* qatar/master: (25 commits) rv40dsp x86: MMX/MMX2/3DNow/SSE2/SSSE3 implementations of MC ape: Use unsigned integer maths arm: dsputil: fix overreads in put/avg_pixels functions h264: K&R formatting cosmetics for header files (part II/II) h264: K&R formatting cosmetics for header files (part I/II) rtmp: Implement check bandwidth notification. rtmp: Support 'rtmp_swfurl', an option which specifies the URL of the SWF player. rtmp: Support 'rtmp_flashver', an option which overrides the version of the Flash plugin. rtmp: Support 'rtmp_tcurl', an option which overrides the URL of the target stream. cmdutils: Add fallback case to switch in check_stream_specifier(). sctp: be consistent with socket option level configure: Add _XOPEN_SOURCE=600 to Solaris preprocessor flags. vcr1enc: drop pointless empty encode_init() wrapper function vcr1: drop pointless write-only AVCodecContext member from VCR1Context vcr1: group encoder code together to save #ifdefs vcr1: cosmetics: K&R prettyprinting, typos, parentheses, dead code, comments mov: make one comment slightly more specific lavr: replace the SSE version of ff_conv_fltp_to_flt_6ch() with SSE4 and AVX lavfi: move audio-related functions to a separate file. lavfi: remove some audio-related function from public API. ... Conflicts: cmdutils.c libavcodec/h264.h libavcodec/h264_mvpred.h libavcodec/vcr1.c libavfilter/avfilter.c libavfilter/avfilter.h libavfilter/defaults.c libavfilter/internal.h Merged-by: Michael Niedermayer <michaelni@gmx.at>
		
			
				
	
	
		
			1000 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Monkey's Audio lossless audio decoder
 | 
						|
 * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
 | 
						|
 *  based upon libdemac from Dave Chapman.
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "bytestream.h"
 | 
						|
#include "libavutil/audioconvert.h"
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * Monkey's Audio lossless audio decoder
 | 
						|
 */
 | 
						|
 | 
						|
#define MAX_CHANNELS        2
 | 
						|
#define MAX_BYTESPERSAMPLE  3
 | 
						|
 | 
						|
#define APE_FRAMECODE_MONO_SILENCE    1
 | 
						|
#define APE_FRAMECODE_STEREO_SILENCE  3
 | 
						|
#define APE_FRAMECODE_PSEUDO_STEREO   4
 | 
						|
 | 
						|
#define HISTORY_SIZE 512
 | 
						|
#define PREDICTOR_ORDER 8
 | 
						|
/** Total size of all predictor histories */
 | 
						|
#define PREDICTOR_SIZE 50
 | 
						|
 | 
						|
#define YDELAYA (18 + PREDICTOR_ORDER*4)
 | 
						|
#define YDELAYB (18 + PREDICTOR_ORDER*3)
 | 
						|
#define XDELAYA (18 + PREDICTOR_ORDER*2)
 | 
						|
#define XDELAYB (18 + PREDICTOR_ORDER)
 | 
						|
 | 
						|
#define YADAPTCOEFFSA 18
 | 
						|
#define XADAPTCOEFFSA 14
 | 
						|
#define YADAPTCOEFFSB 10
 | 
						|
#define XADAPTCOEFFSB 5
 | 
						|
 | 
						|
/**
 | 
						|
 * Possible compression levels
 | 
						|
 * @{
 | 
						|
 */
 | 
						|
enum APECompressionLevel {
 | 
						|
    COMPRESSION_LEVEL_FAST       = 1000,
 | 
						|
    COMPRESSION_LEVEL_NORMAL     = 2000,
 | 
						|
    COMPRESSION_LEVEL_HIGH       = 3000,
 | 
						|
    COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
 | 
						|
    COMPRESSION_LEVEL_INSANE     = 5000
 | 
						|
};
 | 
						|
/** @} */
 | 
						|
 | 
						|
#define APE_FILTER_LEVELS 3
 | 
						|
 | 
						|
/** Filter orders depending on compression level */
 | 
						|
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
 | 
						|
    {  0,   0,    0 },
 | 
						|
    { 16,   0,    0 },
 | 
						|
    { 64,   0,    0 },
 | 
						|
    { 32, 256,    0 },
 | 
						|
    { 16, 256, 1280 }
 | 
						|
};
 | 
						|
 | 
						|
/** Filter fraction bits depending on compression level */
 | 
						|
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
 | 
						|
    {  0,  0,  0 },
 | 
						|
    { 11,  0,  0 },
 | 
						|
    { 11,  0,  0 },
 | 
						|
    { 10, 13,  0 },
 | 
						|
    { 11, 13, 15 }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/** Filters applied to the decoded data */
 | 
						|
typedef struct APEFilter {
 | 
						|
    int16_t *coeffs;        ///< actual coefficients used in filtering
 | 
						|
    int16_t *adaptcoeffs;   ///< adaptive filter coefficients used for correcting of actual filter coefficients
 | 
						|
    int16_t *historybuffer; ///< filter memory
 | 
						|
    int16_t *delay;         ///< filtered values
 | 
						|
 | 
						|
    int avg;
 | 
						|
} APEFilter;
 | 
						|
 | 
						|
typedef struct APERice {
 | 
						|
    uint32_t k;
 | 
						|
    uint32_t ksum;
 | 
						|
} APERice;
 | 
						|
 | 
						|
typedef struct APERangecoder {
 | 
						|
    uint32_t low;           ///< low end of interval
 | 
						|
    uint32_t range;         ///< length of interval
 | 
						|
    uint32_t help;          ///< bytes_to_follow resp. intermediate value
 | 
						|
    unsigned int buffer;    ///< buffer for input/output
 | 
						|
} APERangecoder;
 | 
						|
 | 
						|
/** Filter histories */
 | 
						|
typedef struct APEPredictor {
 | 
						|
    int32_t *buf;
 | 
						|
 | 
						|
    int32_t lastA[2];
 | 
						|
 | 
						|
    int32_t filterA[2];
