Just put the subtraction in the table. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
		
			
				
	
	
		
			1027 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1027 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2012 Andrew D'Addesio
 | 
						|
 * Copyright (c) 2013-2014 Mozilla Corporation
 | 
						|
 * Copyright (c) 2016 Rostislav Pehlivanov <atomnuker@gmail.com>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * Opus CELT decoder
 | 
						|
 */
 | 
						|
 | 
						|
#include "opus_celt.h"
 | 
						|
#include "opustab.h"
 | 
						|
#include "opus_pvq.h"
 | 
						|
 | 
						|
/* Use the 2D z-transform to apply prediction in both the time domain (alpha)
 | 
						|
 * and the frequency domain (beta) */
 | 
						|
static void celt_decode_coarse_energy(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    float prev[2] = { 0 };
 | 
						|
    float alpha = ff_celt_alpha_coef[f->size];
 | 
						|
    float beta  = ff_celt_beta_coef[f->size];
 | 
						|
    const uint8_t *model = ff_celt_coarse_energy_dist[f->size][0];
 | 
						|
 | 
						|
    /* intra frame */
 | 
						|
    if (opus_rc_tell(rc) + 3 <= f->framebits && ff_opus_rc_dec_log(rc, 3)) {
 | 
						|
        alpha = 0.0f;
 | 
						|
        beta  = 1.0f - (4915.0f/32768.0f);
 | 
						|
        model = ff_celt_coarse_energy_dist[f->size][1];
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < CELT_MAX_BANDS; i++) {
 | 
						|
        for (j = 0; j < f->channels; j++) {
 | 
						|
            CeltBlock *block = &f->block[j];
 | 
						|
            float value;
 | 
						|
            int available;
 | 
						|
 | 
						|
            if (i < f->start_band || i >= f->end_band) {
 | 
						|
                block->energy[i] = 0.0;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            available = f->framebits - opus_rc_tell(rc);
 | 
						|
            if (available >= 15) {
 | 
						|
                /* decode using a Laplace distribution */
 | 
						|
                int k = FFMIN(i, 20) << 1;
 | 
						|
                value = ff_opus_rc_dec_laplace(rc, model[k] << 7, model[k+1] << 6);
 | 
						|
            } else if (available >= 2) {
 | 
						|
                int x = ff_opus_rc_dec_cdf(rc, ff_celt_model_energy_small);
 | 
						|
                value = (x>>1) ^ -(x&1);
 | 
						|
            } else if (available >= 1) {
 | 
						|
                value = -(float)ff_opus_rc_dec_log(rc, 1);
 | 
						|
            } else value = -1;
 | 
						|
 | 
						|
            block->energy[i] = FFMAX(-9.0f, block->energy[i]) * alpha + prev[j] + value;
 | 
						|
            prev[j] += beta * value;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_decode_fine_energy(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int j;
 | 
						|
        if (!f->fine_bits[i])
 | 
						|
            continue;
 | 
						|
 | 
						|
        for (j = 0; j < f->channels; j++) {
 | 
						|
            CeltBlock *block = &f->block[j];
 | 
						|
            int q2;
 | 
						|
            float offset;
 | 
						|
            q2 = ff_opus_rc_get_raw(rc, f->fine_bits[i]);
 | 
						|
            offset = (q2 + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f - 0.5f;
 | 
						|
            block->energy[i] += offset;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_decode_final_energy(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    int priority, i, j;
 | 
						|
    int bits_left = f->framebits - opus_rc_tell(rc);
 | 
						|
 | 
						|
    for (priority = 0; priority < 2; priority++) {
 | 
						|
        for (i = f->start_band; i < f->end_band && bits_left >= f->channels; i++) {
 | 
						|
            if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS)
 | 
						|
                continue;
 | 
						|
 | 
						|
            for (j = 0; j < f->channels; j++) {
 | 
						|
                int q2;
 | 
						|
                float offset;
 | 
						|
                q2 = ff_opus_rc_get_raw(rc, 1);
 | 
						|
                offset = (q2 - 0.5f) * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f;
 | 
						|
                f->block[j].energy[i] += offset;
 | 
						|
                bits_left--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_decode_tf_changes(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
 | 
						|
    int consumed, bits = f->transient ? 2 : 4;
 | 
						|
 | 
						|
    consumed = opus_rc_tell(rc);
 | 
						|
    tf_select_bit = (f->size != 0 && consumed+bits+1 <= f->framebits);
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        if (consumed+bits+tf_select_bit <= f->framebits) {
 | 
						|
            diff ^= ff_opus_rc_dec_log(rc, bits);
 | 
						|
            consumed = opus_rc_tell(rc);
 | 
						|
            tf_changed |= diff;
 | 
						|
        }
 | 
						|
        f->tf_change[i] = diff;
 | 
						|
        bits = f->transient ? 4 : 5;
 | 
						|
    }
 | 
						|
 | 
						|
    if (tf_select_bit && ff_celt_tf_select[f->size][f->transient][0][tf_changed] !=
 | 
						|
                         ff_celt_tf_select[f->size][f->transient][1][tf_changed])
 | 
						|
        tf_select = ff_opus_rc_dec_log(rc, 1);
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_decode_allocation(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    // approx. maximum bit allocation for each band before boost/trim
 | 
						|
    int cap[CELT_MAX_BANDS];
 | 
						|
    int boost[CELT_MAX_BANDS];
 | 
						|
    int threshold[CELT_MAX_BANDS];
 | 
