1318 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1318 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * FLAC audio encoder
 | 
						|
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
 | 
						|
 *
 | 
						|
 * This file is part of Libav.
 | 
						|
 *
 | 
						|
 * Libav is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * Libav is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with Libav; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/crc.h"
 | 
						|
#include "libavutil/md5.h"
 | 
						|
#include "libavutil/opt.h"
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "golomb.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "lpc.h"
 | 
						|
#include "flac.h"
 | 
						|
#include "flacdata.h"
 | 
						|
 | 
						|
#define FLAC_SUBFRAME_CONSTANT  0
 | 
						|
#define FLAC_SUBFRAME_VERBATIM  1
 | 
						|
#define FLAC_SUBFRAME_FIXED     8
 | 
						|
#define FLAC_SUBFRAME_LPC      32
 | 
						|
 | 
						|
#define MAX_FIXED_ORDER     4
 | 
						|
#define MAX_PARTITION_ORDER 8
 | 
						|
#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
 | 
						|
#define MAX_LPC_PRECISION  15
 | 
						|
#define MAX_LPC_SHIFT      15
 | 
						|
#define MAX_RICE_PARAM     14
 | 
						|
 | 
						|
typedef struct CompressionOptions {
 | 
						|
    int compression_level;
 | 
						|
    int block_time_ms;
 | 
						|
    enum FFLPCType lpc_type;
 | 
						|
    int lpc_passes;
 | 
						|
    int lpc_coeff_precision;
 | 
						|
    int min_prediction_order;
 | 
						|
    int max_prediction_order;
 | 
						|
    int prediction_order_method;
 | 
						|
    int min_partition_order;
 | 
						|
    int max_partition_order;
 | 
						|
    int ch_mode;
 | 
						|
} CompressionOptions;
 | 
						|
 | 
						|
typedef struct RiceContext {
 | 
						|
    int porder;
 | 
						|
    int params[MAX_PARTITIONS];
 | 
						|
} RiceContext;
 | 
						|
 | 
						|
typedef struct FlacSubframe {
 | 
						|
    int type;
 | 
						|
    int type_code;
 | 
						|
    int obits;
 | 
						|
    int order;
 | 
						|
    int32_t coefs[MAX_LPC_ORDER];
 | 
						|
    int shift;
 | 
						|
    RiceContext rc;
 | 
						|
    int32_t samples[FLAC_MAX_BLOCKSIZE];
 | 
						|
    int32_t residual[FLAC_MAX_BLOCKSIZE+1];
 | 
						|
} FlacSubframe;
 | 
						|
 | 
						|
typedef struct FlacFrame {
 | 
						|
    FlacSubframe subframes[FLAC_MAX_CHANNELS];
 | 
						|
    int blocksize;
 | 
						|
    int bs_code[2];
 | 
						|
    uint8_t crc8;
 | 
						|
    int ch_mode;
 | 
						|
    int verbatim_only;
 | 
						|
} FlacFrame;
 | 
						|
 | 
						|
typedef struct FlacEncodeContext {
 | 
						|
    AVClass *class;
 | 
						|
    PutBitContext pb;
 | 
						|
    int channels;
 | 
						|
    int samplerate;
 | 
						|
    int sr_code[2];
 | 
						|
    int max_blocksize;
 | 
						|
    int min_framesize;
 | 
						|
    int max_framesize;
 | 
						|
    int max_encoded_framesize;
 | 
						|
    uint32_t frame_count;
 | 
						|
    uint64_t sample_count;
 | 
						|
    uint8_t md5sum[16];
 | 
						|
    FlacFrame frame;
 | 
						|
    CompressionOptions options;
 | 
						|
    AVCodecContext *avctx;
 | 
						|
    LPCContext lpc_ctx;
 | 
						|
    struct AVMD5 *md5ctx;
 | 
						|
} FlacEncodeContext;
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Write streaminfo metadata block to byte array.
 | 
						|
 */
 | 
						|
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
 | 
						|
{
 | 
						|
    PutBitContext pb;
 | 
						|
 | 
						|
    memset(header, 0, FLAC_STREAMINFO_SIZE);
 | 
						|
    init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
 | 
						|
 | 
						|
    /* streaminfo metadata block */
 | 
						|
    put_bits(&pb, 16, s->max_blocksize);
 | 
						|
    put_bits(&pb, 16, s->max_blocksize);
 | 
						|
    put_bits(&pb, 24, s->min_framesize);
 | 
						|
    put_bits(&pb, 24, s->max_framesize);
 | 
						|
    put_bits(&pb, 20, s->samplerate);
 | 
						|
    put_bits(&pb, 3, s->channels-1);
 | 
						|
    put_bits(&pb, 5, 15);       /* bits per sample - 1 */
 | 
						|
    /* write 36-bit sample count in 2 put_bits() calls */
 | 
						|
    put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
 | 
						|
    put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
 | 
						|
    flush_put_bits(&pb);
 | 
						|
    memcpy(&header[18], s->md5sum, 16);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Set blocksize based on samplerate.