 | 
						|
    int32_t filterB[2];
 | 
						|
 | 
						|
    int32_t coeffsA[2][4];  ///< adaption coefficients
 | 
						|
    int32_t coeffsB[2][5];  ///< adaption coefficients
 | 
						|
    int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
 | 
						|
} APEPredictor;
 | 
						|
 | 
						|
/** Decoder context */
 | 
						|
typedef struct APEContext {
 | 
						|
    AVClass *class;                          ///< class for AVOptions
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    AVFrame frame;
 | 
						|
    DSPContext dsp;
 | 
						|
    int channels;
 | 
						|
    int samples;                             ///< samples left to decode in current frame
 | 
						|
    int bps;
 | 
						|
 | 
						|
    int fileversion;                         ///< codec version, very important in decoding process
 | 
						|
    int compression_level;                   ///< compression levels
 | 
						|
    int fset;                                ///< which filter set to use (calculated from compression level)
 | 
						|
    int flags;                               ///< global decoder flags
 | 
						|
 | 
						|
    uint32_t CRC;                            ///< frame CRC
 | 
						|
    int frameflags;                          ///< frame flags
 | 
						|
    APEPredictor predictor;                  ///< predictor used for final reconstruction
 | 
						|
 | 
						|
    int32_t *decoded_buffer;
 | 
						|
    int decoded_size;
 | 
						|
    int32_t *decoded[MAX_CHANNELS];          ///< decoded data for each channel
 | 
						|
    int blocks_per_loop;                     ///< maximum number of samples to decode for each call
 | 
						|
 | 
						|
    int16_t* filterbuf[APE_FILTER_LEVELS];   ///< filter memory
 | 
						|
 | 
						|
    APERangecoder rc;                        ///< rangecoder used to decode actual values
 | 
						|
    APERice riceX;                           ///< rice code parameters for the second channel
 | 
						|
    APERice riceY;                           ///< rice code parameters for the first channel
 | 
						|
    APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
 | 
						|
 | 
						|
    uint8_t *data;                           ///< current frame data
 | 
						|
    uint8_t *data_end;                       ///< frame data end
 | 
						|
    int data_size;                           ///< frame data allocated size
 | 
						|
    const uint8_t *ptr;                      ///< current position in frame data
 | 
						|
 | 
						|
    int error;
 | 
						|
} APEContext;
 | 
						|
 | 
						|
// TODO: dsputilize
 | 
						|
 | 
						|
static av_cold int ape_decode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    APEContext *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < APE_FILTER_LEVELS; i++)
 | 
						|
        av_freep(&s->filterbuf[i]);
 | 
						|
 | 
						|
    av_freep(&s->decoded_buffer);
 | 
						|
    av_freep(&s->data);
 | 
						|
    s->decoded_size = s->data_size = 0;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int ape_decode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    APEContext *s = avctx->priv_data;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (avctx->extradata_size != 6) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    if (avctx->channels > 2) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    s->bps = avctx->bits_per_coded_sample;
 | 
						|
    switch (s->bps) {
 | 
						|
    case 8:
 | 
						|
        avctx->sample_fmt = AV_SAMPLE_FMT_U8;
 | 
						|
        break;
 | 
						|
    case 16:
 | 
						|
        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
 | 
						|
        break;
 | 
						|
    case 24:
 | 
						|
        avctx->sample_fmt = AV_SAMPLE_FMT_S32;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        av_log_ask_for_sample(avctx, "Unsupported bits per coded sample %d\n",
 | 
						|
                              s->bps);
 | 
						|
        return AVERROR_PATCHWELCOME;
 | 
						|
    }
 | 
						|
    s->avctx             = avctx;
 | 
						|
    s->channels          = avctx->channels;
 | 
						|
    s->fileversion       = AV_RL16(avctx->extradata);
 | 
						|
    s->compression_level = AV_RL16(avctx->extradata + 2);
 | 
						|
    s->flags             = AV_RL16(avctx->extradata + 4);
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
 | 
						|
           s->compression_level, s->flags);
 | 
						|
    if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE || !s->compression_level) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
 | 
						|
               s->compression_level);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    s->fset = s->compression_level / 1000 - 1;
 | 
						|
    for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | 
						|
        if (!ape_filter_orders[s->fset][i])
 | 
						|
            break;
 | 
						|
        FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
 | 
						|
                         (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
 | 
						|
                         filter_alloc_fail);
 | 
						|
    }
 | 
						|
 | 
						|