						|
    int bits1[CELT_MAX_BANDS];
 | 
						|
    int bits2[CELT_MAX_BANDS];
 | 
						|
    int trim_offset[CELT_MAX_BANDS];
 | 
						|
 | 
						|
    int skip_start_band = f->start_band;
 | 
						|
    int dynalloc       = 6;
 | 
						|
    int alloctrim      = 5;
 | 
						|
    int extrabits      = 0;
 | 
						|
 | 
						|
    int skip_bit             = 0;
 | 
						|
    int intensity_stereo_bit = 0;
 | 
						|
    int dual_stereo_bit      = 0;
 | 
						|
 | 
						|
    int remaining, bandbits;
 | 
						|
    int low, high, total, done;
 | 
						|
    int totalbits;
 | 
						|
    int consumed;
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    consumed = opus_rc_tell(rc);
 | 
						|
 | 
						|
    /* obtain spread flag */
 | 
						|
    f->spread = CELT_SPREAD_NORMAL;
 | 
						|
    if (consumed + 4 <= f->framebits)
 | 
						|
        f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
 | 
						|
 | 
						|
    /* generate static allocation caps */
 | 
						|
    for (i = 0; i < CELT_MAX_BANDS; i++) {
 | 
						|
        cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64)
 | 
						|
                 * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* obtain band boost */
 | 
						|
    totalbits = f->framebits << 3; // convert to 1/8 bits
 | 
						|
    consumed = opus_rc_tell_frac(rc);
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int quanta, band_dynalloc;
 | 
						|
 | 
						|
        boost[i] = 0;
 | 
						|
 | 
						|
        quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
 | 
						|
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
 | 
						|
        band_dynalloc = dynalloc;
 | 
						|
        while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
 | 
						|
            int add = ff_opus_rc_dec_log(rc, band_dynalloc);
 | 
						|
            consumed = opus_rc_tell_frac(rc);
 | 
						|
            if (!add)
 | 
						|
                break;
 | 
						|
 | 
						|
            boost[i]     += quanta;
 | 
						|
            totalbits    -= quanta;
 | 
						|
            band_dynalloc = 1;
 | 
						|
        }
 | 
						|
        /* dynalloc is more likely to occur if it's already been used for earlier bands */
 | 
						|
        if (boost[i])
 | 
						|
            dynalloc = FFMAX(2, dynalloc - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* obtain allocation trim */
 | 
						|
    if (consumed + (6 << 3) <= totalbits)
 | 
						|
        alloctrim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
 | 
						|
 | 
						|
    /* anti-collapse bit reservation */
 | 
						|
    totalbits = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
 | 
						|
    f->anticollapse_needed = 0;
 | 
						|
    if (f->blocks > 1 && f->size >= 2 &&
 | 
						|
        totalbits >= ((f->size + 2) << 3))
 | 
						|
        f->anticollapse_needed = 1 << 3;
 | 
						|
    totalbits -= f->anticollapse_needed;
 | 
						|
 | 
						|
    /* band skip bit reservation */
 | 
						|
    if (totalbits >= 1 << 3)
 | 
						|
        skip_bit = 1 << 3;
 | 
						|
    totalbits -= skip_bit;
 | 
						|
 | 
						|
    /* intensity/dual stereo bit reservation */
 | 
						|
    if (f->channels == 2) {
 | 
						|
        intensity_stereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
 | 
						|
        if (intensity_stereo_bit <= totalbits) {
 | 
						|
            totalbits -= intensity_stereo_bit;
 | 
						|
            if (totalbits >= 1 << 3) {
 | 
						|
                dual_stereo_bit = 1 << 3;
 | 
						|
                totalbits -= 1 << 3;
 | 
						|
            }
 | 
						|
        } else
 | 
						|
            intensity_stereo_bit = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int trim     = alloctrim - 5 - f->size;
 | 
						|
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
 | 
						|
        int duration = f->size + 3;
 | 
						|
        int scale    = duration + f->channels - 1;
 | 
						|
 | 
						|
        /* PVQ minimum allocation threshold, below this value the band is
 | 
						|
         * skipped */
 | 
						|
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
 | 
						|
                             f->channels << 3);
 | 
						|
 | 
						|
        trim_offset[i] = trim * (band << scale) >> 6;
 | 
						|
 | 
						|
        if (ff_celt_freq_range[i] << f->size == 1)
 | 
						|
            trim_offset[i] -= f->channels << 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* bisection */
 | 
						|
    low  = 1;
 | 
						|
    high = CELT_VECTORS - 1;
 | 
						|
    while (low <= high) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
            bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]
 | 
						|
                       << (f->channels - 1) << f->size >> 2;
 | 
						|
 | 
						|
            if (bandbits)
 | 
						|
                bandbits = FFMAX(0, bandbits + trim_offset[i]);
 | 
						|
            bandbits += boost[i];
 | 
						|
 | 
						|
            if (bandbits >= threshold[i] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, cap[i]);
 | 
						|
            } else if (bandbits >= f->channels << 3)
 | 
						|
                total += f->channels << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        if (total > totalbits)
 | 
						|
            high = center - 1;
 | 
						|
        else
 | 
						|
            low = center + 1;
 | 
						|
    }
 | 
						|
    high = low--;
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]
 | 