 | 
						|
 * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
 | 
						|
 */
 | 
						|
static int select_blocksize(int samplerate, int block_time_ms)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int target;
 | 
						|
    int blocksize;
 | 
						|
 | 
						|
    assert(samplerate > 0);
 | 
						|
    blocksize = ff_flac_blocksize_table[1];
 | 
						|
    target    = (samplerate * block_time_ms) / 1000;
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        if (target >= ff_flac_blocksize_table[i] &&
 | 
						|
            ff_flac_blocksize_table[i] > blocksize) {
 | 
						|
            blocksize = ff_flac_blocksize_table[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return blocksize;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold void dprint_compression_options(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    AVCodecContext     *avctx = s->avctx;
 | 
						|
    CompressionOptions *opt   = &s->options;
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
 | 
						|
 | 
						|
    switch (opt->lpc_type) {
 | 
						|
    case FF_LPC_TYPE_NONE:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
 | 
						|
        break;
 | 
						|
    case FF_LPC_TYPE_FIXED:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
 | 
						|
        break;
 | 
						|
    case FF_LPC_TYPE_LEVINSON:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
 | 
						|
        break;
 | 
						|
    case FF_LPC_TYPE_CHOLESKY:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
 | 
						|
               opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
 | 
						|
           opt->min_prediction_order, opt->max_prediction_order);
 | 
						|
 | 
						|
    switch (opt->prediction_order_method) {
 | 
						|
    case ORDER_METHOD_EST:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
 | 
						|
        break;
 | 
						|
    case ORDER_METHOD_2LEVEL:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
 | 
						|
        break;
 | 
						|
    case ORDER_METHOD_4LEVEL:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
 | 
						|
        break;
 | 
						|
    case ORDER_METHOD_8LEVEL:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
 | 
						|
        break;
 | 
						|
    case ORDER_METHOD_SEARCH:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
 | 
						|
        break;
 | 
						|
    case ORDER_METHOD_LOG:
 | 
						|
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
 | 
						|
           opt->min_partition_order, opt->max_partition_order);
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
 | 
						|
 | 
						|
    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
 | 
						|
           opt->lpc_coeff_precision);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int flac_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    int freq = avctx->sample_rate;
 | 
						|
    int channels = avctx->channels;
 | 
						|
    FlacEncodeContext *s = avctx->priv_data;
 | 
						|
    int i, level, ret;
 | 
						|
    uint8_t *streaminfo;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
 | 
						|
    if (avctx->sample_fmt != AV_SAMPLE_FMT_S16)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    if (channels < 1 || channels > FLAC_MAX_CHANNELS)
 | 
						|
        return -1;
 | 
						|
    s->channels = channels;
 | 
						|
 | 
						|
    /* find samplerate in table */
 | 
						|
    if (freq < 1)
 | 
						|
        return -1;
 | 
						|
    for (i = 4; i < 12; i++) {
 | 
						|
        if (freq == ff_flac_sample_rate_table[i]) {
 | 
						|
            s->samplerate = ff_flac_sample_rate_table[i];
 | 
						|
            s->sr_code[0] = i;
 | 
						|
            s->sr_code[1] = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* if not in table, samplerate is non-standard */
 | 
						|
    if (i == 12) {
 | 
						|
        if (freq % 1000 == 0 && freq < 255000) {
 | 
						|
            s->sr_code[0] = 12;
 | 
						|
            s->sr_code[1] = freq / 1000;
 | 
						|
        } else if (freq % 10 == 0 && freq < 655350) {
 | 
						|
            s->sr_code[0] = 14;
 | 
						|
            s->sr_code[1] = freq / 10;
 | 
						|
        } else if (freq < 65535) {
 | 
						|
            s->sr_code[0] = 13;
 | 
						|
            s->sr_code[1] = freq;
 | 
						|
        } else {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->samplerate = freq;
 | 
						|
    }
 | 
						|
 | 
						|
    /* set compression option defaults based on avctx->compression_level */
 | 
						|
    if (avctx->compression_level < 0)
 | 
						|
        s->options.compression_level = 5;
 | 
						|
    else
 | 
						|
        s->options.compression_level = avctx->compression_level;
 | 
						|
 | 
						|
    level = s->options.compression_level;
 | 
						|
    if (level > 12) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
 | 
						|
               s->options.compression_level);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
 | 
						|
 | 
						|
    if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
 | 
						|
        s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
 | 
						|
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | 
						|
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | 
						|
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
 | 
						|
                                         FF_LPC_TYPE_LEVINSON})[level];
 | 
						|
 | 
						|
    s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
 | 
						|
    s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
 | 
						|
 | 
						|
    if (s->options.prediction_order_method < 0)
 | 
						|
        s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | 
						|
                                                       ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
 | 
						|
                                                       ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
 | 
						|
                                                       ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
 | 
						|
                                                       ORDER_METHOD_SEARCH})[level];
 | 
						|
 | 
						|
    if (s->options.min_partition_order > s->options.max_partition_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
 | 
						|
               s->options.min_partition_order, s->options.max_partition_order);
 | 
						|
        return AVERROR(EINVAL);
 | 
						|
    }
 | 
						|
    if (s->options.min_partition_order < 0)
 | 
						|
        s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
 | 
						|
    if (s->options.max_partition_order < 0)
 | 
						|
        s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
 | 
						|
 | 
						|
    if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