    ff_dsputil_init(&s->dsp, avctx);
 | 
						|
    avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
 | 
						|
 | 
						|
    avcodec_get_frame_defaults(&s->frame);
 | 
						|
    avctx->coded_frame = &s->frame;
 | 
						|
 | 
						|
    return 0;
 | 
						|
filter_alloc_fail:
 | 
						|
    ape_decode_close(avctx);
 | 
						|
    return AVERROR(ENOMEM);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * @name APE range decoding functions
 | 
						|
 * @{
 | 
						|
 */
 | 
						|
 | 
						|
#define CODE_BITS    32
 | 
						|
#define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1))
 | 
						|
#define SHIFT_BITS   (CODE_BITS - 9)
 | 
						|
#define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1)
 | 
						|
#define BOTTOM_VALUE (TOP_VALUE >> 8)
 | 
						|
 | 
						|
/** Start the decoder */
 | 
						|
static inline void range_start_decoding(APEContext *ctx)
 | 
						|
{
 | 
						|
    ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
 | 
						|
    ctx->rc.low    = ctx->rc.buffer >> (8 - EXTRA_BITS);
 | 
						|
    ctx->rc.range  = (uint32_t) 1 << EXTRA_BITS;
 | 
						|
}
 | 
						|
 | 
						|
/** Perform normalization */
 | 
						|
static inline void range_dec_normalize(APEContext *ctx)
 | 
						|
{
 | 
						|
    while (ctx->rc.range <= BOTTOM_VALUE) {
 | 
						|
        ctx->rc.buffer <<= 8;
 | 
						|
        if(ctx->ptr < ctx->data_end) {
 | 
						|
            ctx->rc.buffer += *ctx->ptr;
 | 
						|
            ctx->ptr++;
 | 
						|
        } else {
 | 
						|
            ctx->error = 1;
 | 
						|
        }
 | 
						|
        ctx->rc.low    = (ctx->rc.low << 8)    | ((ctx->rc.buffer >> 1) & 0xFF);
 | 
						|
        ctx->rc.range  <<= 8;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate culmulative frequency for next symbol. Does NO update!
 | 
						|
 * @param ctx decoder context
 | 
						|
 * @param tot_f is the total frequency or (code_value)1<<shift
 | 
						|
 * @return the culmulative frequency
 | 
						|
 */
 | 
						|
static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
 | 
						|
{
 | 
						|
    range_dec_normalize(ctx);
 | 
						|
    ctx->rc.help = ctx->rc.range / tot_f;
 | 
						|
    return ctx->rc.low / ctx->rc.help;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Decode value with given size in bits
 | 
						|
 * @param ctx decoder context
 | 
						|
 * @param shift number of bits to decode
 | 
						|
 */
 | 
						|
static inline int range_decode_culshift(APEContext *ctx, int shift)
 | 
						|
{
 | 
						|
    range_dec_normalize(ctx);
 | 
						|
    ctx->rc.help = ctx->rc.range >> shift;
 | 
						|
    return ctx->rc.low / ctx->rc.help;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Update decoding state
 | 
						|
 * @param ctx decoder context
 | 
						|
 * @param sy_f the interval length (frequency of the symbol)
 | 
						|
 * @param lt_f the lower end (frequency sum of < symbols)
 | 
						|
 */
 | 
						|
static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
 | 
						|
{
 | 
						|
    ctx->rc.low  -= ctx->rc.help * lt_f;
 | 
						|
    ctx->rc.range = ctx->rc.help * sy_f;
 | 
						|
}
 | 
						|
 | 
						|
/** Decode n bits (n <= 16) without modelling */
 | 
						|
static inline int range_decode_bits(APEContext *ctx, int n)
 | 
						|
{
 | 
						|
    int sym = range_decode_culshift(ctx, n);
 | 
						|
    range_decode_update(ctx, 1, sym);
 | 
						|
    return sym;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define MODEL_ELEMENTS 64
 | 
						|
 | 
						|
/**
 | 
						|
 * Fixed probabilities for symbols in Monkey Audio version 3.97
 | 
						|
 */
 | 
						|
static const uint16_t counts_3970[22] = {
 | 
						|
        0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
 | 
						|
    62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
 | 
						|
    65450, 65469, 65480, 65487, 65491, 65493,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Probability ranges for symbols in Monkey Audio version 3.97
 | 
						|
 */
 | 
						|
static const uint16_t counts_diff_3970[21] = {
 | 
						|
    14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
 | 
						|
    1104, 677, 415, 248, 150, 89, 54, 31,
 | 
						|
    19, 11, 7, 4, 2,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Fixed probabilities for symbols in Monkey Audio version 3.98
 | 
						|
 */
 | 
						|
static const uint16_t counts_3980[22] = {
 | 
						|
        0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
 | 
						|
    64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
 | 
						|
    65485, 65488, 65490, 65491, 65492, 65493,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Probability ranges for symbols in Monkey Audio version 3.98
 | 
						|
 */
 | 
						|
static const uint16_t counts_diff_3980[21] = {
 | 
						|
    19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
 | 
						|
    261, 119, 65, 31, 19, 10, 6, 3,
 | 
						|
    3, 2, 1, 1, 1,
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Decode symbol
 | 
						|
 * @param ctx decoder context
 | 
						|
 * @param counts probability range start position
