273 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * audio resampling
 | 
						|
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 
 | 
						|
/**
 | 
						|
 * @file resample2.c
 | 
						|
 * audio resampling
 | 
						|
 * @author Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 */
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "common.h"
 | 
						|
#include "dsputil.h"
 | 
						|
 | 
						|
#if 1
 | 
						|
#define FILTER_SHIFT 15
 | 
						|
 | 
						|
#define FELEM int16_t
 | 
						|
#define FELEM2 int32_t
 | 
						|
#define FELEM_MAX INT16_MAX
 | 
						|
#define FELEM_MIN INT16_MIN
 | 
						|
#else
 | 
						|
#define FILTER_SHIFT 22
 | 
						|
 | 
						|
#define FELEM int32_t
 | 
						|
#define FELEM2 int64_t
 | 
						|
#define FELEM_MAX INT32_MAX
 | 
						|
#define FELEM_MIN INT32_MIN
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
typedef struct AVResampleContext{
 | 
						|
    FELEM *filter_bank;
 | 
						|
    int filter_length;
 | 
						|
    int ideal_dst_incr;
 | 
						|
    int dst_incr;
 | 
						|
    int index;
 | 
						|
    int frac;
 | 
						|
    int src_incr;
 | 
						|
    int compensation_distance;
 | 
						|
    int phase_shift;
 | 
						|
    int phase_mask;
 | 
						|
    int linear;
 | 
						|
}AVResampleContext;
 | 
						|
 | 
						|
/**
 | 
						|
 * 0th order modified bessel function of the first kind.
 | 
						|
 */
 | 
						|
double bessel(double x){
 | 
						|
    double v=1;
 | 
						|
    double t=1;
 | 
						|
    int i;
 | 
						|
    
 | 
						|
    for(i=1; i<50; i++){
 | 
						|
        t *= i;
 | 
						|
        v += pow(x*x/4, i)/(t*t);
 | 
						|
    }
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * builds a polyphase filterbank.
 | 
						|
 * @param factor resampling factor
 | 
						|
 * @param scale wanted sum of coefficients for each filter
 | 
						|
 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
 | 
						|
 */
 | 
						|
void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
 | 
						|
    int ph, i, v;
 | 
						|
    double x, y, w, tab[tap_count];
 | 
						|
    const int center= (tap_count-1)/2;
 | 
						|
 | 
						|
    /* if upsampling, only need to interpolate, no filter */
 | 
						|
    if (factor > 1.0)
 | 
						|
        factor = 1.0;
 | 
						|
 | 
						|
    for(ph=0;ph<phase_count;ph++) {
 | 
						|
        double norm = 0;
 | 
						|
        double e= 0;
 | 
						|
        for(i=0;i<tap_count;i++) {
 | 
						|
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 | 
						|
            if (x == 0) y = 1.0;
 | 
						|
            else        y = sin(x) / x;
 | 
						|
            switch(type){
 | 
						|
            case 0:{
 | 
						|
                const float d= -0.5; //first order derivative = -0.5
 | 
						|
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 | 
						|
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 | 
						|
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 | 
						|
                break;}
 | 
						|
            case 1:
 | 
						|
                w = 2.0*x / (factor*tap_count) + M_PI;
 | 
						|
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                w = 2.0*x / (factor*tap_count*M_PI);
 | 
						|
                y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            tab[i] = y;
 | 
						|
            norm += y;
 | 
						|
        }
 | 
						|
 | 
						|
        /* normalize so that an uniform color remains the same */
 | 
						|
        for(i=0;i<tap_count;i++) {
 | 
						|
            v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
 | 
						|
            filter[ph * tap_count + i] = v;
 | 
						|
            e += tab[i] * scale / norm - v;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * initalizes a audio resampler.
 | 
						|
 * note, if either rate is not a integer then simply scale both rates up so they are
 | 
						|
 */
 | 
						|
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
 | 
						|
    AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
 | 
						|
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 | 
						|
    int phase_count= 1<<phase_shift;
 | 
						|
    