						|
                   << (f->channels - 1) << f->size >> 2;
 | 
						|
        bits2[i] = high >= CELT_VECTORS ? cap[i] :
 | 
						|
                   ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]
 | 
						|
                   << (f->channels - 1) << f->size >> 2;
 | 
						|
 | 
						|
        if (bits1[i])
 | 
						|
            bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
 | 
						|
        if (bits2[i])
 | 
						|
            bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
 | 
						|
        if (low)
 | 
						|
            bits1[i] += boost[i];
 | 
						|
        bits2[i] += boost[i];
 | 
						|
 | 
						|
        if (boost[i])
 | 
						|
            skip_start_band = i;
 | 
						|
        bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    /* bisection */
 | 
						|
    low  = 0;
 | 
						|
    high = 1 << CELT_ALLOC_STEPS;
 | 
						|
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
 | 
						|
        int center = (low + high) >> 1;
 | 
						|
        done = total = 0;
 | 
						|
 | 
						|
        for (j = f->end_band - 1; j >= f->start_band; j--) {
 | 
						|
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
            if (bandbits >= threshold[j] || done) {
 | 
						|
                done = 1;
 | 
						|
                total += FFMIN(bandbits, cap[j]);
 | 
						|
            } else if (bandbits >= f->channels << 3)
 | 
						|
                total += f->channels << 3;
 | 
						|
        }
 | 
						|
        if (total > totalbits)
 | 
						|
            high = center;
 | 
						|
        else
 | 
						|
            low = center;
 | 
						|
    }
 | 
						|
 | 
						|
    done = total = 0;
 | 
						|
    for (i = f->end_band - 1; i >= f->start_band; i--) {
 | 
						|
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
 | 
						|
 | 
						|
        if (bandbits >= threshold[i] || done)
 | 
						|
            done = 1;
 | 
						|
        else
 | 
						|
            bandbits = (bandbits >= f->channels << 3) ?
 | 
						|
                       f->channels << 3 : 0;
 | 
						|
 | 
						|
        bandbits     = FFMIN(bandbits, cap[i]);
 | 
						|
        f->pulses[i] = bandbits;
 | 
						|
        total      += bandbits;
 | 
						|
    }
 | 
						|
 | 
						|
    /* band skipping */
 | 
						|
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
 | 
						|
        int allocation;
 | 
						|
        j = f->coded_bands - 1;
 | 
						|
 | 
						|
        if (j == skip_start_band) {
 | 
						|
            /* all remaining bands are not skipped */
 | 
						|
            totalbits += skip_bit;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* determine the number of bits available for coding "do not skip" markers */
 | 
						|
        remaining   = totalbits - total;
 | 
						|
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
 | 
						|
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j]
 | 
						|
                      + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]));
 | 
						|
 | 
						|
        /* a "do not skip" marker is only coded if the allocation is
 | 
						|
           above the chosen threshold */
 | 
						|
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) <<3 )) {
 | 
						|
            if (ff_opus_rc_dec_log(rc, 1))
 | 
						|
                break;
 | 
						|
 | 
						|
            total      += 1 << 3;
 | 
						|
            allocation -= 1 << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        /* the band is skipped, so reclaim its bits */
 | 
						|
        total -= f->pulses[j];
 | 
						|
        if (intensity_stereo_bit) {
 | 
						|
            total -= intensity_stereo_bit;
 | 
						|
            intensity_stereo_bit = ff_celt_log2_frac[j - f->start_band];
 | 
						|
            total += intensity_stereo_bit;
 | 
						|
        }
 | 
						|
 | 
						|
        total += f->pulses[j] = (allocation >= f->channels << 3) ?
 | 
						|
                              f->channels << 3 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* obtain stereo flags */
 | 
						|
    f->intensity_stereo = 0;
 | 
						|
    f->dual_stereo      = 0;
 | 
						|
    if (intensity_stereo_bit)
 | 
						|
        f->intensity_stereo = f->start_band +
 | 
						|
                          ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
 | 
						|
    if (f->intensity_stereo <= f->start_band)
 | 
						|
        totalbits += dual_stereo_bit; /* no intensity stereo means no dual stereo */
 | 
						|
    else if (dual_stereo_bit)
 | 
						|
        f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
 | 
						|
 | 
						|
    /* supply the remaining bits in this frame to lower bands */
 | 
						|
    remaining = totalbits - total;
 | 
						|
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        int bits = FFMIN(remaining, ff_celt_freq_range[i]);
 | 
						|
 | 
						|
        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
 | 
						|
        remaining    -= bits;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->coded_bands; i++) {
 | 
						|
        int N = ff_celt_freq_range[i] << f->size;
 | 
						|
        int prev_extra = extrabits;
 | 
						|
        f->pulses[i] += extrabits;
 | 
						|
 | 
						|
        if (N > 1) {
 | 
						|
            int dof;        // degrees of freedom
 | 
						|
            int temp;       // dof * channels * log(dof)
 | 
						|
            int offset;     // fine energy quantization offset, i.e.