 | 
						|
 * @param counts_diff probability range widths
 | 
						|
 */
 | 
						|
static inline int range_get_symbol(APEContext *ctx,
 | 
						|
                                   const uint16_t counts[],
 | 
						|
                                   const uint16_t counts_diff[])
 | 
						|
{
 | 
						|
    int symbol, cf;
 | 
						|
 | 
						|
    cf = range_decode_culshift(ctx, 16);
 | 
						|
 | 
						|
    if(cf > 65492){
 | 
						|
        symbol= cf - 65535 + 63;
 | 
						|
        range_decode_update(ctx, 1, cf);
 | 
						|
        if(cf > 65535)
 | 
						|
            ctx->error=1;
 | 
						|
        return symbol;
 | 
						|
    }
 | 
						|
    /* figure out the symbol inefficiently; a binary search would be much better */
 | 
						|
    for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
 | 
						|
 | 
						|
    range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
 | 
						|
 | 
						|
    return symbol;
 | 
						|
}
 | 
						|
/** @} */ // group rangecoder
 | 
						|
 | 
						|
static inline void update_rice(APERice *rice, unsigned int x)
 | 
						|
{
 | 
						|
    int lim = rice->k ? (1 << (rice->k + 4)) : 0;
 | 
						|
    rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
 | 
						|
 | 
						|
    if (rice->ksum < lim)
 | 
						|
        rice->k--;
 | 
						|
    else if (rice->ksum >= (1 << (rice->k + 5)))
 | 
						|
        rice->k++;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ape_decode_value(APEContext *ctx, APERice *rice)
 | 
						|
{
 | 
						|
    unsigned int x, overflow;
 | 
						|
 | 
						|
    if (ctx->fileversion < 3990) {
 | 
						|
        int tmpk;
 | 
						|
 | 
						|
        overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
 | 
						|
 | 
						|
        if (overflow == (MODEL_ELEMENTS - 1)) {
 | 
						|
            tmpk = range_decode_bits(ctx, 5);
 | 
						|
            overflow = 0;
 | 
						|
        } else
 | 
						|
            tmpk = (rice->k < 1) ? 0 : rice->k - 1;
 | 
						|
 | 
						|
        if (tmpk <= 16)
 | 
						|
            x = range_decode_bits(ctx, tmpk);
 | 
						|
        else if (tmpk <= 32) {
 | 
						|
            x = range_decode_bits(ctx, 16);
 | 
						|
            x |= (range_decode_bits(ctx, tmpk - 16) << 16);
 | 
						|
        } else {
 | 
						|
            av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        x += overflow << tmpk;
 | 
						|
    } else {
 | 
						|
        int base, pivot;
 | 
						|
 | 
						|
        pivot = rice->ksum >> 5;
 | 
						|
        if (pivot == 0)
 | 
						|
            pivot = 1;
 | 
						|
 | 
						|
        overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
 | 
						|
 | 
						|
        if (overflow == (MODEL_ELEMENTS - 1)) {
 | 
						|
            overflow  = range_decode_bits(ctx, 16) << 16;
 | 
						|
            overflow |= range_decode_bits(ctx, 16);
 | 
						|
        }
 | 
						|
 | 
						|
        if (pivot < 0x10000) {
 | 
						|
            base = range_decode_culfreq(ctx, pivot);
 | 
						|
            range_decode_update(ctx, 1, base);
 | 
						|
        } else {
 | 
						|
            int base_hi = pivot, base_lo;
 | 
						|
            int bbits = 0;
 | 
						|
 | 
						|
            while (base_hi & ~0xFFFF) {
 | 
						|
                base_hi >>= 1;
 | 
						|
                bbits++;
 | 
						|
            }
 | 
						|
            base_hi = range_decode_culfreq(ctx, base_hi + 1);
 | 
						|
            range_decode_update(ctx, 1, base_hi);
 | 
						|
            base_lo = range_decode_culfreq(ctx, 1 << bbits);
 | 
						|
            range_decode_update(ctx, 1, base_lo);
 | 
						|
 | 
						|
            base = (base_hi << bbits) + base_lo;
 | 
						|
        }
 | 
						|
 | 
						|
        x = base + overflow * pivot;
 | 
						|
    }
 | 
						|
 | 
						|
    update_rice(rice, x);
 | 
						|
 | 
						|
    /* Convert to signed */
 | 
						|
    if (x & 1)
 | 
						|
        return (x >> 1) + 1;
 | 
						|
    else
 | 
						|
        return -(x >> 1);
 | 
						|
}
 | 
						|
 | 
						|
static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo)
 | 
						|
{
 | 
						|
    int32_t *decoded0 = ctx->decoded[0];
 | 
						|
    int32_t *decoded1 = ctx->decoded[1];
 | 
						|
 | 
						|
    while (blockstodecode--) {
 | 
						|
        *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
 | 
						|
        if (stereo)
 | 
						|
            *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int init_entropy_decoder(APEContext *ctx)
 | 
						|
{
 | 
						|
    /* Read the CRC */
 | 
						|
    if (ctx->data_end - ctx->ptr < 6)
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    ctx->CRC = bytestream_get_be32(&ctx->ptr);
 | 
						|
 | 
						|
    /* Read the frame flags if they exist */
 | 
						|
    ctx->frameflags = 0;
 | 
						|
    if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
 | 
						|
        ctx->CRC &= ~0x80000000;
 | 
						|
 | 
						|
        if (ctx->data_end - ctx->ptr < 6)