 | 
						|
        s->options.min_prediction_order = 0;
 | 
						|
    } else if (avctx->min_prediction_order >= 0) {
 | 
						|
        if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
 | 
						|
            if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
						|
                       avctx->min_prediction_order);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
 | 
						|
                   avctx->min_prediction_order > MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
 | 
						|
                   avctx->min_prediction_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.min_prediction_order = avctx->min_prediction_order;
 | 
						|
    }
 | 
						|
    if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
 | 
						|
        s->options.max_prediction_order = 0;
 | 
						|
    } else if (avctx->max_prediction_order >= 0) {
 | 
						|
        if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
 | 
						|
            if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
 | 
						|
                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
						|
                       avctx->max_prediction_order);
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
 | 
						|
                   avctx->max_prediction_order > MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
 | 
						|
                   avctx->max_prediction_order);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        s->options.max_prediction_order = avctx->max_prediction_order;
 | 
						|
    }
 | 
						|
    if (s->options.max_prediction_order < s->options.min_prediction_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | 
						|
               s->options.min_prediction_order, s->options.max_prediction_order);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (avctx->frame_size > 0) {
 | 
						|
        if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
 | 
						|
                avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
 | 
						|
                   avctx->frame_size);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
 | 
						|
    }
 | 
						|
    s->max_blocksize = s->avctx->frame_size;
 | 
						|
 | 
						|
    /* set maximum encoded frame size in verbatim mode */
 | 
						|
    s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
 | 
						|
                                                  s->channels, 16);
 | 
						|
 | 
						|
    /* initialize MD5 context */
 | 
						|
    s->md5ctx = av_malloc(av_md5_size);
 | 
						|
    if (!s->md5ctx)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    av_md5_init(s->md5ctx);
 | 
						|
 | 
						|
    streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
 | 
						|
    if (!streaminfo)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
    write_streaminfo(s, streaminfo);
 | 
						|
    avctx->extradata = streaminfo;
 | 
						|
    avctx->extradata_size = FLAC_STREAMINFO_SIZE;
 | 
						|
 | 
						|
    s->frame_count   = 0;
 | 
						|
    s->min_framesize = s->max_framesize;
 | 
						|
 | 
						|
#if FF_API_OLD_ENCODE_AUDIO
 | 
						|
    avctx->coded_frame = avcodec_alloc_frame();
 | 
						|
    if (!avctx->coded_frame)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
#endif
 | 
						|
 | 
						|
    ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
 | 
						|
                      s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
 | 
						|
 | 
						|
    dprint_compression_options(s);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void init_frame(FlacEncodeContext *s, int nb_samples)
 | 
						|
{
 | 
						|
    int i, ch;
 | 
						|
    FlacFrame *frame;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
 | 
						|
    for (i = 0; i < 16; i++) {
 | 
						|
        if (nb_samples == ff_flac_blocksize_table[i]) {
 | 
						|
            frame->blocksize  = ff_flac_blocksize_table[i];
 | 
						|
            frame->bs_code[0] = i;
 | 
						|
            frame->bs_code[1] = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (i == 16) {
 | 
						|
        frame->blocksize = nb_samples;
 | 
						|
        if (frame->blocksize <= 256) {
 | 
						|
            frame->bs_code[0] = 6;
 | 
						|
            frame->bs_code[1] = frame->blocksize-1;
 | 
						|
        } else {
 | 
						|
            frame->bs_code[0] = 7;
 | 
						|
            frame->bs_code[1] = frame->blocksize-1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        frame->subframes[ch].obits = 16;
 | 
						|
 | 
						|
    frame->verbatim_only = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Copy channel-interleaved input samples into separate subframes.
 | 
						|
 */
 | 
						|
static void copy_samples(FlacEncodeContext *s, const int16_t *samples)
 | 
						|
{
 | 
						|
    int i, j, ch;
 | 
						|
    FlacFrame *frame;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
    for (i = 0, j = 0; i < frame->blocksize; i++)
 | 
						|
        for (ch = 0; ch < s->channels; ch++, j++)
 | 
						|
            frame->subframes[ch].samples[i] = samples[j];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int rice_count_exact(int32_t *res, int n, int k)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int count = 0;
 | 
						|
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
        int32_t v = -2 * res[i] - 1;
 | 
						|
        v ^= v >> 31;
 | 
						|
        count += (v >> k) + 1 + k;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
 | 
						|
                                int pred_order)
 | 
						|
{
 | 
						|
    int p, porder, psize;
 | 
						|
    int i, part_end;
 | 
						|
    int count = 0;
 | 
						|
 | 
						|
    /* subframe header */
 | 
						|
    count += 8;
 | 
						|
 | 
						|
    /* subframe */
 | 
						|
    if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | 
						|
        count += sub->obits;
 | 
						|
    } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | 
						|
        count += s->frame.blocksize * sub->obits;
 | 
						|
    } else {
 | 
						|
        /* warm-up samples */
 | 
						|
        count += pred_order * sub->obits;
 | 
						|
 | 
						|
        /* LPC coefficients */
 | 
						|
        if (sub->type == FLAC_SUBFRAME_LPC)
 | 
						|
            count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | 
						|
 | 
						|
        /* rice-encoded block */
 | 
						|
        count += 2;
 | 
						|
 | 
						|
        /* partition order */
 | 
						|
        porder = sub->rc.porder;
 | 
						|
        psize  = s->frame.blocksize >> porder;
 | 
						|
        count += 4;
 | 
						|
 | 
						|
        /* residual */
 | 
						|
        i        = pred_order;
 | 
						|
        part_end = psize;
 | 
						|
        for (p = 0; p < 1 << porder; p++) {
