo",
 | |
|     .item_name  = av_default_item_name,
 | |
|     .option     = options,
 | |
|     .version    = LIBAVUTIL_VERSION_INT,
 | |
| };
 | |
| 
 | |
| const FFCodec ff_utvideo_encoder = {
 | |
|     .p.name         = "utvideo",
 | |
|     CODEC_LONG_NAME("Ut Video"),
 | |
|     .p.type         = AVMEDIA_TYPE_VIDEO,
 | |
|     .p.id           = AV_CODEC_ID_UTVIDEO,
 | |
|     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
 | |
|                       AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
 | |
|     .priv_data_size = sizeof(UtvideoContext),
 | |
|     .p.priv_class   = &utvideo_class,
 | |
|     .init           = utvideo_encode_init,
 | |
|     FF_CODEC_ENCODE_CB(utvideo_encode_frame),
 | |
|     .close          = utvideo_encode_close,
 | |
|     .p.pix_fmts     = (const enum AVPixelFormat[]) {
 | |
|                           AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
 | |
|                           AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_NONE
 | |
|                       },
 | |
|     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
 | |
| };
 |