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        ctx->frameflags = bytestream_get_be32(&ctx->ptr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialize the rice structs */
 | 
						|
    ctx->riceX.k = 10;
 | 
						|
    ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
 | 
						|
    ctx->riceY.k = 10;
 | 
						|
    ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
 | 
						|
 | 
						|
    /* The first 8 bits of input are ignored. */
 | 
						|
    ctx->ptr++;
 | 
						|
 | 
						|
    range_start_decoding(ctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const int32_t initial_coeffs[4] = {
 | 
						|
    360, 317, -109, 98
 | 
						|
};
 | 
						|
 | 
						|
static void init_predictor_decoder(APEContext *ctx)
 | 
						|
{
 | 
						|
    APEPredictor *p = &ctx->predictor;
 | 
						|
 | 
						|
    /* Zero the history buffers */
 | 
						|
    memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
 | 
						|
    p->buf = p->historybuffer;
 | 
						|
 | 
						|
    /* Initialize and zero the coefficients */
 | 
						|
    memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
 | 
						|
    memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
 | 
						|
    memset(p->coeffsB, 0, sizeof(p->coeffsB));
 | 
						|
 | 
						|
    p->filterA[0] = p->filterA[1] = 0;
 | 
						|
    p->filterB[0] = p->filterB[1] = 0;
 | 
						|
    p->lastA[0]   = p->lastA[1]   = 0;
 | 
						|
}
 | 
						|
 | 
						|
/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
 | 
						|
static inline int APESIGN(int32_t x) {
 | 
						|
    return (x < 0) - (x > 0);
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline int predictor_update_filter(APEPredictor *p,
 | 
						|
                                                    const int decoded, const int filter,
 | 
						|
                                                    const int delayA,  const int delayB,
 | 
						|
                                                    const int adaptA,  const int adaptB)
 | 
						|
{
 | 
						|
    int32_t predictionA, predictionB, sign;
 | 
						|
 | 
						|
    p->buf[delayA]     = p->lastA[filter];
 | 
						|
    p->buf[adaptA]     = APESIGN(p->buf[delayA]);
 | 
						|
    p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
 | 
						|
    p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
 | 
						|
 | 
						|
    predictionA = p->buf[delayA    ] * p->coeffsA[filter][0] +
 | 
						|
                  p->buf[delayA - 1] * p->coeffsA[filter][1] +
 | 
						|
                  p->buf[delayA - 2] * p->coeffsA[filter][2] +
 | 
						|
                  p->buf[delayA - 3] * p->coeffsA[filter][3];
 | 
						|
 | 
						|
    /*  Apply a scaled first-order filter compression */
 | 
						|
    p->buf[delayB]     = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
 | 
						|
    p->buf[adaptB]     = APESIGN(p->buf[delayB]);
 | 
						|
    p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
 | 
						|
    p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
 | 
						|
    p->filterB[filter] = p->filterA[filter ^ 1];
 | 
						|
 | 
						|
    predictionB = p->buf[delayB    ] * p->coeffsB[filter][0] +
 | 
						|
                  p->buf[delayB - 1] * p->coeffsB[filter][1] +
 | 
						|
                  p->buf[delayB - 2] * p->coeffsB[filter][2] +
 | 
						|
                  p->buf[delayB - 3] * p->coeffsB[filter][3] +
 | 
						|
                  p->buf[delayB - 4] * p->coeffsB[filter][4];
 | 
						|
 | 
						|
    p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
 | 
						|
    p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
 | 
						|
 | 
						|
    sign = APESIGN(decoded);
 | 
						|
    p->coeffsA[filter][0] += p->buf[adaptA    ] * sign;
 | 
						|
    p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
 | 
						|
    p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
 | 
						|
    p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
 | 
						|
    p->coeffsB[filter][0] += p->buf[adaptB    ] * sign;
 | 
						|
    p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
 | 
						|
    p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
 | 
						|
    p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
 | 
						|
    p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
 | 
						|
 | 
						|
    return p->filterA[filter];
 | 
						|
}
 | 
						|
 | 
						|
static void predictor_decode_stereo(APEContext *ctx, int count)
 | 
						|
{
 | 
						|
    APEPredictor *p = &ctx->predictor;
 | 
						|
    int32_t *decoded0 = ctx->decoded[0];
 | 
						|
    int32_t *decoded1 = ctx->decoded[1];
 | 
						|
 | 
						|
    while (count--) {
 | 
						|
        /* Predictor Y */
 | 
						|
        *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
 | 
						|
                                            YADAPTCOEFFSA, YADAPTCOEFFSB);
 | 
						|
        decoded0++;
 | 
						|
        *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
 | 
						|
                                            XADAPTCOEFFSA, XADAPTCOEFFSB);
 | 
						|
        decoded1++;
 | 
						|
 | 
						|
        /* Combined */
 | 
						|
        p->buf++;
 | 
						|
 | 
						|