 | 
						|
            int k = sub->rc.params[p];
 | 
						|
            count += 4;
 | 
						|
            count += rice_count_exact(&sub->residual[i], part_end - i, k);
 | 
						|
            i = part_end;
 | 
						|
            part_end = FFMIN(s->frame.blocksize, part_end + psize);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
 | 
						|
 | 
						|
/**
 | 
						|
 * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
 | 
						|
 */
 | 
						|
static int find_optimal_param(uint32_t sum, int n)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
    uint32_t sum2;
 | 
						|
 | 
						|
    if (sum <= n >> 1)
 | 
						|
        return 0;
 | 
						|
    sum2 = sum - (n >> 1);
 | 
						|
    k    = av_log2(n < 256 ? FASTDIV(sum2, n) : sum2 / n);
 | 
						|
    return FFMIN(k, MAX_RICE_PARAM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
 | 
						|
                                         uint32_t *sums, int n, int pred_order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int k, cnt, part;
 | 
						|
    uint32_t all_bits;
 | 
						|
 | 
						|
    part     = (1 << porder);
 | 
						|
    all_bits = 4 * part;
 | 
						|
 | 
						|
    cnt = (n >> porder) - pred_order;
 | 
						|
    for (i = 0; i < part; i++) {
 | 
						|
        k = find_optimal_param(sums[i], cnt);
 | 
						|
        rc->params[i] = k;
 | 
						|
        all_bits += rice_encode_count(sums[i], cnt, k);
 | 
						|
        cnt = n >> porder;
 | 
						|
    }
 | 
						|
 | 
						|
    rc->porder = porder;
 | 
						|
 | 
						|
    return all_bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
 | 
						|
                      uint32_t sums[][MAX_PARTITIONS])
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
    int parts;
 | 
						|
    uint32_t *res, *res_end;
 | 
						|
 | 
						|
    /* sums for highest level */
 | 
						|
    parts   = (1 << pmax);
 | 
						|
    res     = &data[pred_order];
 | 
						|
    res_end = &data[n >> pmax];
 | 
						|
    for (i = 0; i < parts; i++) {
 | 
						|
        uint32_t sum = 0;
 | 
						|
        while (res < res_end)
 | 
						|
            sum += *(res++);
 | 
						|
        sums[pmax][i] = sum;
 | 
						|
        res_end += n >> pmax;
 | 
						|
    }
 | 
						|
    /* sums for lower levels */
 | 
						|
    for (i = pmax - 1; i >= pmin; i--) {
 | 
						|
        parts = (1 << i);
 | 
						|
        for (j = 0; j < parts; j++)
 | 
						|
            sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
 | 
						|
                                 int32_t *data, int n, int pred_order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t bits[MAX_PARTITION_ORDER+1];
 | 
						|
    int opt_porder;
 | 
						|
    RiceContext tmp_rc;
 | 
						|
    uint32_t *udata;
 | 
						|
    uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
 | 
						|
 | 
						|
    assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
 | 
						|
    assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
 | 
						|
    assert(pmin <= pmax);
 | 
						|
 | 
						|
    udata = av_malloc(n * sizeof(uint32_t));
 | 
						|
    for (i = 0; i < n; i++)
 | 
						|
        udata[i] = (2*data[i]) ^ (data[i]>>31);
 | 
						|
 | 
						|
    calc_sums(pmin, pmax, udata, n, pred_order, sums);
 | 
						|
 | 
						|
    opt_porder = pmin;
 | 
						|
    bits[pmin] = UINT32_MAX;
 | 
						|
    for (i = pmin; i <= pmax; i++) {
 | 
						|
        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
 | 
						|
        if (bits[i] <= bits[opt_porder]) {
 | 
						|
            opt_porder = i;
 | 
						|
            *rc = tmp_rc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    av_freep(&udata);
 | 
						|
    return bits[opt_porder];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int get_max_p_order(int max_porder, int n, int order)
 | 
						|
{
 | 
						|
    int porder = FFMIN(max_porder, av_log2(n^(n-1)));
 | 
						|
    if (order > 0)
 | 
						|
        porder = FFMIN(porder, av_log2(n/order));
 | 
						|
    return porder;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static uint32_t find_subframe_rice_params(FlacEncodeContext *s,
 | 
						|
                                          FlacSubframe *sub, int pred_order)
 | 
						|
{
 | 
						|
    int pmin = get_max_p_order(s->options.min_partition_order,
 | 
						|
                               s->frame.blocksize, pred_order);
 | 
						|
    int pmax = get_max_p_order(s->options.max_partition_order,
 | 
						|
                               s->frame.blocksize, pred_order);
 | 
						|
 | 
						|
    uint32_t bits = 8 + pred_order * sub->obits + 2 + 4;
 | 
						|
    if (sub->type == FLAC_SUBFRAME_LPC)
 | 
						|
        bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
 | 
						|
    bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual,
 | 
						|
                             s->frame.blocksize, pred_order);
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
 | 
						|
                                  int order)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < order; i++)
 | 
						|
        res[i] = smp[i];
 | 
						|
 | 
						|
    if (order == 0) {
 | 
						|
        for (i = order; i < n; i++)
 | 
						|
            res[i] = smp[i];
 | 
						|
    } else if (order == 1) {
 | 
						|
        for (i = order; i < n; i++)
 | 
						|
            res[i] = smp[i] - smp[i-1];
 | 
						|
    } else if (order == 2) {
 | 
						|
        int a = smp[order-1] - smp[order-2];
 | 
						|
        for (i = order; i < n; i += 2) {
 | 
						|
            int b    = smp[i  ] - smp[i-1];
 | 
						|
            res[i]   = b - a;
 | 
						|
            a        = smp[i+1] - smp[i  ];
 | 
						|
            res[i+1] = a - b;
 | 
						|
        }
 | 
						|
    } else if (order == 3) {
 | 
						|
        int a = smp[order-1] -   smp[order-2];
 | 
						|
        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 | 
						|
        for (i = order; i < n; i += 2) {
 | 
						|
            int b    = smp[i  ] - smp[i-1];
 | 
						|
            int d    = b - a;
 | 
						|
            res[i]   = d - c;
 | 
						|
            a        = smp[i+1] - smp[i  ];
 | 
						|
            c        = a - b;
 | 
						|
            res[i+1] = c - d;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        int a = smp[order-1] -   smp[order-2];
 | 
						|
        int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 | 
						|
        int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 | 
						|
        for (i = order; i < n; i += 2) {
 | 
						|
            int b    = smp[i  ] - smp[i-1];
 | 
						|
            int d    = b - a;
 | 
						|
            int f    = d - c;
 | 
						|
            res[i  ] = f - e;
 | 
						|