 | 
						|
                            // extra bits assigned over the standard
 | 
						|
                            // totalbits/dof
 | 
						|
            int fine_bits, max_bits;
 | 
						|
 | 
						|
            extrabits = FFMAX(0, f->pulses[i] - cap[i]);
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
 | 
						|
            /* intensity stereo makes use of an extra degree of freedom */
 | 
						|
            dof = N * f->channels
 | 
						|
                  + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
 | 
						|
            temp = dof * (ff_celt_log_freq_range[i] + (f->size<<3));
 | 
						|
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
 | 
						|
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
 | 
						|
                offset += dof<<1;
 | 
						|
 | 
						|
            /* grant an additional bias for the first and second pulses */
 | 
						|
            if (f->pulses[i] + offset < 2 * (dof << 3))
 | 
						|
                offset += temp >> 2;
 | 
						|
            else if (f->pulses[i] + offset < 3 * (dof << 3))
 | 
						|
                offset += temp >> 3;
 | 
						|
 | 
						|
            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
 | 
						|
            max_bits  = FFMIN((f->pulses[i]>>3) >> (f->channels - 1),
 | 
						|
                              CELT_MAX_FINE_BITS);
 | 
						|
 | 
						|
            max_bits  = FFMAX(max_bits, 0);
 | 
						|
 | 
						|
            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
 | 
						|
 | 
						|
            /* if fine_bits was rounded down or capped,
 | 
						|
               give priority for the final fine energy pass */
 | 
						|
            f->fine_priority[i] = (f->fine_bits[i] * (dof<<3) >= f->pulses[i] + offset);
 | 
						|
 | 
						|
            /* the remaining bits are assigned to PVQ */
 | 
						|
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
 | 
						|
        } else {
 | 
						|
            /* all bits go to fine energy except for the sign bit */
 | 
						|
            extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3));
 | 
						|
            f->pulses[i] -= extrabits;
 | 
						|
            f->fine_bits[i] = 0;
 | 
						|
            f->fine_priority[i] = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* hand back a limited number of extra fine energy bits to this band */
 | 
						|
        if (extrabits > 0) {
 | 
						|
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
 | 
						|
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
 | 
						|
            f->fine_bits[i] += fineextra;
 | 
						|
 | 
						|
            fineextra <<= f->channels + 2;
 | 
						|
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
 | 
						|
            extrabits -= fineextra;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    f->remaining = extrabits;
 | 
						|
 | 
						|
    /* skipped bands dedicate all of their bits for fine energy */
 | 
						|
    for (; i < f->end_band; i++) {
 | 
						|
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
 | 
						|
        f->pulses[i]        = 0;
 | 
						|
        f->fine_priority[i] = f->fine_bits[i] < 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_denormalize(CeltFrame *f, CeltBlock *block, float *data)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        float *dst = data + (ff_celt_freq_bands[i] << f->size);
 | 
						|
        float norm = exp2f(block->energy[i] + ff_celt_mean_energy[i]);
 | 
						|
 | 
						|
        for (j = 0; j < ff_celt_freq_range[i] << f->size; j++)
 | 
						|
            dst[j] *= norm;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_postfilter_apply_transition(CeltBlock *block, float *data)
 | 
						|
{
 | 
						|
    const int T0 = block->pf_period_old;
 | 
						|
    const int T1 = block->pf_period;
 | 
						|
 | 
						|
    float g00, g01, g02;
 | 
						|
    float g10, g11, g12;
 | 
						|
 | 
						|
    float x0, x1, x2, x3, x4;
 | 
						|
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (block->pf_gains[0]     == 0.0 &&
 | 
						|
        block->pf_gains_old[0] == 0.0)
 | 
						|
        return;
 | 
						|
 | 
						|
    g00 = block->pf_gains_old[0];
 | 
						|
    g01 = block->pf_gains_old[1];
 | 
						|
    g02 = block->pf_gains_old[2];
 | 
						|
    g10 = block->pf_gains[0];
 | 
						|
    g11 = block->pf_gains[1];
 | 
						|
    g12 = block->pf_gains[2];
 | 
						|
 | 
						|
    x1 = data[-T1 + 1];
 | 
						|
    x2 = data[-T1];
 | 
						|
    x3 = data[-T1 - 1];
 | 
						|
    x4 = data[-T1 - 2];
 | 
						|
 | 
						|
    for (i = 0; i < CELT_OVERLAP; i++) {
 | 
						|
        float w = ff_celt_window2[i];
 | 
						|
        x0 = data[i - T1 + 2];
 | 
						|
 | 
						|
        data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
 | 
						|
                    (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
 | 
						|
                    (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
 | 
						|
                    w         * g10 * x2                                    +
 | 
						|
                    w         * g11 * (x1 + x3)                             +
 | 
						|
                    w         * g12 * (x0 + x4);