        /* Have we filled the history buffer? */
 | 
						|
        if (p->buf == p->historybuffer + HISTORY_SIZE) {
 | 
						|
            memmove(p->historybuffer, p->buf,
 | 
						|
                    PREDICTOR_SIZE * sizeof(*p->historybuffer));
 | 
						|
            p->buf = p->historybuffer;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void predictor_decode_mono(APEContext *ctx, int count)
 | 
						|
{
 | 
						|
    APEPredictor *p = &ctx->predictor;
 | 
						|
    int32_t *decoded0 = ctx->decoded[0];
 | 
						|
    int32_t predictionA, currentA, A, sign;
 | 
						|
 | 
						|
    currentA = p->lastA[0];
 | 
						|
 | 
						|
    while (count--) {
 | 
						|
        A = *decoded0;
 | 
						|
 | 
						|
        p->buf[YDELAYA] = currentA;
 | 
						|
        p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
 | 
						|
 | 
						|
        predictionA = p->buf[YDELAYA    ] * p->coeffsA[0][0] +
 | 
						|
                      p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
 | 
						|
                      p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
 | 
						|
                      p->buf[YDELAYA - 3] * p->coeffsA[0][3];
 | 
						|
 | 
						|
        currentA = A + (predictionA >> 10);
 | 
						|
 | 
						|
        p->buf[YADAPTCOEFFSA]     = APESIGN(p->buf[YDELAYA    ]);
 | 
						|
        p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
 | 
						|
 | 
						|
        sign = APESIGN(A);
 | 
						|
        p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA    ] * sign;
 | 
						|
        p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
 | 
						|
        p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
 | 
						|
        p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
 | 
						|
 | 
						|
        p->buf++;
 | 
						|
 | 
						|
        /* Have we filled the history buffer? */
 | 
						|
        if (p->buf == p->historybuffer + HISTORY_SIZE) {
 | 
						|
            memmove(p->historybuffer, p->buf,
 | 
						|
                    PREDICTOR_SIZE * sizeof(*p->historybuffer));
 | 
						|
            p->buf = p->historybuffer;
 | 
						|
        }
 | 
						|
 | 
						|
        p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
 | 
						|
        *(decoded0++) = p->filterA[0];
 | 
						|
    }
 | 
						|
 | 
						|
    p->lastA[0] = currentA;
 | 
						|
}
 | 
						|
 | 
						|
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
 | 
						|
{
 | 
						|
    f->coeffs = buf;
 | 
						|
    f->historybuffer = buf + order;
 | 
						|
    f->delay       = f->historybuffer + order * 2;
 | 
						|
    f->adaptcoeffs = f->historybuffer + order;
 | 
						|
 | 
						|
    memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
 | 
						|
    memset(f->coeffs, 0, order * sizeof(*f->coeffs));
 | 
						|
    f->avg = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
 | 
						|
{
 | 
						|
    do_init_filter(&f[0], buf, order);
 | 
						|
    do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
 | 
						|
}
 | 
						|
 | 
						|
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
 | 
						|
                            int32_t *data, int count, int order, int fracbits)
 | 
						|
{
 | 
						|
    int res;
 | 
						|
    int absres;
 | 
						|
 | 
						|
    while (count--) {
 | 
						|
        /* round fixedpoint scalar product */
 | 
						|
        res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order,
 | 
						|
                                                    f->adaptcoeffs - order,
 | 
						|
                                                    order, APESIGN(*data));
 | 
						|
        res = (res + (1 << (fracbits - 1))) >> fracbits;
 | 
						|
        res += *data;
 | 
						|
        *data++ = res;
 | 
						|
 | 
						|
        /* Update the output history */
 | 
						|
        *f->delay++ = av_clip_int16(res);
 | 
						|
 | 
						|
        if (version < 3980) {
 | 
						|
            /* Version ??? to < 3.98 files (untested) */
 | 
						|
            f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
 | 
						|
            f->adaptcoeffs[-4] >>= 1;
 | 
						|
            f->adaptcoeffs[-8] >>= 1;
 | 
						|
        } else {
 | 
						|
            /* Version 3.98 and later files */
 | 
						|
 | 
						|
            /* Update the adaption coefficients */
 | 
						|
            absres = FFABS(res);
 | 
						|
            if (absres)
 | 
						|
                *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
 | 
						|
                                  (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
 | 
						|
            else
 | 
						|
                *f->adaptcoeffs = 0;
 | 
						|
 | 
						|
            f->avg += (absres - f->avg) / 16;
 | 
						|
 | 
						|
            f->adaptcoeffs[-1] >>= 1;
 | 
						|
            f->adaptcoeffs[-2] >>= 1;
 | 
						|
            f->adaptcoeffs[-8] >>= 1;
 | 
						|
        }
 | 
						|
 | 
						|
        f->adaptcoeffs++;
 | 
						|
 | 
						|
        /* Have we filled the history buffer? */
 | 
						|
        if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