            a        = smp[i+1] - smp[i  ];
 | 
						|
            c        = a - b;
 | 
						|
            e        = c - d;
 | 
						|
            res[i+1] = e - f;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define LPC1(x) {\
 | 
						|
    int c = coefs[(x)-1];\
 | 
						|
    p0   += c * s;\
 | 
						|
    s     = smp[i-(x)+1];\
 | 
						|
    p1   += c * s;\
 | 
						|
}
 | 
						|
 | 
						|
static av_always_inline void encode_residual_lpc_unrolled(int32_t *res,
 | 
						|
                                    const int32_t *smp, int n, int order,
 | 
						|
                                    const int32_t *coefs, int shift, int big)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = order; i < n; i += 2) {
 | 
						|
        int s  = smp[i-order];
 | 
						|
        int p0 = 0, p1 = 0;
 | 
						|
        if (big) {
 | 
						|
            switch (order) {
 | 
						|
            case 32: LPC1(32)
 | 
						|
            case 31: LPC1(31)
 | 
						|
            case 30: LPC1(30)
 | 
						|
            case 29: LPC1(29)
 | 
						|
            case 28: LPC1(28)
 | 
						|
            case 27: LPC1(27)
 | 
						|
            case 26: LPC1(26)
 | 
						|
            case 25: LPC1(25)
 | 
						|
            case 24: LPC1(24)
 | 
						|
            case 23: LPC1(23)
 | 
						|
            case 22: LPC1(22)
 | 
						|
            case 21: LPC1(21)
 | 
						|
            case 20: LPC1(20)
 | 
						|
            case 19: LPC1(19)
 | 
						|
            case 18: LPC1(18)
 | 
						|
            case 17: LPC1(17)
 | 
						|
            case 16: LPC1(16)
 | 
						|
            case 15: LPC1(15)
 | 
						|
            case 14: LPC1(14)
 | 
						|
            case 13: LPC1(13)
 | 
						|
            case 12: LPC1(12)
 | 
						|
            case 11: LPC1(11)
 | 
						|
            case 10: LPC1(10)
 | 
						|
            case  9: LPC1( 9)
 | 
						|
                     LPC1( 8)
 | 
						|
                     LPC1( 7)
 | 
						|
                     LPC1( 6)
 | 
						|
                     LPC1( 5)
 | 
						|
                     LPC1( 4)
 | 
						|
                     LPC1( 3)
 | 
						|
                     LPC1( 2)
 | 
						|
                     LPC1( 1)
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            switch (order) {
 | 
						|
            case  8: LPC1( 8)
 | 
						|
            case  7: LPC1( 7)
 | 
						|
            case  6: LPC1( 6)
 | 
						|
            case  5: LPC1( 5)
 | 
						|
            case  4: LPC1( 4)
 | 
						|
            case  3: LPC1( 3)
 | 
						|
            case  2: LPC1( 2)
 | 
						|
            case  1: LPC1( 1)
 | 
						|
            }
 | 
						|
        }
 | 
						|
        res[i  ] = smp[i  ] - (p0 >> shift);
 | 
						|
        res[i+1] = smp[i+1] - (p1 >> shift);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
 | 
						|
                                int order, const int32_t *coefs, int shift)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < order; i++)
 | 
						|
        res[i] = smp[i];
 | 
						|
#if CONFIG_SMALL
 | 
						|
    for (i = order; i < n; i += 2) {
 | 
						|
        int j;
 | 
						|
        int s  = smp[i];
 | 
						|
        int p0 = 0, p1 = 0;
 | 
						|
        for (j = 0; j < order; j++) {
 | 
						|
            int c = coefs[j];
 | 
						|
            p1   += c * s;
 | 
						|
            s     = smp[i-j-1];
 | 
						|
            p0   += c * s;
 | 
						|
        }
 | 
						|
        res[i  ] = smp[i  ] - (p0 >> shift);
 | 
						|
        res[i+1] = smp[i+1] - (p1 >> shift);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    switch (order) {
 | 
						|
    case  1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
 | 
						|
    case  2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
 | 
						|
    case  3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
 | 
						|
    case  4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
 | 
						|
    case  5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
 | 
						|
    case  6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
 | 
						|
    case  7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
 | 
						|
    case  8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
 | 
						|
    default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int encode_residual_ch(FlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int i, n;
 | 
						|
    int min_order, max_order, opt_order, omethod;
 | 
						|
    FlacFrame *frame;
 | 
						|
    FlacSubframe *sub;
 | 
						|
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
						|
    int shift[MAX_LPC_ORDER];
 | 
						|
    int32_t *res, *smp;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
    sub   = &frame->subframes[ch];
 | 
						|
    res   = sub->residual;
 | 
						|
    smp   = sub->samples;
 | 
						|
    n     = frame->blocksize;
 | 
						|
 | 
						|
    /* CONSTANT */
 | 
						|
    for (i = 1; i < n; i++)
 | 
						|
        if(smp[i] != smp[0])
 | 
						|
            break;
 | 
						|
    if (i == n) {
 | 
						|
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
 | 
						|
        res[0] = smp[0];
 | 
						|
        return subframe_count_exact(s, sub, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* VERBATIM */
 | 
						|
    if (frame->verbatim_only || n < 5) {
 | 
						|
        sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
 | 
						|
        memcpy(res, smp, n * sizeof(int32_t));
 | 
						|
        return subframe_count_exact(s, sub, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    min_order  = s->options.min_prediction_order;
 | 
						|
    max_order  = s->options.max_prediction_order;
 | 
						|
    omethod    = s->options.prediction_order_method;
 | 
						|
 | 
						|
    /* FIXED */
 | 
						|
    sub->type = FLAC_SUBFRAME_FIXED;
 | 
						|
    if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
 | 
						|
        s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
 | 
						|
        uint32_t bits[MAX_FIXED_ORDER+1];
 | 
						|
        if (max_order > MAX_FIXED_ORDER)
 | 
						|
            max_order = MAX_FIXED_ORDER;
 | 
						|
        opt_order = 0;
 | 
						|
        bits[0]   = UINT32_MAX;
 | 
						|
        for (i = min_order; i <= max_order; i++) {
 | 
						|
            encode_residual_fixed(res, smp, n, i);
 | 
						|
            bits[i] = find_subframe_rice_params(s, sub, i);
 | 
						|
            if (bits[i] < bits[opt_order])
 | 
						|
                opt_order = i;
 | 
						|
        }
 | 
						|
        sub->order     = opt_order;
 | 
						|
        sub->type_code = sub->type | sub->order;
 | 
						|
        if (sub->order != max_order) {
 | 
						|
            encode_residual_fixed(res, smp, n, sub->order);
 | 
						|