 | 
						|
    c->phase_shift= phase_shift;
 | 
						|
    c->phase_mask= phase_count-1;
 | 
						|
    c->linear= linear;
 | 
						|
 | 
						|
    c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
 | 
						|
    c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
 | 
						|
    av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
 | 
						|
    memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
 | 
						|
    c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
 | 
						|
 | 
						|
    c->src_incr= out_rate;
 | 
						|
    c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
 | 
						|
    c->index= -phase_count*((c->filter_length-1)/2);
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
void av_resample_close(AVResampleContext *c){
 | 
						|
    av_freep(&c->filter_bank);
 | 
						|
    av_freep(&c);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Compensates samplerate/timestamp drift. The compensation is done by changing
 | 
						|
 * the resampler parameters, so no audible clicks or similar distortions ocur
 | 
						|
 * @param compensation_distance distance in output samples over which the compensation should be performed
 | 
						|
 * @param sample_delta number of output samples which should be output less
 | 
						|
 *
 | 
						|
 * example: av_resample_compensate(c, 10, 500)
 | 
						|
 * here instead of 510 samples only 500 samples would be output
 | 
						|
 *
 | 
						|
 * note, due to rounding the actual compensation might be slightly different, 
 | 
						|
 * especially if the compensation_distance is large and the in_rate used during init is small
 | 
						|
 */
 | 
						|
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
 | 
						|
//    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
 | 
						|
    c->compensation_distance= compensation_distance;
 | 
						|
    c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * resamples.
 | 
						|
 * @param src an array of unconsumed samples
 | 
						|
 * @param consumed the number of samples of src which have been consumed are returned here
 | 
						|
 * @param src_size the number of unconsumed samples available
 | 
						|
 * @param dst_size the amount of space in samples available in dst
 | 
						|
 * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
 | 
						|
 * @return the number of samples written in dst or -1 if an error occured
 | 
						|
 */
 | 
						|
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
 | 
						|
    int dst_index, i;
 | 
						|
    int index= c->index;
 | 
						|
    int frac= c->frac;
 | 
						|
    int dst_incr_frac= c->dst_incr % c->src_incr;
 | 
						|
    int dst_incr=      c->dst_incr / c->src_incr;
 | 
						|
    int compensation_distance= c->compensation_distance;
 | 
						|
 | 
						|
  if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
 | 
						|
        int64_t index2= ((int64_t)index)<<32;
 | 
						|
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 | 
						|
        dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
 | 
						|
        
 | 
						|
        for(dst_index=0; dst_index < dst_size; dst_index++){
 | 
						|
            dst[dst_index] = src[index2>>32];
 | 
						|
            index2 += incr;
 | 
						|
        }
 | 
						|
        frac += dst_index * dst_incr_frac;
 | 
						|
        index += dst_index * dst_incr;
 | 
						|
        index += frac / c->src_incr;
 | 
						|
        frac %= c->src_incr;
 | 
						|
  }else{
 | 
						|
    for(dst_index=0; dst_index < dst_size; dst_index++){
 | 
						|
        FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
 | 
						|
        int sample_index= index >> c->phase_shift;
 | 
						|
        FELEM2 val=0;
 | 
						|
                
 | 
						|
        if(sample_index < 0){
 | 
						|
            for(i=0; i<c->filter_length; i++)
 | 
						|
                val += src[ABS(sample_index + i) % src_size] * filter[i];
 | 
						|
        }else if(sample_index + c->filter_length > src_size){
 | 
						|
            break;
 | 
						|
        }else if(c->linear){
 | 
						|
            int64_t v=0;
 | 
						|
            int sub_phase= (frac<<8) / c->src_incr;
 | 
						|
            for(i=0; i<c->filter_length; i++){
 | 
						|
                int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
 | 
						|
                v += src[sample_index + i] * coeff;
 | 
						|
            }
 | 
						|
            val= v>>8;
 | 
						|
        }else{
 | 
						|
            for(i=0; i<c->filter_length; i++){
 | 
						|
                val += src[sample_index + i] * (FELEM2)filter[i];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
 | 
						|
        dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
 | 
						|
 | 
						|
        frac += dst_incr_frac;
 | 
						|
        index += dst_incr;
 | 
						|
        if(frac >= c->src_incr){
 | 
						|
            frac -= c->src_incr;
 | 
						|
            index++;
 | 
						|
        }
 | 
						|
 | 
						|
        if(dst_index + 1 == compensation_distance){
 | 
						|
            compensation_distance= 0;
 | 
						|
            dst_incr_frac= c->ideal_dst_incr % c->src_incr;
 | 
						|
            dst_incr=      c->ideal_dst_incr / c->src_incr;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
    *consumed= FFMAX(index, 0) >> c->phase_shift;
 | 
						|
    if(index>=0) index &= c->phase_mask;
 | 
						|
 | 
						|
    if(compensation_distance){
 | 
						|
        compensation_distance -= dst_index;
 | 
						|
        assert(compensation_distance > 0);
 | 
						|
    }
 | 
						|
    if(update_ctx){
 | 
						|
        c->frac= frac;
 | 
						|
        c->index= index;
 | 
						|
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
 | 
						|
        c->compensation_distance= compensation_distance;
 | 
						|
    }
 | 
						|
#if 0    
 | 
						|
    if(update_ctx && !c->compensation_distance){
 | 
						|
#undef rand
 | 
						|
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
 | 
						|
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    
 | 
						|
    return dst_index;
 | 
						|
}
 |