 | 
						|
            memmove(f->historybuffer, f->delay - (order * 2),
 | 
						|
                    (order * 2) * sizeof(*f->historybuffer));
 | 
						|
            f->delay = f->historybuffer + order * 2;
 | 
						|
            f->adaptcoeffs = f->historybuffer + order;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void apply_filter(APEContext *ctx, APEFilter *f,
 | 
						|
                         int32_t *data0, int32_t *data1,
 | 
						|
                         int count, int order, int fracbits)
 | 
						|
{
 | 
						|
    do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
 | 
						|
    if (data1)
 | 
						|
        do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
 | 
						|
}
 | 
						|
 | 
						|
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
 | 
						|
                              int32_t *decoded1, int count)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | 
						|
        if (!ape_filter_orders[ctx->fset][i])
 | 
						|
            break;
 | 
						|
        apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
 | 
						|
                     ape_filter_orders[ctx->fset][i],
 | 
						|
                     ape_filter_fracbits[ctx->fset][i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int init_frame_decoder(APEContext *ctx)
 | 
						|
{
 | 
						|
    int i, ret;
 | 
						|
    if ((ret = init_entropy_decoder(ctx)) < 0)
 | 
						|
        return ret;
 | 
						|
    init_predictor_decoder(ctx);
 | 
						|
 | 
						|
    for (i = 0; i < APE_FILTER_LEVELS; i++) {
 | 
						|
        if (!ape_filter_orders[ctx->fset][i])
 | 
						|
            break;
 | 
						|
        init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
 | 
						|
                    ape_filter_orders[ctx->fset][i]);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ape_unpack_mono(APEContext *ctx, int count)
 | 
						|
{
 | 
						|
    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
 | 
						|
        /* We are pure silence, so we're done. */
 | 
						|
        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    entropy_decode(ctx, count, 0);
 | 
						|
    ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
 | 
						|
 | 
						|
    /* Now apply the predictor decoding */
 | 
						|
    predictor_decode_mono(ctx, count);
 | 
						|
 | 
						|
    /* Pseudo-stereo - just copy left channel to right channel */
 | 
						|
    if (ctx->channels == 2) {
 | 
						|
        memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ape_unpack_stereo(APEContext *ctx, int count)
 | 
						|
{
 | 
						|
    int32_t left, right;
 | 
						|
    int32_t *decoded0 = ctx->decoded[0];
 | 
						|
    int32_t *decoded1 = ctx->decoded[1];
 | 
						|
 | 
						|
    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
 | 
						|
        /* We are pure silence, so we're done. */
 | 
						|
        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    entropy_decode(ctx, count, 1);
 | 
						|
    ape_apply_filters(ctx, decoded0, decoded1, count);
 | 
						|
 | 
						|
    /* Now apply the predictor decoding */
 | 
						|
    predictor_decode_stereo(ctx, count);
 | 
						|
 | 
						|
    /* Decorrelate and scale to output depth */
 | 
						|
    while (count--) {
 | 
						|
        left = *decoded1 - (*decoded0 / 2);
 | 
						|
        right = left + *decoded0;
 | 
						|
 | 
						|
        *(decoded0++) = left;
 | 
						|
        *(decoded1++) = right;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int ape_decode_frame(AVCodecContext *avctx, void *data,
 | 
						|
                            int *got_frame_ptr, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    const uint8_t *buf = avpkt->data;
 | 
						|
    APEContext *s = avctx->priv_data;
 | 
						|
    uint8_t *sample8;
 | 
						|
    int16_t *sample16;
 | 
						|
    int32_t *sample24;
 | 
						|
    int i, ret;
 | 
						|
    int blockstodecode;
 | 
						|
    int bytes_used = 0;
 | 
						|
 | 
						|
    /* this should never be negative, but bad things will happen if it is, so
 | 
						|
       check it just to make sure. */
 | 
						|
    av_assert0(s->samples >= 0);
 | 
						|
 | 
						|
    if(!s->samples){
 | 
						|
        uint32_t nblocks, offset;
 | 
						|
        int buf_size;
 | 
						|
 | 
						|
        if (!avpkt->size) {
 | 
						|
            *got_frame_ptr = 0;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        if (avpkt->size < 8) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        buf_size = avpkt->size & ~3;
 | 
						|
        if (buf_size != avpkt->size) {
 | 
						|
            av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
 | 
						|
                   "extra bytes at the end will be skipped.\n");
 | 
						|
        }
 | 
						|
 | 
						|
        av_fast_malloc(&s->data, &s->data_size, buf_size);
 | 
						|
        if (!s->data)
 | 
						|
            return AVERROR(ENOMEM);
 | 
						|
        s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
 | 
						|
        s->ptr = s->data;
 | 
						|
        s->data_end = s->data + buf_size;
 | 
						|
 | 
						|