            find_subframe_rice_params(s, sub, sub->order);
 | 
						|
        }
 | 
						|
        return subframe_count_exact(s, sub, sub->order);
 | 
						|
    }
 | 
						|
 | 
						|
    /* LPC */
 | 
						|
    sub->type = FLAC_SUBFRAME_LPC;
 | 
						|
    opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
 | 
						|
                                  s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
 | 
						|
                                  s->options.lpc_passes, omethod,
 | 
						|
                                  MAX_LPC_SHIFT, 0);
 | 
						|
 | 
						|
    if (omethod == ORDER_METHOD_2LEVEL ||
 | 
						|
        omethod == ORDER_METHOD_4LEVEL ||
 | 
						|
        omethod == ORDER_METHOD_8LEVEL) {
 | 
						|
        int levels = 1 << omethod;
 | 
						|
        uint32_t bits[1 << ORDER_METHOD_8LEVEL];
 | 
						|
        int order;
 | 
						|
        int opt_index   = levels-1;
 | 
						|
        opt_order       = max_order-1;
 | 
						|
        bits[opt_index] = UINT32_MAX;
 | 
						|
        for (i = levels-1; i >= 0; i--) {
 | 
						|
            order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
 | 
						|
            if (order < 0)
 | 
						|
                order = 0;
 | 
						|
            encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
 | 
						|
            bits[i] = find_subframe_rice_params(s, sub, order+1);
 | 
						|
            if (bits[i] < bits[opt_index]) {
 | 
						|
                opt_index = i;
 | 
						|
                opt_order = order;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    } else if (omethod == ORDER_METHOD_SEARCH) {
 | 
						|
        // brute-force optimal order search
 | 
						|
        uint32_t bits[MAX_LPC_ORDER];
 | 
						|
        opt_order = 0;
 | 
						|
        bits[0]   = UINT32_MAX;
 | 
						|
        for (i = min_order-1; i < max_order; i++) {
 | 
						|
            encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | 
						|
            bits[i] = find_subframe_rice_params(s, sub, i+1);
 | 
						|
            if (bits[i] < bits[opt_order])
 | 
						|
                opt_order = i;
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    } else if (omethod == ORDER_METHOD_LOG) {
 | 
						|
        uint32_t bits[MAX_LPC_ORDER];
 | 
						|
        int step;
 | 
						|
 | 
						|
        opt_order = min_order - 1 + (max_order-min_order)/3;
 | 
						|
        memset(bits, -1, sizeof(bits));
 | 
						|
 | 
						|
        for (step = 16; step; step >>= 1) {
 | 
						|
            int last = opt_order;
 | 
						|
            for (i = last-step; i <= last+step; i += step) {
 | 
						|
                if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
 | 
						|
                    continue;
 | 
						|
                encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
 | 
						|
                bits[i] = find_subframe_rice_params(s, sub, i+1);
 | 
						|
                if (bits[i] < bits[opt_order])
 | 
						|
                    opt_order = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        opt_order++;
 | 
						|
    }
 | 
						|
 | 
						|
    sub->order     = opt_order;
 | 
						|
    sub->type_code = sub->type | (sub->order-1);
 | 
						|
    sub->shift     = shift[sub->order-1];
 | 
						|
    for (i = 0; i < sub->order; i++)
 | 
						|
        sub->coefs[i] = coefs[sub->order-1][i];
 | 
						|
 | 
						|
    encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
 | 
						|
 | 
						|
    find_subframe_rice_params(s, sub, sub->order);
 | 
						|
 | 
						|
    return subframe_count_exact(s, sub, sub->order);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int count_frame_header(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    uint8_t av_unused tmp;
 | 
						|
    int count;
 | 
						|
 | 
						|
    /*
 | 
						|
    <14> Sync code
 | 
						|
    <1>  Reserved
 | 
						|
    <1>  Blocking strategy
 | 
						|
    <4>  Block size in inter-channel samples
 | 
						|
    <4>  Sample rate
 | 
						|
    <4>  Channel assignment
 | 
						|
    <3>  Sample size in bits
 | 
						|
    <1>  Reserved
 | 
						|
    */
 | 
						|
    count = 32;
 | 
						|
 | 
						|
    /* coded frame number */
 | 
						|
    PUT_UTF8(s->frame_count, tmp, count += 8;)
 | 
						|
 | 
						|
    /* explicit block size */
 | 
						|
    if (s->frame.bs_code[0] == 6)
 | 
						|
        count += 8;
 | 
						|
    else if (s->frame.bs_code[0] == 7)
 | 
						|
        count += 16;
 | 
						|
 | 
						|
    /* explicit sample rate */
 | 
						|
    count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8;
 | 
						|
 | 
						|
    /* frame header CRC-8 */
 | 
						|
    count += 8;
 | 
						|
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int encode_frame(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int ch, count;
 | 
						|
 | 
						|
    count = count_frame_header(s);
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++)
 | 
						|
        count += encode_residual_ch(s, ch);
 | 
						|
 | 
						|
    count += (8 - (count & 7)) & 7; // byte alignment
 | 
						|
    count += 16;                    // CRC-16
 | 
						|
 | 
						|
    return count >> 3;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
						|
{
 | 
						|
    int i, best;
 | 
						|
    int32_t lt, rt;
 | 
						|
    uint64_t sum[4];
 | 
						|
    uint64_t score[4];
 | 
						|
    int k;
 | 
						|
 | 
						|
    /* calculate sum of 2nd order residual for each channel */
 | 
						|
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | 
						|
    for (i = 2; i < n; i++) {
 | 
						|
        lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
 | 
						|
        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | 
						|
        sum[2] += FFABS((lt + rt) >> 1);
 | 
						|
        sum[3] += FFABS(lt - rt);
 | 
						|
        sum[0] += FFABS(lt);
 | 
						|
        sum[1] += FFABS(rt);
 | 
						|
    }
 | 
						|
    /* estimate bit counts */
 | 
						|
    for (i = 0; i < 4; i++) {
 | 
						|
        k      = find_optimal_param(2 * sum[i], n);
 | 
						|
        sum[i] = rice_encode_count( 2 * sum[i], n, k);
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate score for each mode */
 | 
						|
    score[0] = sum[0] + sum[1];
 | 
						|
    score[1] = sum[0] + sum[3];
 | 
						|
    score[2] = sum[1] + sum[3];
 | 
						|
    score[3] = sum[2] + sum[3];
 | 
						|
 | 
						|
    /* return mode with lowest score */
 | 
						|
    best = 0;
 | 
						|
    for (i = 1; i < 4; i++)
 | 
						|
        if (score[i] < score[best])
 | 
						|
            best = i;
 | 
						|
 | 
						|
    return best;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Perform stereo channel decorrelation.