 | 
						|
        x4 = x3;
 | 
						|
        x3 = x2;
 | 
						|
        x2 = x1;
 | 
						|
        x1 = x0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_postfilter_apply(CeltBlock *block, float *data, int len)
 | 
						|
{
 | 
						|
    const int T = block->pf_period;
 | 
						|
    float g0, g1, g2;
 | 
						|
    float x0, x1, x2, x3, x4;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (block->pf_gains[0] == 0.0 || len <= 0)
 | 
						|
        return;
 | 
						|
 | 
						|
    g0 = block->pf_gains[0];
 | 
						|
    g1 = block->pf_gains[1];
 | 
						|
    g2 = block->pf_gains[2];
 | 
						|
 | 
						|
    x4 = data[-T - 2];
 | 
						|
    x3 = data[-T - 1];
 | 
						|
    x2 = data[-T];
 | 
						|
    x1 = data[-T + 1];
 | 
						|
 | 
						|
    for (i = 0; i < len; i++) {
 | 
						|
        x0 = data[i - T + 2];
 | 
						|
        data[i] += g0 * x2        +
 | 
						|
                   g1 * (x1 + x3) +
 | 
						|
                   g2 * (x0 + x4);
 | 
						|
        x4 = x3;
 | 
						|
        x3 = x2;
 | 
						|
        x2 = x1;
 | 
						|
        x1 = x0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_postfilter(CeltFrame *f, CeltBlock *block)
 | 
						|
{
 | 
						|
    int len = f->blocksize * f->blocks;
 | 
						|
 | 
						|
    celt_postfilter_apply_transition(block, block->buf + 1024);
 | 
						|
 | 
						|
    block->pf_period_old = block->pf_period;
 | 
						|
    memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | 
						|
 | 
						|
    block->pf_period = block->pf_period_new;
 | 
						|
    memcpy(block->pf_gains, block->pf_gains_new, sizeof(block->pf_gains));
 | 
						|
 | 
						|
    if (len > CELT_OVERLAP) {
 | 
						|
        celt_postfilter_apply_transition(block, block->buf + 1024 + CELT_OVERLAP);
 | 
						|
        celt_postfilter_apply(block, block->buf + 1024 + 2 * CELT_OVERLAP,
 | 
						|
                              len - 2 * CELT_OVERLAP);
 | 
						|
 | 
						|
        block->pf_period_old = block->pf_period;
 | 
						|
        memcpy(block->pf_gains_old, block->pf_gains, sizeof(block->pf_gains));
 | 
						|
    }
 | 
						|
 | 
						|
    memmove(block->buf, block->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
 | 
						|
}
 | 
						|
 | 
						|
static int parse_postfilter(CeltFrame *f, OpusRangeCoder *rc, int consumed)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    memset(f->block[0].pf_gains_new, 0, sizeof(f->block[0].pf_gains_new));
 | 
						|
    memset(f->block[1].pf_gains_new, 0, sizeof(f->block[1].pf_gains_new));
 | 
						|
 | 
						|
    if (f->start_band == 0 && consumed + 16 <= f->framebits) {
 | 
						|
        int has_postfilter = ff_opus_rc_dec_log(rc, 1);
 | 
						|
        if (has_postfilter) {
 | 
						|
            float gain;
 | 
						|
            int tapset, octave, period;
 | 
						|
 | 
						|
            octave = ff_opus_rc_dec_uint(rc, 6);
 | 
						|
            period = (16 << octave) + ff_opus_rc_get_raw(rc, 4 + octave) - 1;
 | 
						|
            gain   = 0.09375f * (ff_opus_rc_get_raw(rc, 3) + 1);
 | 
						|
            tapset = (opus_rc_tell(rc) + 2 <= f->framebits) ?
 | 
						|
                     ff_opus_rc_dec_cdf(rc, ff_celt_model_tapset) : 0;
 | 
						|
 | 
						|
            for (i = 0; i < 2; i++) {
 | 
						|
                CeltBlock *block = &f->block[i];
 | 
						|
 | 
						|
                block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
 | 
						|
                block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0];
 | 
						|
                block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1];
 | 
						|
                block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        consumed = opus_rc_tell(rc);
 | 
						|
    }
 | 
						|
 | 
						|
    return consumed;
 | 
						|
}
 | 
						|
 | 
						|
static void process_anticollapse(CeltFrame *f, CeltBlock *block, float *X)
 | 
						|
{
 | 
						|
    int i, j, k;
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        int renormalize = 0;
 | 
						|
        float *xptr;
 | 
						|
        float prev[2];
 | 
						|
        float Ediff, r;
 | 
						|
        float thresh, sqrt_1;
 | 
						|
        int depth;
 | 
						|
 | 
						|
        /* depth in 1/8 bits */
 | 
						|
        depth = (1 + f->pulses[i]) / (ff_celt_freq_range[i] << f->size);
 | 
						|
        thresh = exp2f(-1.0 - 0.125f * depth);
 | 
						|
        sqrt_1 = 1.0f / sqrtf(ff_celt_freq_range[i] << f->size);
 | 
						|
 | 
						|
        xptr = X + (ff_celt_freq_bands[i] << f->size);
 | 
						|
 | 
						|
        prev[0] = block->prev_energy[0][i];
 | 
						|
        prev[1] = block->prev_energy[1][i];
 | 
						|
        if (f->channels == 1) {
 | 
						|
            CeltBlock *block1 = &f->block[1];
 | 
						|
 | 
						|
            prev[0] = FFMAX(prev[0], block1->prev_energy[0][i]);
 | 
						|
            prev[1] = FFMAX(prev[1], block1->prev_energy[1][i]);
 | 
						|
        }
 | 
						|
        Ediff = block->energy[i] - FFMIN(prev[0], prev[1]);
 | 
						|
        Ediff = FFMAX(0, Ediff);
 | 
						|
 | 
						|
        /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
