129 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2018 Sergey Lavrushkin
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file
 | |
|  * DNN inference engine interface.
 | |
|  */
 | |
| 
 | |
| #ifndef AVFILTER_DNN_INTERFACE_H
 | |
| #define AVFILTER_DNN_INTERFACE_H
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include "libavutil/frame.h"
 | |
| #include "avfilter.h"
 | |
| 
 | |
| #define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
 | |
| 
 | |
| typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
 | |
| 
 | |
| typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
 | |
| 
 | |
| typedef enum {
 | |
|     DCO_NONE,
 | |
|     DCO_BGR,
 | |
|     DCO_RGB,
 | |
| } DNNColorOrder;
 | |
| 
 | |
| typedef enum {
 | |
|     DAST_FAIL,              // something wrong
 | |
|     DAST_EMPTY_QUEUE,       // no more inference result to get
 | |
|     DAST_NOT_READY,         // all queued inferences are not finished
 | |
|     DAST_SUCCESS            // got a result frame successfully
 | |
| } DNNAsyncStatusType;
 | |
| 
 | |
| typedef enum {
 | |
|     DFT_NONE,
 | |
|     DFT_PROCESS_FRAME,      // process the whole frame
 | |
|     DFT_ANALYTICS_DETECT,   // detect from the whole frame
 | |
|     DFT_ANALYTICS_CLASSIFY, // classify for each bounding box
 | |
| }DNNFunctionType;
 | |
| 
 | |
| typedef struct DNNData{
 | |
|     void *data;
 | |
|     int width, height, channels;
 | |
|     // dt and order together decide the color format
 | |
|     DNNDataType dt;
 | |
|     DNNColorOrder order;
 | |
| } DNNData;
 | |
| 
 | |
| typedef struct DNNExecBaseParams {
 | |
|     const char *input_name;
 | |
|     const char **output_names;
 | |
|     uint32_t nb_output;
 | |
|     AVFrame *in_frame;
 | |
|     AVFrame *out_frame;
 | |
| } DNNExecBaseParams;
 | |
| 
 | |
| typedef struct DNNExecClassificationParams {
 | |
|     DNNExecBaseParams base;
 | |
|     const char *target;
 | |
| } DNNExecClassificationParams;
 | |
| 
 | |
| typedef int (*FramePrePostProc)(AVFrame *frame, DNNData *model, AVFilterContext *filter_ctx);
 | |
| typedef int (*DetectPostProc)(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx);
 | |
| typedef int (*ClassifyPostProc)(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx);
 | |
| 
 | |
| typedef struct DNNModel{
 | |
|     // Stores model that can be different for different backends.
 | |
|     void *model;
 | |
|     // Stores options when the model is executed by the backend
 | |
|     const char *options;
 | |
|     // Stores FilterContext used for the interaction between AVFrame and DNNData
 | |
|     AVFilterContext *filter_ctx;
 | |
|     // Stores function type of the model
 | |
|     DNNFunctionType func_type;
 | |
|     // Gets model input information
 | |
|     // Just reuse struct DNNData here, actually the DNNData.data field is not needed.
 | |
|     int (*get_input)(void *model, DNNData *input, const char *input_name);
 | |
|     // Gets model output width/height with given input w/h
 | |
|     int (*get_output)(void *model, const char *input_name, int input_width, int input_height,
 | |
|                                 const char *output_name, int *output_width, int *output_height);
 | |
|     // set the pre process to transfer data from AVFrame to DNNData
 | |
|     // the default implementation within DNN is used if it is not provided by the filter
 | |
|     FramePrePostProc frame_pre_proc;
 | |
|     // set the post process to transfer data from DNNData to AVFrame
 | |
|     // the default implementation within DNN is used if it is not provided by the filter
 | |
|     FramePrePostProc frame_post_proc;
 | |
|     // set the post process to interpret detect result from DNNData
 | |
|     DetectPostProc detect_post_proc;
 | |
|     // set the post process to interpret classify result from DNNData
 | |
|     ClassifyPostProc classify_post_proc;
 | |
| } DNNModel;
 | |
| 
 | |
| // Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
 | |
| typedef struct DNNModule{
 | |
|     // Loads model and parameters from given file. Returns NULL if it is not possible.
 | |
|     DNNModel *(*load_model)(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
 | |
|     // Executes model with specified input and output. Returns the error code otherwise.
 | |
|     int (*execute_model)(const DNNModel *model, DNNExecBaseParams *exec_params);
 | |
|     // Retrieve inference result.
 | |
|     DNNAsyncStatusType (*get_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
 | |
|     // Flush all the pending tasks.
 | |
|     int (*flush)(const DNNModel *model);
 | |
|     // Frees memory allocated for model.
 | |
|     void (*free_model)(DNNModel **model);
 | |
| } DNNModule;
 | |
| 
 | |
| // Initializes DNNModule depending on chosen backend.
 | |
| const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx);
 | |
| 
 | |
| #endif
 |