 | 
						|
 */
 | 
						|
static void channel_decorrelation(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    FlacFrame *frame;
 | 
						|
    int32_t *left, *right;
 | 
						|
    int i, n;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
    n     = frame->blocksize;
 | 
						|
    left  = frame->subframes[0].samples;
 | 
						|
    right = frame->subframes[1].samples;
 | 
						|
 | 
						|
    if (s->channels != 2) {
 | 
						|
        frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->options.ch_mode < 0)
 | 
						|
        frame->ch_mode = estimate_stereo_mode(left, right, n);
 | 
						|
    else
 | 
						|
        frame->ch_mode = s->options.ch_mode;
 | 
						|
 | 
						|
    /* perform decorrelation and adjust bits-per-sample */
 | 
						|
    if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | 
						|
        return;
 | 
						|
    if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
 | 
						|
        int32_t tmp;
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            tmp      = left[i];
 | 
						|
            left[i]  = (tmp + right[i]) >> 1;
 | 
						|
            right[i] =  tmp - right[i];
 | 
						|
        }
 | 
						|
        frame->subframes[1].obits++;
 | 
						|
    } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
 | 
						|
        for (i = 0; i < n; i++)
 | 
						|
            right[i] = left[i] - right[i];
 | 
						|
        frame->subframes[1].obits++;
 | 
						|
    } else {
 | 
						|
        for (i = 0; i < n; i++)
 | 
						|
            left[i] -= right[i];
 | 
						|
        frame->subframes[0].obits++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void write_utf8(PutBitContext *pb, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t tmp;
 | 
						|
    PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void write_frame_header(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    FlacFrame *frame;
 | 
						|
    int crc;
 | 
						|
 | 
						|
    frame = &s->frame;
 | 
						|
 | 
						|
    put_bits(&s->pb, 16, 0xFFF8);
 | 
						|
    put_bits(&s->pb, 4, frame->bs_code[0]);
 | 
						|
    put_bits(&s->pb, 4, s->sr_code[0]);
 | 
						|
 | 
						|
    if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
 | 
						|
        put_bits(&s->pb, 4, s->channels-1);
 | 
						|
    else
 | 
						|
        put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
 | 
						|
 | 
						|
    put_bits(&s->pb, 3, 4); /* bits-per-sample code */
 | 
						|
    put_bits(&s->pb, 1, 0);
 | 
						|
    write_utf8(&s->pb, s->frame_count);
 | 
						|
 | 
						|
    if (frame->bs_code[0] == 6)
 | 
						|
        put_bits(&s->pb, 8, frame->bs_code[1]);
 | 
						|
    else if (frame->bs_code[0] == 7)
 | 
						|
        put_bits(&s->pb, 16, frame->bs_code[1]);
 | 
						|
 | 
						|
    if (s->sr_code[0] == 12)
 | 
						|
        put_bits(&s->pb, 8, s->sr_code[1]);
 | 
						|
    else if (s->sr_code[0] > 12)
 | 
						|
        put_bits(&s->pb, 16, s->sr_code[1]);
 | 
						|
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
 | 
						|
                 put_bits_count(&s->pb) >> 3);
 | 
						|
    put_bits(&s->pb, 8, crc);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void write_subframes(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int ch;
 | 
						|
 | 
						|
    for (ch = 0; ch < s->channels; ch++) {
 | 
						|
        FlacSubframe *sub = &s->frame.subframes[ch];
 | 
						|
        int i, p, porder, psize;
 | 
						|
        int32_t *part_end;
 | 
						|
        int32_t *res       =  sub->residual;
 | 
						|
        int32_t *frame_end = &sub->residual[s->frame.blocksize];
 | 
						|
 | 
						|
        /* subframe header */
 | 
						|
        put_bits(&s->pb, 1, 0);
 | 
						|
        put_bits(&s->pb, 6, sub->type_code);
 | 
						|
        put_bits(&s->pb, 1, 0); /* no wasted bits */
 | 
						|
 | 
						|
        /* subframe */
 | 
						|
        if (sub->type == FLAC_SUBFRAME_CONSTANT) {
 | 
						|
            put_sbits(&s->pb, sub->obits, res[0]);
 | 
						|
        } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
 | 
						|
            while (res < frame_end)
 | 
						|
                put_sbits(&s->pb, sub->obits, *res++);
 | 
						|
        } else {
 | 
						|
            /* warm-up samples */
 | 
						|
            for (i = 0; i < sub->order; i++)
 | 
						|
                put_sbits(&s->pb, sub->obits, *res++);
 | 
						|
 | 
						|
            /* LPC coefficients */
 | 
						|
            if (sub->type == FLAC_SUBFRAME_LPC) {
 | 
						|
                int cbits = s->options.lpc_coeff_precision;
 | 
						|
                put_bits( &s->pb, 4, cbits-1);
 | 
						|
                put_sbits(&s->pb, 5, sub->shift);
 | 
						|
                for (i = 0; i < sub->order; i++)
 | 
						|
                    put_sbits(&s->pb, cbits, sub->coefs[i]);
 | 
						|
            }
 | 
						|
 | 
						|
            /* rice-encoded block */
 | 
						|
            put_bits(&s->pb, 2, 0);
 | 
						|
 | 
						|
            /* partition order */
 | 
						|
            porder  = sub->rc.porder;
 | 
						|
            psize   = s->frame.blocksize >> porder;
 | 
						|
            put_bits(&s->pb, 4, porder);
 | 
						|
 | 
						|
            /* residual */
 | 
						|
            part_end  = &sub->residual[psize];
 | 
						|
            for (p = 0; p < 1 << porder; p++) {
 | 
						|
                int k = sub->rc.params[p];
 | 
						|
                put_bits(&s->pb, 4, k);
 | 
						|
                while (res < part_end)
 | 
						|
                    set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
 | 
						|
                part_end = FFMIN(frame_end, part_end + psize);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void write_frame_footer(FlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int crc;
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
    crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
 | 
						|
                            put_bits_count(&s->pb)>>3));