 | 
						|
        short blocks don't have the same energy as long */
 | 
						|
        r = exp2f(1 - Ediff);
 | 
						|
        if (f->size == 3)
 | 
						|
            r *= M_SQRT2;
 | 
						|
        r = FFMIN(thresh, r) * sqrt_1;
 | 
						|
        for (k = 0; k < 1 << f->size; k++) {
 | 
						|
            /* Detect collapse */
 | 
						|
            if (!(block->collapse_masks[i] & 1 << k)) {
 | 
						|
                /* Fill with noise */
 | 
						|
                for (j = 0; j < ff_celt_freq_range[i]; j++)
 | 
						|
                    xptr[(j << f->size) + k] = (celt_rng(f) & 0x8000) ? r : -r;
 | 
						|
                renormalize = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* We just added some energy, so we need to renormalize */
 | 
						|
        if (renormalize)
 | 
						|
            celt_renormalize_vector(xptr, ff_celt_freq_range[i] << f->size, 1.0f);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void celt_decode_bands(CeltFrame *f, OpusRangeCoder *rc)
 | 
						|
{
 | 
						|
    float lowband_scratch[8 * 22];
 | 
						|
    float norm[2 * 8 * 100];
 | 
						|
 | 
						|
    int totalbits = (f->framebits << 3) - f->anticollapse_needed;
 | 
						|
 | 
						|
    int update_lowband = 1;
 | 
						|
    int lowband_offset = 0;
 | 
						|
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
 | 
						|
    memset(f->block[1].coeffs, 0, sizeof(f->block[0].coeffs));
 | 
						|
 | 
						|
    for (i = f->start_band; i < f->end_band; i++) {
 | 
						|
        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
 | 
						|
        int band_offset = ff_celt_freq_bands[i] << f->size;
 | 
						|
        int band_size   = ff_celt_freq_range[i] << f->size;
 | 
						|
        float *X = f->block[0].coeffs + band_offset;
 | 
						|
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
 | 
						|
 | 
						|
        int consumed = opus_rc_tell_frac(rc);
 | 
						|
        float *norm2 = norm + 8 * 100;
 | 
						|
        int effective_lowband = -1;
 | 
						|
        int b = 0;
 | 
						|
 | 
						|
        /* Compute how many bits we want to allocate to this band */
 | 
						|
        if (i != f->start_band)
 | 
						|
            f->remaining -= consumed;
 | 
						|
        f->remaining2 = totalbits - consumed - 1;
 | 
						|
        if (i <= f->coded_bands - 1) {
 | 
						|
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
 | 
						|
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
 | 
						|
        }
 | 
						|
 | 
						|
        if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] &&
 | 
						|
            (update_lowband || lowband_offset == 0))
 | 
						|
            lowband_offset = i;
 | 
						|
 | 
						|
        /* Get a conservative estimate of the collapse_mask's for the bands we're
 | 
						|
           going to be folding from. */
 | 
						|
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
 | 
						|
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
 | 
						|
            int foldstart, foldend;
 | 
						|
 | 
						|
            /* This ensures we never repeat spectral content within one band */
 | 
						|
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
 | 
						|
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
 | 
						|
            foldstart = lowband_offset;
 | 
						|
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
 | 
						|
            foldend = lowband_offset - 1;
 | 
						|
            while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]);
 | 
						|
 | 
						|
            cm[0] = cm[1] = 0;
 | 
						|
            for (j = foldstart; j < foldend; j++) {
 | 
						|
                cm[0] |= f->block[0].collapse_masks[j];
 | 
						|
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (f->dual_stereo && i == f->intensity_stereo) {
 | 
						|
            /* Switch off dual stereo to do intensity */
 | 
						|
            f->dual_stereo = 0;
 | 
						|
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
 | 
						|
                norm[j] = (norm[j] + norm2[j]) / 2;
 | 
						|
        }
 | 
						|
 | 
						|
        if (f->dual_stereo) {
 | 
						|
            cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
 | 
						|
 | 
						|
            cm[1] = f->pvq->decode_band(f->pvq, f, rc, i, Y, NULL, band_size, b/2, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
 | 
						|
        } else {
 | 
						|
            cm[0] = f->pvq->decode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks,
 | 
						|
                                        effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size,
 | 
						|
                                        norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
 | 
						|
            cm[1] = cm[0];
 | 
						|
        }
 | 
						|
 | 
						|
        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
 | 
						|
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
 | 
						|
        f->remaining += f->pulses[i] + consumed;
 | 
						|
 | 
						|
        /* Update the folding position only as long as we have 1 bit/sample depth */
 | 
						|
        update_lowband = (b > band_size << 3);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int ff_celt_decode_frame(CeltFrame *f, OpusRangeCoder *rc,