        nblocks = bytestream_get_be32(&s->ptr);
 | 
						|
        offset  = bytestream_get_be32(&s->ptr);
 | 
						|
        if (offset > 3) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
 | 
						|
            s->data = NULL;
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        if (s->data_end - s->ptr < offset) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        s->ptr += offset;
 | 
						|
 | 
						|
        if (!nblocks || nblocks > INT_MAX) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks);
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
        s->samples = nblocks;
 | 
						|
 | 
						|
        /* Initialize the frame decoder */
 | 
						|
        if (init_frame_decoder(s) < 0) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
 | 
						|
            return AVERROR_INVALIDDATA;
 | 
						|
        }
 | 
						|
 | 
						|
        bytes_used = avpkt->size;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!s->data) {
 | 
						|
        *got_frame_ptr = 0;
 | 
						|
        return avpkt->size;
 | 
						|
    }
 | 
						|
 | 
						|
    blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
 | 
						|
 | 
						|
    /* reallocate decoded sample buffer if needed */
 | 
						|
    av_fast_malloc(&s->decoded_buffer, &s->decoded_size,
 | 
						|
                   2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer));
 | 
						|
    if (!s->decoded_buffer)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    memset(s->decoded_buffer, 0, s->decoded_size);
 | 
						|
    s->decoded[0] = s->decoded_buffer;
 | 
						|
    s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
 | 
						|
 | 
						|
    /* get output buffer */
 | 
						|
    s->frame.nb_samples = blockstodecode;
 | 
						|
    if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    s->error=0;
 | 
						|
 | 
						|
    if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
 | 
						|
        ape_unpack_mono(s, blockstodecode);
 | 
						|
    else
 | 
						|
        ape_unpack_stereo(s, blockstodecode);
 | 
						|
    emms_c();
 | 
						|
 | 
						|
    if (s->error) {
 | 
						|
        s->samples=0;
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (s->bps) {
 | 
						|
    case 8:
 | 
						|
        sample8 = (uint8_t *)s->frame.data[0];
 | 
						|
        for (i = 0; i < blockstodecode; i++) {
 | 
						|
            *sample8++ = (s->decoded[0][i] + 0x80) & 0xff;
 | 
						|
            if (s->channels == 2)
 | 
						|
                *sample8++ = (s->decoded[1][i] + 0x80) & 0xff;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 16:
 | 
						|
        sample16 = (int16_t *)s->frame.data[0];
 | 
						|
        for (i = 0; i < blockstodecode; i++) {
 | 
						|
            *sample16++ = s->decoded[0][i];
 | 
						|
            if (s->channels == 2)
 | 
						|
                *sample16++ = s->decoded[1][i];
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 24:
 | 
						|
        sample24 = (int32_t *)s->frame.data[0];
 | 
						|
        for (i = 0; i < blockstodecode; i++) {
 | 
						|
            *sample24++ = s->decoded[0][i] << 8;
 | 
						|
            if (s->channels == 2)
 | 
						|
                *sample24++ = s->decoded[1][i] << 8;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    s->samples -= blockstodecode;
 | 
						|
 | 
						|
    *got_frame_ptr   = 1;
 | 
						|
    *(AVFrame *)data = s->frame;
 | 
						|
 | 
						|
    return bytes_used;
 | 
						|
}
 | 
						|
 | 
						|
static void ape_flush(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    APEContext *s = avctx->priv_data;
 | 
						|
    s->samples= 0;
 | 
						|
}
 | 
						|
 | 
						|
#define OFFSET(x) offsetof(APEContext, x)
 | 
						|
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
 | 
						|
static const AVOption options[] = {
 | 
						|
    { "max_samples", "maximum number of samples decoded per call",             OFFSET(blocks_per_loop), AV_OPT_TYPE_INT,   { 4608 },    1,       INT_MAX, PAR, "max_samples" },
 | 
						|
    { "all",         "no maximum. decode all samples for each packet at once", 0,                       AV_OPT_TYPE_CONST, { INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
 | 
						|
    { NULL},
 | 
						|
};
 | 
						|
 | 
						|
static const AVClass ape_decoder_class = {
 | 
						|
    .class_name = "APE decoder",
 | 
						|
    .item_name  = av_default_item_name,
 | 
						|
    .option     = options,
 | 
						|
    .version    = LIBAVUTIL_VERSION_INT,
 | 
						|
};
 | 
						|
 | 
						|
AVCodec ff_ape_decoder = {
 | 
						|
    .name           = "ape",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = CODEC_ID_APE,
 | 
						|
    .priv_data_size = sizeof(APEContext),
 | 
						|
    .init           = ape_decode_init,
 | 
						|
    .close          = ape_decode_close,
 | 
						|
    .decode         = ape_decode_frame,
 | 
						|
    .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
 | 
						|
    .flush          = ape_flush,
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
 | 
						|
    .priv_class     = &ape_decoder_class,
 | 
						|
};
 |