 | 
						|
    put_bits(&s->pb, 16, crc);
 | 
						|
    flush_put_bits(&s->pb);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
 | 
						|
{
 | 
						|
    init_put_bits(&s->pb, avpkt->data, avpkt->size);
 | 
						|
    write_frame_header(s);
 | 
						|
    write_subframes(s);
 | 
						|
    write_frame_footer(s);
 | 
						|
    return put_bits_count(&s->pb) >> 3;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void update_md5_sum(FlacEncodeContext *s, const int16_t *samples)
 | 
						|
{
 | 
						|
#if HAVE_BIGENDIAN
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < s->frame.blocksize * s->channels; i++) {
 | 
						|
        int16_t smp = av_le2ne16(samples[i]);
 | 
						|
        av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    av_md5_update(s->md5ctx, (const uint8_t *)samples, s->frame.blocksize*s->channels*2);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
 | 
						|
                             const AVFrame *frame, int *got_packet_ptr)
 | 
						|
{
 | 
						|
    FlacEncodeContext *s;
 | 
						|
    const int16_t *samples;
 | 
						|
    int frame_bytes, out_bytes, ret;
 | 
						|
 | 
						|
    s = avctx->priv_data;
 | 
						|
 | 
						|
    /* when the last block is reached, update the header in extradata */
 | 
						|
    if (!frame) {
 | 
						|
        s->max_framesize = s->max_encoded_framesize;
 | 
						|
        av_md5_final(s->md5ctx, s->md5sum);
 | 
						|
        write_streaminfo(s, avctx->extradata);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    samples = (const int16_t *)frame->data[0];
 | 
						|
 | 
						|
    /* change max_framesize for small final frame */
 | 
						|
    if (frame->nb_samples < s->frame.blocksize) {
 | 
						|
        s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples,
 | 
						|
                                                      s->channels, 16);
 | 
						|
    }
 | 
						|
 | 
						|
    init_frame(s, frame->nb_samples);
 | 
						|
 | 
						|
    copy_samples(s, samples);
 | 
						|
 | 
						|
    channel_decorrelation(s);
 | 
						|
 | 
						|
    frame_bytes = encode_frame(s);
 | 
						|
 | 
						|
    /* fallback to verbatim mode if the compressed frame is larger than it
 | 
						|
       would be if encoded uncompressed. */
 | 
						|
    if (frame_bytes > s->max_framesize) {
 | 
						|
        s->frame.verbatim_only = 1;
 | 
						|
        frame_bytes = encode_frame(s);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((ret = ff_alloc_packet(avpkt, frame_bytes))) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    out_bytes = write_frame(s, avpkt);
 | 
						|
 | 
						|
    s->frame_count++;
 | 
						|
    s->sample_count += frame->nb_samples;
 | 
						|
    update_md5_sum(s, samples);
 | 
						|
    if (out_bytes > s->max_encoded_framesize)
 | 
						|
        s->max_encoded_framesize = out_bytes;
 | 
						|
    if (out_bytes < s->min_framesize)
 | 
						|
        s->min_framesize = out_bytes;
 | 
						|
 | 
						|
    avpkt->pts      = frame->pts;
 | 
						|
    avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
 | 
						|
    avpkt->size     = out_bytes;
 | 
						|
    *got_packet_ptr = 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static av_cold int flac_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    if (avctx->priv_data) {
 | 
						|
        FlacEncodeContext *s = avctx->priv_data;
 | 
						|
        av_freep(&s->md5ctx);
 | 
						|
        ff_lpc_end(&s->lpc_ctx);
 | 
						|
    }
 | 
						|
    av_freep(&avctx->extradata);
 | 
						|
    avctx->extradata_size = 0;
 | 
						|
#if FF_API_OLD_ENCODE_AUDIO
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
 | 
						|
static const AVOption options[] = {
 | 
						|
{ "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
 | 
						|
{ "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
 | 
						|
{ "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | 
						|
{ "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | 
						|
{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | 
						|
{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
 | 
						|
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = -1 }, INT_MIN, INT_MAX, FLAGS },
 | 
						|
{ "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | 
						|
{ "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
 | 
						|
{ "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
 | 
						|
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, "predm" },
 | 
						|
{ "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
 | 
						|
{ "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | 
						|
{ "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | 
						|
{ "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | 
						|
{ "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | 
						|
{ "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
 | 
						|
{ NULL },
 | 
						|
};
 | 
						|
 | 
						|
static const AVClass flac_encoder_class = {
 | 
						|
    "FLAC encoder",
 | 
						|
    av_default_item_name,
 | 
						|
    options,
 | 
						|
    LIBAVUTIL_VERSION_INT,
 | 
						|
};
 | 
						|
 | 
						|
AVCodec ff_flac_encoder = {
 | 
						|
    .name           = "flac",
 | 
						|
    .type           = AVMEDIA_TYPE_AUDIO,
 | 
						|
    .id             = AV_CODEC_ID_FLAC,
 | 
						|
    .priv_data_size = sizeof(FlacEncodeContext),
 | 
						|
    .init           = flac_encode_init,
 | 
						|
    .encode2        = flac_encode_frame,
 | 
						|
    .close          = flac_encode_close,
 | 
						|
    .capabilities   = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
 | 
						|
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
 | 
						|
                                                     AV_SAMPLE_FMT_NONE },
 | 
						|
    .long_name      = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
 | 
						|
    .priv_class     = &flac_encoder_class,
 | 
						|
};
 |