 | 
						|
                         float **output, int channels, int frame_size,
 | 
						|
                         int start_band,  int end_band)
 | 
						|
{
 | 
						|
    int i, j, downmix = 0;
 | 
						|
    int consumed;           // bits of entropy consumed thus far for this frame
 | 
						|
    MDCT15Context *imdct;
 | 
						|
 | 
						|
    if (channels != 1 && channels != 2) {
 | 
						|
        av_log(f->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
 | 
						|
               channels);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
    if (start_band < 0 || start_band > end_band || end_band > CELT_MAX_BANDS) {
 | 
						|
        av_log(f->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
 | 
						|
               start_band, end_band);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    f->silence        = 0;
 | 
						|
    f->transient      = 0;
 | 
						|
    f->anticollapse   = 0;
 | 
						|
    f->flushed        = 0;
 | 
						|
    f->channels       = channels;
 | 
						|
    f->start_band     = start_band;
 | 
						|
    f->end_band       = end_band;
 | 
						|
    f->framebits      = rc->rb.bytes * 8;
 | 
						|
 | 
						|
    f->size = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
 | 
						|
    if (f->size > CELT_MAX_LOG_BLOCKS ||
 | 
						|
        frame_size != CELT_SHORT_BLOCKSIZE * (1 << f->size)) {
 | 
						|
        av_log(f->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
 | 
						|
               frame_size);
 | 
						|
        return AVERROR_INVALIDDATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!f->output_channels)
 | 
						|
        f->output_channels = channels;
 | 
						|
 | 
						|
    memset(f->block[0].collapse_masks, 0, sizeof(f->block[0].collapse_masks));
 | 
						|
    memset(f->block[1].collapse_masks, 0, sizeof(f->block[1].collapse_masks));
 | 
						|
 | 
						|
    consumed = opus_rc_tell(rc);
 | 
						|
 | 
						|
    /* obtain silence flag */
 | 
						|
    if (consumed >= f->framebits)
 | 
						|
        f->silence = 1;
 | 
						|
    else if (consumed == 1)
 | 
						|
        f->silence = ff_opus_rc_dec_log(rc, 15);
 | 
						|
 | 
						|
 | 
						|
    if (f->silence) {
 | 
						|
        consumed = f->framebits;
 | 
						|
        rc->total_bits += f->framebits - opus_rc_tell(rc);
 | 
						|
    }
 | 
						|
 | 
						|
    /* obtain post-filter options */
 | 
						|
    consumed = parse_postfilter(f, rc, consumed);
 | 
						|
 | 
						|
    /* obtain transient flag */
 | 
						|
    if (f->size != 0 && consumed+3 <= f->framebits)
 | 
						|
        f->transient = ff_opus_rc_dec_log(rc, 3);
 | 
						|
 | 
						|
    f->blocks    = f->transient ? 1 << f->size : 1;
 | 
						|
    f->blocksize = frame_size / f->blocks;
 | 
						|
 | 
						|
    imdct = f->imdct[f->transient ? 0 : f->size];
 | 
						|
 | 
						|
    if (channels == 1) {
 | 
						|
        for (i = 0; i < CELT_MAX_BANDS; i++)
 | 
						|
            f->block[0].energy[i] = FFMAX(f->block[0].energy[i], f->block[1].energy[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    celt_decode_coarse_energy(f, rc);
 | 
						|
    celt_decode_tf_changes   (f, rc);
 | 
						|
    celt_decode_allocation   (f, rc);
 | 
						|
    celt_decode_fine_energy  (f, rc);
 | 
						|
    celt_decode_bands        (f, rc);
 | 
						|
 | 
						|
    if (f->anticollapse_needed)
 | 
						|
        f->anticollapse = ff_opus_rc_get_raw(rc, 1);
 | 
						|
 | 
						|
    celt_decode_final_energy(f, rc);
 | 
						|
 | 
						|
    /* apply anti-collapse processing and denormalization to
 | 
						|
     * each coded channel */
 | 
						|
    for (i = 0; i < f->channels; i++) {
 | 
						|
        CeltBlock *block = &f->block[i];
 | 
						|
 | 
						|
        if (f->anticollapse)
 | 
						|
            process_anticollapse(f, block, f->block[i].coeffs);
 | 
						|
 | 
						|
        celt_denormalize(f, block, f->block[i].coeffs);
 | 
						|
    }
 | 
						|
 | 
						|
    /* stereo -> mono downmix */
 | 
						|
    if (f->output_channels < f->channels) {
 | 
						|
        f->dsp->vector_fmac_scalar(f->block[0].coeffs, f->block[1].coeffs, 1.0, FFALIGN(frame_size, 16));
 | 
						|
        downmix = 1;
 | 
						|
    } else if (f->output_channels > f->channels)
 | 
						|
        memcpy(f->block[1].coeffs, f->block[0].coeffs, frame_size * sizeof(float));
 | 
						|
 | 
						|
    if (f->silence) {
 | 
						|
        for (i = 0; i < 2; i++) {
 | 
						|
            CeltBlock *block = &f->block[i];
 | 
						|
 | 
						|
            for (j = 0; j < FF_ARRAY_ELEMS(block->energy); j++)
 | 
						|
                block->energy[j] = CELT_ENERGY_SILENCE;
 | 
						|
        }
 | 
						|
        memset(f->block[0].coeffs, 0, sizeof(f->block[0].coeffs));
 | 
						|
        memset(f->block[1].coeffs, 0, sizeof(f->block[1].coeffs));
 | 
						|
    }
 | 
						|
 | 
						|
    /* transform and output for each output channel */
 | 
						|
    for (i = 0; i < f->output_channels; i++) {
 | 
						|
        CeltBlock *block = &f->block[i];
 | 
						|
        float m = block->emph_coeff;
 | 
						|
 | 
						|
        /* iMDCT and overlap-add */
 | 
						|
        for (j = 0; j < f->blocks; j++) {
 | 
						|
            float *dst  = block->buf + 1024 + j * f->blocksize;
 | 
						|
 | 
						|
            imdct->imdct_half(imdct, dst + CELT_OVERLAP / 2, f->block[i].coeffs + j,
 | 
						|
                              f->blocks);
 | 
						|
            f->dsp->vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
 | 
						|
                                       ff_celt_window, CELT_OVERLAP / 2);
 | 
						|
        }
 | 
						|
 | 
						|
        if (downmix)
 | 
						|
            f->dsp->vector_fmul_scalar(&block->buf[1024], &block->buf[1024], 0.5f, frame_size);
 | 
						|
 | 
						|
        /* postfilter */
 | 
						|
        celt_postfilter(f, block);
 | 
						|
 | 
						|
        /* deemphasis and output scaling */
 | 
						|
        for (j = 0; j < frame_size; j++) {
 | 
						|
            const float tmp = block->buf[1024 - frame_size + j] + m;
 | 
						|
            m = tmp * CELT_EMPH_COEFF;
 | 
						|
            output[i][j] = tmp;
 | 
						|
        }
 | 
						|
 | 
						|
        block->emph_coeff = m;
 | 
						|
    }
 | 
						|
 | 
						|
    if (channels == 1)
 | 
						|
        memcpy(f->block[1].energy, f->block[0].energy, sizeof(f->block[0].energy));
 | 
						|
 | 
						|
    for (i = 0; i < 2; i++ ) {
 | 
						|
        CeltBlock *block = &f->block[i];
 | 
						|
 | 
						|
        if (!f->transient) {
 | 
						|
            memcpy(block->prev_energy[1], block->prev_energy[0], sizeof(block->prev_energy[0]));
 | 
						|
            memcpy(block->prev_energy[0], block->energy,         sizeof(block->prev_energy[0]));
 | 
						|
        } else {
 | 
						|
            for (j = 0; j < CELT_MAX_BANDS; j++)
 | 
						|
                block->prev_energy[0][j] = FFMIN(block->prev_energy[0][j], block->energy[j]);
 | 
						|
        }
 | 
						|
 | 
						|
        for (j = 0; j < f->start_band; j++) {
 | 
						|
            block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | 
						|
            block->energy[j]         = 0.0;
 | 
						|
        }
 | 
						|
        for (j = f->end_band; j < CELT_MAX_BANDS; j++) {
 | 
						|
            block->prev_energy[0][j] = CELT_ENERGY_SILENCE;
 | 
						|
            block->energy[j]         = 0.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    f->seed = rc->range;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ff_celt_flush(CeltFrame *f)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    if (f->flushed)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (i = 0; i < 2; i++) {
 | 
						|
        CeltBlock *block = &f->block[i];
 | 
						|
 | 
						|
        for (j = 0; j < CELT_MAX_BANDS; j++)
 | 
						|
            block->prev_energy[0][j] = block->prev_energy[1][j] = CELT_ENERGY_SILENCE;
 | 
						|
 | 
						|
        memset(block->energy, 0, sizeof(block->energy));
 | 
						|
        memset(block->buf,    0, sizeof(block->buf));
 | 
						|
 | 
						|
        memset(block->pf_gains,     0, sizeof(block->pf_gains));
 | 
						|
        memset(block->pf_gains_old, 0, sizeof(block->pf_gains_old));
 | 
						|
        memset(block->pf_gains_new, 0, sizeof(block->pf_gains_new));
 | 
						|
 | 
						|
        block->emph_coeff = 0.0;
 | 
						|
    }
 | 
						|
    f->seed = 0;
 | 
						|
 | 
						|
    f->flushed = 1;
 | 
						|
}
 | 
						|
 | 
						|
void ff_celt_free(CeltFrame **f)
 | 
						|
{
 | 
						|
    CeltFrame *frm = *f;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (!frm)
 | 
						|
        return;
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | 
						|
        ff_mdct15_uninit(&frm->imdct[i]);
 | 
						|
 | 
						|
    ff_celt_pvq_uninit(&frm->pvq);
 | 
						|
 | 
						|
    av_freep(&frm->dsp);
 | 
						|
    av_freep(f);
 | 
						|
}
 | 
						|
 | 
						|
int ff_celt_init(AVCodecContext *avctx, CeltFrame **f, int output_channels)
 | 
						|
{
 | 
						|
    CeltFrame *frm;
 | 
						|
    int i, ret;
 | 
						|
 | 
						|
    if (output_channels != 1 && output_channels != 2) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
 | 
						|
               output_channels);
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
 | 
						|
    frm = av_mallocz(sizeof(*frm));
 | 
						|
    if (!frm)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    frm->avctx           = avctx;
 | 
						|
    frm->output_channels = output_channels;
 | 
						|
 | 
						|
    for (i = 0; i < FF_ARRAY_ELEMS(frm->imdct); i++)
 | 
						|
        if ((ret = ff_mdct15_init(&frm->imdct[i], 1, i + 3, -1.0f/32768)) < 0)
 | 
						|
            goto fail;
 | 
						|
 | 
						|
    if ((ret = ff_celt_pvq_init(&frm->pvq)) < 0)
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    frm->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
 | 
						|
    if (!frm->dsp) {
 | 
						|
        ret = AVERROR(ENOMEM);
 | 
						|
        goto fail;
 | 
						|
    }
 | 
						|
 | 
						|
    ff_celt_flush(frm);
 | 
						|
 | 
						|
    *f = frm;
 | 
						|
 | 
						|
    return 0;
 | 
						|
fail:
 | 
						|
    ff_celt_free(&frm);
 | 
						|
    return ret;
 | 
						|
}
 |